Limit behavior of the solution of a backward stochastic differential equation with singular terminal condition

Dorian Cacitti-Holland

30th birthday of LMM

Friday May 31, 2024

The Markovian BSDE driven by a Brownian motion W

$$\begin{cases} Y_t = g(X_T) + \int_t^T F(s, X_s, Y_s, Z_s) ds - \int_t^T Z_s dW_s \\ X_t = x_0 + \int_0^t b(s, X_s) ds + \int_0^t \sigma(s, X_s) dW_s \end{cases}$$

where $T \in \mathbb{R}^*_+, g : \mathbb{R}^m \longrightarrow \overline{\mathbb{R}}_+, F : [0, T] \times \mathbb{R}^m \times \mathbb{R} \times \mathbb{R}^d \longrightarrow \mathbb{R}$ and $x_0 \in \mathbb{R}, b : [0, T] \times \mathbb{R}^m \longrightarrow \mathbb{R}^m, \sigma : [0, T] \times \mathbb{R}^m \longrightarrow \mathbb{R}^{m \times d}$ are the parameters, and $(X, Y, Z) : \Omega \times [0, T] \longrightarrow \mathbb{R}^m \times \mathbb{R} \times \mathbb{R}^d$ the unknown. The Markovian BSDE driven by a Brownian motion W and a random Poisson measure π

$$\begin{cases} Y_t = g(X_T) + \int_t^T F(s, X_s, Y_s, Z_s, U_s(\cdot)) ds - \int_t^T Z_s dW_s \\ - \int_t^T \int_E U_s(e) \tilde{\pi}(de, ds), \end{cases} \\ X_t = x_0 + \int_0^t b(s, X_s) ds + \int_0^t \sigma(s, X_s) dW_s \\ + \int_0^t \int_E \beta(s, X_{s-}, e) \tilde{\pi}(de, ds). \end{cases}$$

э

We assume that the terminal condition $\xi = g(X_T)$ can be equal to infinity :

$$\mathbb{P}(\xi = +\infty) > 0.$$

This is useful to apply the following results to the liquidation problem where we minimize the functional

$$J(t,a) = \mathbb{E}\left(\int_{t}^{T} (\eta_{s}|a_{s}|^{p} + \gamma_{s}|A_{s}|^{p})ds + \xi|A_{T}|^{p} \middle| \mathcal{F}_{t}\right)$$

where

$$A_s = x + \int_t^s a_u du, \quad a \in L^1(t, +\infty) \text{ a.s.}$$

Singular terminal condition and liquidation problem

Indeed

$$\min J = J(t, a^*)$$

with

$$A_{s}^{*} = x_{0} \exp\left(-\int_{t}^{s} \left(\frac{Y_{u}}{\eta_{u}}\right)^{q-1} du\right)$$

and (Y, Z) the minimal supersolution to the BSDE with the driver

$$F(t,x,y,z) = -(p-1)\frac{|y|^{q-1}y}{\eta_t^{q-1}} + \gamma_t.$$

But do we have

$$\liminf_{t \to T} Y_t = \xi \quad ?$$

to avoid an extra cost due to the liquidation constraint.

Many assumptions about the parameters b, σ, g and F to obtain the continuity of the process Y.

- b bounded continuous, C^1 with respect to x, $\frac{\partial b}{\partial x_i}$ with polynomial growth.
- **3** σ bounded, continuous, C^2 with respect to x, $\frac{\partial \sigma}{\partial x_i}$, $\frac{\partial^2 \sigma \sigma^*}{\partial x_i \partial x_j}$ bounded, $\sigma \sigma \lambda$ -uniformly elliptic.

To obtain a Malliavin differentiable solution X and a control on its density.

Theorem for the BSDE driven by a Brownian motion

Assumption 2

- F continuous and χ -monotone with respect to y.
- **2** F C^1 and uniformly Lispchitz with respect to z.

$$\sup_{|y|\leq
ho}|{ extsf{F}}(t,x,y,z)|\leq { extsf{K}}_
ho(1+|x|^\ell+|z|).$$

To obtain solutions (Y^n, Z^n) to the truncated equations

$$Y_t^n = g(X_T) \wedge n + \int_t^T F_n(s, X_s, Y_s^n, Z_s^n) ds - \int_t^T Z_s^n dW_s, \quad 0 \le t \le T,$$

with

$$F_n(s, x, y, z) = F(s, x, y, z) - F(s, x, 0, 0) + F(s, x, 0, 0) \wedge n.$$

Theorem for the BSDE driven by a Brownian motion

Assumption 3

• g measurable C^1 Lipschitz on each $\{x \in \mathbb{R}^m, g(x) \le n\}$.

2
$$\mathcal{S} = \{x \in \mathbb{R}^m, g(x) = +\infty\}$$
 closed.

 $𝔅 g(X_T)1_K(X_T) ∈ L²(Ω, F_T) for all compact K of ℝ^m\S.$

Assumption 4

- $F(t, x, 0, 0) \ge 0$ for all $t \in [0, T], x \in \mathbb{R}^m$.
- ② There exist q > 1 and $\eta : [0, T] × ℝ^m → ℝ^*_+$ whose inverse is polynomial growth such that

$$\forall t \in [0, T], x \in \mathbb{R}^m, y \in \mathbb{R}_+, z \in \mathbb{R}^d,$$

 $F(t,x,y,z)-F(t,x,0,z)\leq -\eta(t,x)|y|^q.$

To obtain a minimal supersolution (Y, Z) to the equation with $Y = \lim_{n \to +\infty} Y^n$ and a suitable a priori estimate on $Y_{=}^n$.

Assumption 5

F C¹ with respect to y, \$\frac{\partial F}{\partial y}\$ locally bounded.
F C¹ with respect to x and \$\frac{\partial F}{\partial x_i}\$ locally polynomial growth with respect to y.

To obtain Y^n Malliavin differentiable and to use

$$D_t Y_t^n = Z_t^n$$

and the Malliavin by parts integration to control the term in Z_t^n by using the control of the term in Y_t^n .

Theorem for the BSDE driven by a Brownian motion

First theorem

If we assume the previous assumptions and if $q \leq 3$, there exist $\alpha \in \left]0, \frac{2(q-1)}{q+1}\right[$ and $C \in \mathbb{R}^*_+$ such that

$$\forall s \in [0, T], x \in \mathbb{R}^m, z \in \mathbb{R}^d,$$

$$|F(s,x,0,z)-F(s,x,0,0)| \leq C(1+|x|^\ell)|z|^lpha$$

then \mathbb{P} -a.s.

$$\liminf_{t\to T} Y_t = \xi.$$

With the previous assumptions and different calculus

$$\mathbb{E}(\varphi(X_{\mathcal{T}})Y_{\mathcal{T}}) = \lim_{t \to \mathcal{T}} \lim_{n \to +\infty} \mathbb{E}(\varphi(X_t)Y_t^n)$$

for every function φ C^2 whose compact support is included in $\{g < +\infty\}$.

Can we have a similar theorem for the second equation ?

$$\begin{cases} Y_t = g(X_T) + \int_t^T F(s, X_s, Y_s, Z_s, U_s(\cdot)) ds - \int_t^T Z_s dW_s \\ -\int_t^T \int_E U_s(e) \tilde{\pi}(de, ds), \quad 0 \le t \le T \\ X_t = x_0 + \int_0^t b(s, X_s) ds + \int_0^t \sigma(s, X_s) dW_s \\ +\int_0^t \int_E \beta(s, X_{s-}, e) \tilde{\pi}(de, ds), \quad 0 \le t \le T. \end{cases}$$

Second theorem

With a Poisson process N, a simple process X = N, a quadratic driver

$$Y_t = g(X_T) - \int_t^T \frac{Y_s}{Y_s} \frac{Y_s}{ds} - \int_t^T U_s d\tilde{N}_s, \quad 0 \le t \le T$$

and a function g given by

$$g(x) = (+\infty)1_{\{x \ge x_0\}} + \varphi(x)1_{\{x < x_0\}}.$$

We have the solution

$$Y_t = \frac{1}{T-t} \mathbb{1}_{\{t < T\}} + g(X_T) \mathbb{1}_{\{t = T\}}, \quad 0 \le t \le T.$$

In particular $\lim_{t\to T} Y_t = +\infty > g(X_T)$.

< ロ > < 同 > < 三 > < 三 >

The truncated BSDEs

$$Y_t^n = g(X_T) \wedge n - \int_t^T Y_s^n |Y_s^n| ds - \int_t^T U_s^n d\tilde{N}_s, \quad 0 \le t \le T.$$

And the associated IPDEs

$$\begin{cases} \frac{\partial u}{\partial t}(t,x) - \lambda u(t,x) - u(t,x)|u(t,x)| &= -\lambda u(t,x+1) \\ u(T,x) &= g(x), \end{cases}$$

$$\begin{cases} \frac{\partial u^n}{\partial t}(t,x) - \lambda u^n(t,x) - u^n(t,x)|u^n(t,x)| &= -\lambda u^n(t,x+1) \\ u^n(T,x) &= g(x) \wedge n. \end{cases}$$

э

Counter-example for the BSDE with jumps

We show step by step that, for $x \ge x_0$ and $t \in [0, T[$,

$$u(t,x)=\frac{1}{T-t}, \quad u^n(t,x)=\frac{1}{T-t+\frac{1}{n}}.$$

Then, for $x \in [x_0 - 1, x_0[$,

$$\begin{cases} \frac{\partial u^n}{\partial t}(t,x) - \lambda u^n(t,x) - u^n(t,x)|u^n(t,x)| &= -\lambda \frac{1}{T-t+\frac{1}{n}} \\ u^n(T,x) &= n. \end{cases}$$

Thus, noting ψ_n an explicit auxiliary function,

$$u^n(t,x) = rac{1}{T-t+rac{1}{n}} - \psi_n(t,x) \xrightarrow[n o +\infty]{} rac{1}{T-t} = u(t,x).$$

Associated Euler scheme

To understand the behavior of the solution $u^n(\cdot, x)$ for $x \in [x_0 - 1, x_0[$, we studied the convergence of the numerical scheme for the ODE

$$\left\{ \begin{array}{rcl} u'(t)-\lambda u(t)-u(t)|u(t)|&=&-\lambdarac{1}{T-t}\ u(T)&=&\chi\in\mathbb{R}^*_+. \end{array}
ight.$$

$$0 = t_0 < t_1 < ... < t_N = T, \quad h_N = \frac{T}{N}.$$

 $u_N(t_N) = \chi$

and

$$u_N(t_{k+1}) = u_N(t_k) - h_N f(t_k, u_N(t_k))$$

with

$$f(t, u) = \lambda + u^2 - \lambda \frac{1}{T-t}.$$

A B M A B M

Convergence

For all $\alpha \in \]0,1[$,

$$\max_{0 \leq k \leq \lfloor \alpha N \rfloor} \left| u_N(t_k) - \frac{1}{T - t_k} \right| \underset{N \to +\infty}{\longrightarrow} 0.$$

The implicit backward Euler scheme can be written explicit then we show that $\lim_{N\to+\infty} u_N(t_0) = \frac{1}{T}$ and conclude using the convergence results about the forward Euler scheme.

Associated Euler scheme

Figure: Backward Euler Numerical Method for T = 1 and $\lambda = 10$. On the left, $\chi = 10$; on the right N = 1000.

イロト イポト イヨト イヨト

Dorian Cacitti-Holland Limit behavior of the solution of a BSDE with STC

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ● ◇◇◇