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Résumé
La reconnaissance d’événements vidéo consiste à interroger une base de données

par une vidéo requête d’un événement particulier, afin de retrouver toutes les vidéos
correspondant à ce même événement.

Le problème principal est d’estimer la ressemblance entre deux vidéos. Mais il faut
aussi garder une représentation compacte des vidéos et des temps de calcul raisonnables,
puisque nous pouvons travailler sur des bases de données assez conséquentes.

Dans un premier temps, nous présenterons deux approches introduites dans [1],
l’une considérant uniquement l’aspect visuel des vidéos, l’autre utilisant en plus l’ordre
chronologique des images.

Nous étudierons ensuite une troisième méthode utilisant une représentation plus
compacte des vidéos: les résultats obtenus sont similaires à ceux des approches précédentes,
avec un gain en temps de comparaison et en espace mémoire; cependant la gestion des
paramètres est plus complexe. Les implémentations des trois méthodes ont été réalisées
en Matlab.

Mots-clés: Reconnaissance d’évènements, Descripteurs vidéos, Base de données vidéo.
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Abstract

This internship’s goal was to study the event retrieval task on large video databases:
given a query video of a particular event, we want to retrieve every video of this same
event in a database.

The main issue is to find an accurate way to compare videos. Moreover, we need to
represent our videos in a compact form, and keep reasonable computation times: we
work on large video databases, thus a need of efficiency.

First, we study two approaches introduced in [1]; the first one only uses the visual
aspect of the videos, whereas the second one uses the chronological order of the frames
in addition.

Next, we introduce a third event retrieval method, which uses a more compact
description of our videos: it yields similar results to those of the previous approaches,
with a benefit on memory usage and comparison time; however it requires fine tuning
for the parameters. The three schemes were implemented using Matlab.

Keywords: Event retrieval, Video descriptors, Large video database.

Introduction
The event retrieval task aims at finding all the videos related to a very specific event in a
large database. In this internship report, we only use video data (no audio, teletext, etc.).

Because we are dealing with videos, we have both visual and temporal informations.
Visual data is efficiently transcripted with classic image descriptors often used in computer
vision. And the chronological order of the frames is used to find an optimal alignment
between videos: we assume that a good similarity measure is to estimate a visual similarity
when the videos are optimally aligned.

In the first section, we introduce the dataset and the protocol used to evaluate the
efficiency of our different methods. The next section describes two event retrieval algorithms,
MMV and CTE that were introduced in [1]: we use these results as a reference for the
event retrieval task. In the third section we present the main idea of our proposed model;
it introduces a more compact description of the videos and can be used to obtain the same
results than the above methods. We then explain the implementation in a more detailed
way in Section 4. Finally the last section describes possible improvements, and it presents
the final results obtained for each method.
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1 Presentation of the Dataset
1.1 EVVE
The EVVE (EVent VidEo) dataset contains 2975 videos retrieved from Youtube. Each
video is associated with an event, for which it is labelled as positive or negative (see Appendix
6.1 for a detailed list of the events). Furthermore if a video is associated with an event Ei,
it is implicitly negative for any different event Ej .

Definition 1.1 (Event). In that context, an event refers to a well localized (temporally and
spatially) and very specific event (e.g. Obama’s victory speech, Madonna’s concert in Rome
2012, etc.).

Finally, we distinguish the query videos (which are annotated as positive for their re-
lated event) from the database videos. The evaluation protocol is described in the next
subsection.

Figure 1: The 13 events of the EVVE dataset

1.2 Event retrieval Protocol
The queries will be compared one by one to the whole database in order to evaluate the
efficiency of the event retrieval scheme. For a query video q associated with an event E, the
algorihm computes Lq, an ordered list of the database: it is sorted from the most similar
to q, to the least similar one. We then use Lq to evaluate the AP (Average Precision) of
the algorithm for q. This is a scoring method often used in retrieval task; it takes account
of the number of retrieved positive (for E) database videos and their ranking in the list (see
Appendix 6.2 for details on computing the AP).

Finally, we compute the mean of the queries’APs (mAP) for each event. Our different
event retrieval methods are evaluated on the basis of their mAP results (the higher, the
better), their memory usage, and their computational time.

1.3 Describing the videos
We first process our videos to ensure they all meet a standard of 15 frames-per-second. Each
frame of a video is then described as a single real vector called a VLAD descriptor [2]: this
is an aggregation of SIFT local image descriptors [3] which are commonly used in computer
vision. They are relatively invariant to point of view, luminosity and scale change. This
robustness is preserved when they are merged into a VLAD descriptor.

These vectors are then compressed to the dimension d = 512. For this internship, the
whole dataset was annotated, and the VLAD descriptors had already been processed.

From now on, we refer to a video v as a descriptor matrix [v1 . . .vn] ∈ Rd×n, where vi
is the normalized VLAD descriptor of the ith frame. The similarity between two frames is
estimated by computing the dot product between their VLAD descriptors.

For the event retrieval task, our goal is to find a good way to compare videos; i.e. a
score function, s, that estimates the similarity between two videos. It should be accurate
and efficiently computed.
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2 Comparing videos : initial approaches
In this section, we describe two methods for comparing videos that were introduced in [1]
along with the EVVE dataset.

2.1 Visually
A first approach compares the videos based on their visual appearance, like we would do for
two static images: we sum the descriptors of a video, which results in a single vector called
MMV descriptor (Mean Multi Vlad). We use the dot product for comparison: formally,
we define the score between two videos v = [v1 . . .vn] and w = [w1 . . .wm] as:

s(v,w) , 〈
n∑
i=1

vi,

m∑
j=1

wj〉 =
∑
i,j

〈vi,wj〉 (1)

In short, we compare each frame with all those of the other video and then sum over the
computed values. The chronological order of the frames is not taken into account using this
metric, contrary to the following method.

2.2 Temporally
2.2.1 Frame-by-Frame Comparison

We now define a new score s(v, w), as the visual similarity between v and w when they are
optimally aligned.

Formally we introduce Sδ(v,w), the frame-by-frame comparison between two videos v
and w of same length n, with v being shifted of |δ| frames (δ ∈ J−n+ 1;n− 1K) to the right
(δ > 0) or to the left (δ < 0):

Sδ(v,w) ,
+∞∑
t=−∞

〈vt−δ,wt〉 , with vi = wi = 0 when i /∈ J0;nK. (2)

Finally the score between v and w is defined as s(v,w) , max
δ
Sδ(v,w).

2.2.2 Efficient Implementation

Call ṽi the ith line of the descriptor matrix of a video v. We rewrite Sδ(v,w) as :

Sδ(v,w) =
+∞∑
t=−∞

〈vt−δ,wt〉 =
+∞∑
t=−∞

d∑
i=1

vt−δ,i · wt,i =
d∑
i=1

+∞∑
t=−∞

ṽi,t−δ · w̃i,t

=
d∑
i=1

+∞∑
t=−∞

ṽi,t · w̃i,t+δ , with the change of variable t← t− δ

=⇒ Sδ(v,w) =
d∑
i=1

(ṽi ~ w̃i)(δ) , where ~ is the cross-correlation operator.

Call S the vector S = [. . . Sδ(v,w) . . . ], δ ∈ J−n+ 1;n− 1K. The previous lines implies

that S =
d∑
i=1

ṽi ~ w̃i. For computing efficiency we apply the cross-correlation theorem:

s(v,w) = max(S) = max
(
F−1

(
d∑
i=1
F(ṽi)∗ �F(w̃i)

))
(3)
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where � is the component-wise product between vectors, and ∗ the complex conjugate. This
is efficiently computed using the fast Fourier transform (FFT) algorithm.

Remark 2.1 (Cross-Correlation Theorem). The
previous formula is the result of the circular cross-
correlation theorem. The exact expression of (2)
corresponds to the linear cross-correlation: it is
obtained by 0-padding the lines of v and w to
the size 2× n− 1 before applying a circular cross-
correlation.
In practice for efficiency reasons, we keep the circu-
lar expression of the cross correlation. In brief, it
means that we compare our videos frame-by-frame
with a side effect on the shifted video (see Figure
2). Figure 2: Cross-Correlation
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Figure 3: Fourier Transform on a line of a
descriptor matrix

Moreover, the Fourier transforms com-
puted here have high frequency components
of low amplitude (see Figure 3). In practice
we introduce a pruning coefficient, β << 1:
we keep β×n low frequency vectors; the rest
of the Fourier transform is approximated
with zero. Besides, since our input signal
is real, the Fourier transform is conjugate
symmetric, thus we only need the informa-
tion of the first β×n

2 low frequency vectors.
We refer to this method as CTE

(Circulant Temporal Encoding) from now
on.

2.2.3 Improving the precision of δ∗

Due to the existing correlation between consecutive frames in videos and because of the
approximations we made to achieve computation effciency, the optimal alignment ( δ∗ =
argmax(Sδ(v,w))) is not always well localized: the score curves are noisy. For the same
reason when plotting the self-similarity of a video, s(v,v), the curves are very “smooth”
(see Figure 4). But the theoretical ideal result is a Dirac peak for δ = 0 .
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Figure 4: Self-similarity - Score curves for s(v,v)
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We can approach this Dirac behaviour by filtering the signal in the Fourier domain [4],
We refer to this as the regularization step.

2.3 Combining the two approaches
A third method combines the visual and temporal aspects, this is done by adding both
scores of MMV and CTE. Furthermore, it is efficiently computed: in fact a property of the
Fourier transform is that ∀x = (x1 . . . xn) ∈ Rn, (F(x))0 =

∑
xi. Hence, when computing

the Fourier transforms of the lines of the descriptor matrix in (3) for CTE, the first column
contains the sum of our descriptors, which we use to compute the MMV scores too.

2.4 Final results
Table 1 presents the mAP-results I obtained after implementing the previous methods using
Matlab.

XXXXXXXXXXEvents
Method MMV CTE CTE MMV+CTE

(reg.) 1 (reg.)
1 0.5316 0.6243 0.7447 0.6607
2 0.3386 0.3355 0.3790 0.3798
3 0.0872 0.1071 0.1265 0.1136
4 0.4554 0.3062 0.3792 0.4467
5 0.2346 0.2946 0.2969 0.2736
6 0.2542 0.2468 0.2529 0.2732
7 0.1997 0.1515 0.1773 0.2038
8 0.1299 0.1138 0.1199 0.1355
9 0.1246 0.2534 0.2521 0.2124

10 0.3669 0.2201 0.2400 0.3424
11 0.2392 0.1398 0.1557 0.2435
12 0.7732 0.7525 0.7558 0.7797
13 0.6043 0.5794 0.6488 0.6885

avg-mAP 0.3338 0.3173 0.3484 0.3657

Table 1: Computed values of mAP for the 13 events, using MMV and CTE

We already have good results with MMV alone, which means by only comparing the
videos from a global visual point of view. The CTE method yields significantly better
mAPs when the event is really well localized in time (e.g Obama’s victory speech, or the
arrest of DSK): the videos for this type of events overlap temporally more often, so it is easier
to align them. Finally we obtain the best results by combining both methods (MMV+CTE
column), which shows that they are in fact complementary.

Moreover, these results show that the structure of the database itself has an influence on
the mAPs. For example, the accuracy for event 12 is significantly better than for the other
events. An hypothesis is that this event (12 = Eruption of Strokkur Geyser in Iceland)
is difficult to mistake with another one. On the contrary, some events (e.g. Madonna’s
Concert, Shakira’s Concert, Johnny Halliday’s Concert) are very similar to one another:
This may lead to more false-positive retrieved videos, hence lower mAPs.

1CTE(reg.) : (reg.) = with the regularization step
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3 Comparing videos : an alternative
Beginning from this section, we study a new approach for comparing videos. We still use
the chronological video information, but not as directly as in CTE. Moreover, we introduce
more compact descriptors that are similar to those used in MMV.

3.1 A compact video representation
The basis idea is to re-use the MMV descriptor described in Section 2.1, but “break” the
existing correlation between consecutive frame descriptors before summing: we first increase
the dimension of the descriptors by 0-padding them; then we permute each descriptor dif-
ferently, in order to separate the correlated coordinates that were on the same line.

Figure 5: Descriptors are 0-padded

Formally, let v = [v1 . . .vn] and w =
[w1 . . .wn] ∈ Rd×n be two videos of same length
n (the shortest one being padded with 0 if needed).
We first define L > d, which is the new dimension
of our descriptors; we 0-pad our matrices to this di-
mension (see Figure 5). Furthermore, we introduce
a permutation matrix Q, and call ord its order (i.e.
ord is the smallest strictly positive integer such that
Qord = IdL).

Then we shuffle each descriptor using different
powers of Q. Even if they were modified, we still
call the descriptors [v1 . . .vn] for notation conve-
nience.

The final step is to sum over the rows of the descriptor matrix, so that our videos are
now represented by a single vector each: v ,

n∑
i=1

Qivi and w ,
n∑
i=1

Qiwi ∈ RL. We refer to

them as compact descriptors, provided that L < n× d.

Remark 3.1 (Order). In order to really apply a different permutation on each descriptor,
we need ord ≥ n.

3.2 Retrieving the temporal information
We expect that two descriptors permuted differently produce a very low dot product, because
we are now working in high dimension with a significant proportion of zeros. On the contrary,
two decriptors permuted the same way match “normally”; meaning they produce a high dot
product if they are similar, and a low one if they are not.

We use this particularity in order to compare our videos frame-by-frame using only v
and w: in fact, as in MMV, computing 〈v,w〉 is the same as summing all the similarities
between the (permuted) descriptors. And because of the previous remark, the similarities
between unaligned frames should be very low.

Formally, we compute for all δ ∈ Z the quantities:

Sδ(v,w) , 〈Qδv,w〉

= 〈
n∑
i=1

Qi+δvi,

n∑
j=1

Qjwj〉 =
n∑
i=1

n∑
j=1
〈Qi+δvi, Qjwj〉

=
n∑
i=1

n∑
j=1
〈vi, Qj−i−δwj〉
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We then distinguish the dot products between descriptors permuted the same way (i.e.
j = i+ δ [ord]), from the others:

Sδ(v,w) =
∑

j=i+δ[ord]
i,j∈J1;nK

〈vi,wj〉+
∑

j 6=i+δ[ord]
i,j∈J1;nK

〈vi, Qj−i−δwj〉

The first term represents the comparison frame-by-frame between the video w and the
video v being shifted of δ frames. Ideally, because of the permutation, the second term
should be very small in comparison to the first summand. Furthermore, CTE can be seen
as a subcase of this method, for which the second term would always be null.

Remark 3.2 (Order). Because we have 2n− 1 possible alignments between the two videos:

• we need only Sδ(v,w) for δ ∈ J−n+ 1;n− 1K.

• thus we need ord ≥ 2n− 1 to compute all needed values of Sδ(v,w)

In the two next subsections, we study how we can use the values of Sδ(v,w) for computing
a score, and we examine two possible candidates for the permutation Q.

3.3 Choice of the scoring method
Because we have an additional term that did not exist in CTE, we can wonder if taking the
maximum of all possible alignments (i.e. the maximum of the Sδ(v,w) values) still yields
the best possible score. Since the maximum is the infinite norm, we investigate the use of
other p-norms in order to take account of this additional term. Besides, we only focus on
finding matching parts in the videos: the negative alignment scores are irrelevant, so we give
a null weight to the negative values. This results in a new scoring method:

s(v,w)p =
∑
δ

Sδ(v,w)p × sgn(Sδ(v,w)) + 1
2
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Figure 6: Evaluation of the mAPs for different p-norms.

The obtained curves strongly indicate that the mAPs values grow with p, attaining their
maximum for p =∞. Thus we once again define the score as s(v,w) = max

δ∈J−n+1;n−1K
Sδ(v,w).
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3.4 Choice of the permutation Q

3.4.1 An equivalent to CTE


0 0 0 Id
Id 0 0 0
0 Id 0 0
...

...
...

...


Figure 7: Q - Matrix Form

A first idea was to totally suppress the second term
in the expression of Sδ(v,w), and only keep the
alignment’s term. This should yield the same re-
sults as CTE.

We therefore choose Q as a permutation that
moves the coordinates of a vector by blocks of
length d (see Figure 7). It ensures that when com-
puting the dot products 〈vi, Qj−i−δwj〉 non-null
coordinates are always associated with zeros.

So now, we simply have :

Sδ(v,w) =
∑

j=i+δ[ord]
i,j∈J1;nK

〈vi,wj〉 (4)

Finally we have to choose L, the new dimension of our descriptors, i.e. the length of our
permutation. We have ord = L/d, thus because of Remark 3.2 we need L > (2n − 1)d to
obtain all the alignment scores. Otherwise, we can choose to only follow Remark 3.1 and
take for example L = n× d, i.e. ord = n; because of the modulus on the indexes in (4), we
obtain the same circularity as in CTE.
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Figure 8: The linear correlation and CTE (ie circular correlation) curves are on the first
line. The second line show the results obtained with the above described method.

However, this requires L ≥ d×n : Compared to CTE, the description of the videos takes
the same space in memory and provides identical results. But it is still interesting to see we
can achieve the same results.

3.4.2 Taking advantage of the high dimension : R1C

The idea is once again to reduce the
∑
〈vi, Qj−i−δwj〉 term, but this time we want to keep

a reasonable length for the padding.
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First, we take advantage of the high dimension of the descriptors: we apply a random
row permutation σ on our descriptor matrix, so that our non-null coordinates occupy the
whole space provided by the padding length L. This permutation is only applied once.

Then, only after, we compute our compact descriptors using a simple cyclic permutation
of step 1 as Q (More precisely, if (ei)i is the canonical basis of RL, ∀i, Qei = ei+1[L]).

In fact, the powers of such a permutation are easily and efficiently computed. Fur-
thermore, when it comes to comparing two videos we can introduce the vector of scores
S = [. . . 〈Qδv,w〉 . . . ] (such that s(v,w) = max(S)). Because Q is a cyclic permutation,
one can show that S(v,w) = v ~circ. w. This is computed using Fourier transforms for
efficiency, as in CTE.

We refer to this method as R1C (Random permutation + 1-Cycle).

In the next section, we further analyse the influence of the parameters on R1C. More
particularly we show that the mAP results as well as memory usage and computation time
mostly depends on the padding length L and the videos’ length n.

4 Using R1C
4.1 Variance in R1C
Given two videos v and w, we established that the score Sδ(v,w) contains a term corre-
sponding to the frame-by-frame comparison in alignment δ. We want to estimate how close
Sδ(v,w) is to this term.

Therefore, in this subsection we determine the theoretical mean and variance of Sδ(v,w)
as a function of the padding length L, the videos’ length n and some other parameters of
lesser influence.

4.1.1 Theoretical expression of the variance

For reminder, we have, for a temporal alignment δ :

Sδ(v,w) = 〈Qδv,w〉 =
n∑
i=1

n∑
j=1
〈Qi+δvi, Qjwj〉

=
∑

j=i+δ[ord]
i,j∈J1;nK

〈vi,wj〉+
∑

j 6=i+δ[ord]
i,j∈J1;nK

〈vi, Qj−i−δwj〉

Call fδ(v,w) the number of frames of v and w that match in the alignment δ : we
can also extract from the first sum fδ(v,w) dot products equaling 1 (i.e. the dot products
between perfectly matching frames). The other dot products, which should be much lower,
are integrated to the second sum. That means we can write:

Sδ(v,w) = fδ(v,w)︸ ︷︷ ︸
Matching Frames

+
∑
〈vi, Qj−i−δwj〉︸ ︷︷ ︸
“Noise” term

Our goal is to study the dot products in the “noise term” as real random variables, in order
to apply the central limit theorem to the whole sum.

Proposition 4.1 (Gaussian Distribution on the high dimensional unit sphere). Given x and
y two uniformly distributed random unit vectors of dimension D, then for great values of
D we have 〈x, y〉 ∼ N (0, 1

D ).
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Lemma 4.2 (Projective Central Limit Theorem). Let x = [x1 . . . xD] ∈ RD be an uniformly
distributed random vector of norm ‖x‖ =

√
D, then we have x1

L−→
D→+∞

N (0, 1).

Proof. Lemma 4.2 - Let us study the probability density function of x1 ∈ R (denoted by
f). We use the fact that f is the derivative of F , the cumulative distribution function of x1.{

F (t) = P(−∞ ≤ x1 ≤ t) = 1− P(x1 ≥ t)
f(t) = − d

dt (P(x1 ≥ t))

Figure 9: Schema for D = 3

Furthermore, x is uniformly distributed
on the sphere centered in 0 and of radius√
D. Thus P(x1 ≥ t) can be computed as

the ratio of the area of an hyperspherical
cap of height

√
D − t (i.e. the part of the

sphere above the hyperplan x1 = t), to the
total area of the sphere (see Figure 9).

The expression of this ratio can be found
in [5], and it results in :

P(x1 ≥ t) = 1
2Isin2 φ

(
D − 1

2 ,
1
2

)
where I is the regularized incomplete beta
function, and φ is the colatitude angle that
defines the hyperspherical cap: it is the an-
gle between the x1-axis vector (1, 0, . . . , 0),
and any vector going from the center of the
sphere to the basis of the cap.

The expression of φ is straightforward in dimension D = 3 and can be generalized to
greater dimensions. We have sin2 φ = 1− cos2 φ = 1− t2

D .

Moreover, x → Ix(a, b) is the cumulative distribution function of a beta distribution;
Therefore, its derivative is the associated probability density function of the beta distribu-
tion. After calculus, with B being the Beta function, we have:

f(t) = − d

dt
(P(x1 ≥ t)) = 1√

D
× 1
B
(
D−1

2 , 1
2
) (1− t2

D

)D−3
2

Because D → +∞, we can use the Stirling’s approximation for the Beta function, and

the usual limit
(

1− t2

D

)D−3
2 −→

D→+∞
e−

t2
2 . This results in:

f(t) −→
D→+∞

e−
t2
2

√
2π

, the probability density function of N (0, 1).

Finally, by applying Scheffé’s lemma, we deduce that x1
L−→

D→+∞
N (0, 1).

2013 ÉNS Cachan Bretagne Royer Amélie 10



Rapport de stage - L3 4 USING R1C

Lemma 4.3 (Unit Sphere and Rotation). Given x an unit vector and un = (1, 0, . . . , 0)
∈ Rn there exists a rotation R such as x = R · un.

Proof. Lemma 4.3 - Let (Hn) be the property to be proved.

• n = 2 Let x = (x1, x2) ∈ R2 an unit vector. Let R be the plane rotation of angle
arccos(x1).

ie R =
(
x1 −x2
x2 x1

)
. Then Rx = u2: (H2) is true.

• n ∈ N Let n ≥ 3 and assume (Hn−1) is true.
Let x = (x1, x2, . . . , xn) ∈ Rn. Let us call v = (xn−1, xn). Then, because (H2) is true,
there exists R1 such that R1v = ‖v‖ · u2. We then extend R1 to the nth dimension:

R1 ←
(
In−2 0

0 R1

)
. Thus R1x = (x1, . . . xn−2, ‖v‖, 0).

Let us introduce x′ = (x1, . . . xn−2, ‖v‖).

Then ‖x′‖2 =
n−2∑
i=1
|xi|2 + ‖v‖2 =

n∑
i=1
|xi|2 = 1. We can therefore use (Hn−1) on x′ : it

exists a rotation R2 which sends x′ on un−1. Same as above, we extend R2 to the nth

dimension : R2 ←
(
R2 0
0 1

)
.

And finally with R = R2R1, we have Rx = un, thus (Hn) is true for all n.

Proof. Proposition 4.1 - First, we apply a rotation matrix R on x and y so that Rx =
x′ = (1, 0 . . . , 0) and Ry = y′. Since a rotation leaves the dot product unchanged, we have
y′1 = 〈x′, y′〉 = 〈x, y〉.

By applying Lemma 4.2 on
√
D × y′, which is an uniformly distributed vector on the

sphere of radius
√
D, we have

√
D〈x, y〉 =

√
D × y′1

L−→
D→+∞

N (0, 1).
Hence when D is great enough, we can make the approximation√
D〈x, y〉 ∼ N (0, 1), thus 〈x, y〉 ∼ N

(
0, 1

D

)
.

We can now use this result on the score for a given alignment δ. For reminder, we have :

Sδ(v,w) = fδ(v,w) +
∑
〈vi, Qj−i−δwj〉

At this point we know that every dot product 〈vi, Qj−i−δwj〉 follows a normal distribution
N (0, 1

L ). Finally, we assume that our dot products are independent in order to apply the
central limit theorem to the sum.

Particular Case In the case δ = 0, if the videos V and W share common frames, it
appears that for some index 〈Qi+δvi, Qjwj〉 and 〈Qk+δvk, Q

lwl〉 are the same variable.
More simply, we have re-appearing, and thus non independent dot products when we are
computing the score S0(v,w) with v and w having some frames in common.

Therefore, in that case, we first extract the re-appearing dot products from the sum;
formally, we introduce the set of indexes I = {k ∈ J1;nK,vk = wk} = {σ(1) . . . σ(q)} where
q is the cardinal of I. By doing so, we have:
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S0(v,w) = f0(v,w) + 2
q∑
i=1

q∑
j=i
〈vσ(i), Q

j−iwσ(j)〉

+
∑
〈vσ(i), Q

j−iwσ(j)〉

And all the appearing dot products are now independent and identically distributed
variables following a normal distribution N (0, 1

L ).

4.1.2 Experimental validation

We now compare the experimental results with the theory in different alignment situations.

Case 1: V and W do not match in alignment δ; In that case we have fδ(v,w) = 0.
Thus,

Sδ(v,w) =
∑
i,j

〈vi, Qj−i−δwj〉

The dot products are n2 independent identically distributed variables following a N (0, 1
L )

distribution. By applying the central limit theorem we have :

√
n2
∑
〈vi, Qj−i−δwj〉

1√
L
n2 = Sδ(v,w)

1√
L

√
n2
∼ N (0, 1)

We conclude that Sδ(v,w) ∼ N
(

0, n2

L

)
Case 2 : V and W match in alignment δ = 0; In that case: f0(v,w) 6= 0 and I 6= ∅.

S0(v,w) = f0(v,w) + 2
q∑
i=1

q∑
j=i
〈vi, Qj−iwj〉+

∑
〈vi, Qj−iwj〉

By applying the same reasoning as above, we have that the first and second sum follow
respectively a N

(
0, 4 q(q−1)

2L

)
and N

(
0, n

2−q(q−1)−f0(v,w)
L

)
distribution. And as the sum of

two indepedent gaussian variables, S0(v,w) ∼ N
(
f0(v,w), n

2+q(q−1)−f0(v,w)
L

)
.

Results After doing several measurements, I computed an estimation of the variance of
S0(v, w) in the case where

• v and w are two randomly generated videos; i.e. Case 1, δ = 0, S0(v,w) ∼ N
(

0, n2

L

)
.

• v = w; i.e. Case 2 with q = f0(v,w) = n, S0(v,w) ∼ N
(
n, 2(n2−n)

L

)
.

As shown by Figures 10 and 11, the experimental results match the expected variance.
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Figure 10: Case 1 - Variance as function of n (left) and L (right)
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Figure 11: Case 2 - Variance as function of n (right) and L (left)

Remark 4.4. For too high val-
ues of L, the variance tends to
be higher than expected. This
probably comes from the fact
that we made the assumption of
uniformly distributed vectors of
dimension L; But this depends
on the permutations applied on
the descriptors, and therefore on
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Figure 12: Example (d = 8 and n = 64): problems
begin to appear for L ∼ 150
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4.2 Implementation of R1C
Pre-Treatment of the descriptors Using Matlab, the pre-computing part (i.e. comput-
ing the sums

∑
Qivi ) is very slow (several minutes for a video). To address this problem,

this part was written in C, and interfaced with Matlab using a mex file. Moreover I used
an implementation similar to that of sparse matrices, so that we do not have to manipulate
the full L× n matrix when computing the permutations:

• Input : A descriptor matrix, v (size d×n) and a random row permutation σ (size L).

• Output : The corresponding compact descriptor, v =
∑
Qi(σ · vi), of size L.

• Implementation:

1. First, we allocate an integer array RowsIndexes, of size d × n. The number
rowsIndexes[i;j] represents the line at which the number v[i;j] would be located
in the fully 0-padded descriptor matrix: we only work on the line indexes.

2. Then, both rows permutations (the random one: σ, and the cyclic ones: Qi) are
applied by changing the values in RowsIndexes :
RowsIndexes[i; j] ← σ(RowsIndexes[i; j])︸ ︷︷ ︸

Random part

+ j︸︷︷︸
Cyclic part

3. Finally we need to sum every non null coordinate in the ouput vector com-
pact. It is easily done by browsing v and updating Compact as follow :
v[rowsIndexes[i,j];j] += v[i;j]

Comparing the videos As stated in Section 3.4.2, we compute the score vector S =
[. . . Sδ(v,w) . . . ] with a single circular cross-correlation between the compact descriptors.

This is efficiently computed using the FFT algorithm. Furthermore, in order to reduce
the gaussian noise existing in S , we apply a low-pass filter on the Fourier transforms by
suppressing a part of their high frequency components.

Summary

• 1 - For every video v (database and query) we precompute v =
n∑
i=1

vi. For efficiency
reasons, we directly store their Fourier transforms.

• 3 - At query time, given a query v, for every database video w we compute : S =
F−1 (F(v)∗ �F(w))

• 4 - Finally we compute s(v,w) = max(S)

• 5 - We use the s(v,w) values to compute a mAP for the query v. Steps 3-5 are
repeated for each query.

4.3 Spatial and Temporal Analysis
The next step is to compare the temporal and spatial use of CTE and R1C. Both methods
have a step of pruning high frequencies therefore we introduce the parameter β, which
represents the proportion of low frequency components kept. We denote with a “ ’ ” the
values that have been modified by the pruning.
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R1C

1. Pre-computing : Using the method described above, we only browse the arrays v and
RowsIndexes, thus a temporal complexity O(n×d). At the end of this step, we have
for each video a vector of size L (possibly pruned).

2. Comparing : It only requires a cross-correlation, i.e. in the Fourier domain, a component-
wise multiplication between two vectors and an inverse FFT (O(L′ + L′ log(L′)).

CTE

1. Pre-computing : We map the videos to the Fourier domain (O(n log(n))). At the end
of this step we have for each video a matrix of size n′ × d.

2. Comparing : It requires d×n′ component wise multiplications (and as much additions),
and a final inverse Fourier transform after re-adding the 0-values corresponding to high
frequencies (O(d× n′ log(n′) + n log(n))).

Memory Time(PreComputing) Time(Comparison)
R1C L′ n× d L′ log(L′)
CTE d× n′ n× log(n) d× n′ log(n′)

Table 2: Complexity Summary (Predominant Term) per video

The main difference between the two methods is that the spatial and time complexity
in CTE depends on the videos’ length, whereas in R1C (except for the pre-computing) it
only depends on the fixed parameters L and d. Thus, the efficiency depends a lot of the
repartition of the videos’ length in the database. In practice, the more long videos there is
in the database, the more R1C is efficient compared to CTE.

Observations on EVVE - 2975 videos On the EVVE Dataset, R1C is better when it
comes to memory usage and comparison time. But it requires a longer pre-computing time.
Furthermore during pre-computing R1C needs to allocate space for the array rowsindexes
(even if it is discarded afterwards).

Database size Time(PreComputing) Time(Comparison)
R1C 974M 34s/event 5.9s/query
CTE 3.282G 17s/event 6.8s/query

Table 3: Average values observed on EVVE for the final simulations (mAPs in Table 4)

In the next section, we study four steps that can be applied on R1C (such as a regular-
ization step) to improve its obtained mAPs. And we conclude this next section by a table
recapitulating the best score achieved by each method.

5 Improvement on R1C
5.1 Regularization
Similarly to CTE, if we introduce the vector S = [. . . Sδ(v,w) . . . ] = [. . . 〈Qδv,w〉 . . . ], we
previously noticed that S = v ~circ. w = F−1 (F(v)∗ �F(w)). We therefore can apply the
same regularization step as in Section 3.
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The idea is to have a Dirac-like peak for alignment δ = 0 when comparing a video
with itself, by adding a filtering stage. We add a Fourier Filter A in the score formula
(SA = F−1 (A�F(v)∗ �F(w))), and we want to achieve :

SA = [1, 0 . . . 0] =⇒ A�F(v)∗ �F(v) = [1 . . . 1]

=⇒ A = 1
F(v)∗ �F(v) (Component-wise division)

And we add a regularization parameter λ, for preventing the denominator to be null.
Finally, we extend the filter’s expression for the score S between two videos v 6= w. We

choose to use a symmetric expression for the filter: Asym = 1√
F(v)∗�F(v)×

√
F(w)∗�F(w)+λ

.
And we finally have :

S = F−1 (F(v)∗ �F(w))√
F(v)∗ �F(v)×

√
F(w)∗ �F(w) + λ

In the two next sections we study the influence of the scoring metric, and we introduce
a parameter for noise reduction in order to further improve the results.

5.2 Using the p-norms
In Section 3.3 we introduced another scoring method that used the different p-Norms of the
vector S instead of simply taking the maximum. After the regularization step, this have a
positive impact: there exists a norm that achieves better results than the maximum (see
Figure 13).
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Figure 13: Evolution of the mAPs for different p-Norms with R1C(reg.)
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5.3 Choosing a non-random permutation
Using the R1C method, the results fluctuate because of the random permutation σ generated
at the beginning. Therefore I tried to find a deterministic permutation in order to replace
this undesirable random aspect.

Given a descriptor vi ∈ Rd, that we 0-pad to a dimension L, we search a permutation σ
of size L such that the d non-null coordinates in σ ·vi occupy the whole dimensionality. The
problem does not have an exact solution, therefore I constructed the permutations based on
a simple model. We introduce two arrays :

• Steps of size d that represents the different steps between the non-null coordinates
after being permuted. In practice we choose a fixed initial step st and Steps =
[. . . , k × st, . . . ] , k ∈ J1; dK.

• Index = J1, dK (initially). It represents the new order of the non null coordinates after
the permutation.

Furthermore, in order to have a less “ordered” structure, we apply very simple permutations
both on Steps and Index (For example : “For each odd index i, switch array(i) and
array(end-i)”).

Finally, the permutation σ is constructed as follow :

σ = [. . . index(j), 0, 0, . . . 0︸ ︷︷ ︸
Steps(j) 0

, index(j + 1) . . . ]

for j going from 1 to d.
With this scheme, I could find some permutations that achieved good results. However

this is not an “exact” method, and we do not know if this permutation would achieve
good results on a totally different database. We refer to this method as D1C (Determined
permutation + 1-Cycle).

5.4 Final Results
The Table 4 contains the final best results obtained with the R1C with regularization and
D1C with regularization methods, that were presented above.

@
@@

CTE R1C 2 D1C 2 MMV+CTE MMV+D1C
norm ∞ norm 5 norm 3 norm ∞ norm ∞

1 0.7447 0.7032 0.7218 0.6607 0.6307
2 0.3790 0.3195 0.3322 0.3798 0.3559
3 0.1265 0.1389 0.1518 0.1136 0.1402
4 0.3792 0.4216 0.4249 0.4467 0.4716
5 0.2969 0.1761 0.2203 0.2736 0.2452
6 0.2529 0.1584 0.2127 0.2732 0.2451
7 0.1773 0.2496 0.2451 0.2038 0.2453
8 0.1199 0.1076 0.1421 0.1355 0.1457
9 0.2521 0.1559 0.2180 0.2124 0.2512

10 0.2400 0.2196 0.3053 0.3424 0.3535
11 0.1557 0.1218 0.1680 0.2435 0.2266
12 0.7558 0.7834 0.7513 0.7797 0.8005
13 0.6488 0.6474 0.6863 0.6885 0.7123

avg-mAP 0.3484 0.3233 0.3523 0.3657 0.3711

Table 4: Comparison of the final results
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In the last column, we also computed the results for MMV+D1C; it significantly im-
proves the results. But the MMV descriptors have to be computed separately from the
compact descriptors (even if in practice the additional memory and time needed for com-
puting the MMV scores are negligible).

On average, we observe that D1C yields a little better results than those in Table 1,
and it uses less memory for a lower average comparing time. However, D1C has a lot more
parameters to control.

On one hand, finding optimal parameters is more difficult and it requires fine tuning.
On the other hand, it is interesting to have a fully parameterizable method since the results
always depend at least on the database. Thus the flexibility of D1C could be useful in order
to adapt the method to different datasets.

Conclusion
To conclude on the different methods presented above: the good results of MMV attests
the robustness of the SIFT/VLAD descriptors system. CTE shows that the temporal
information can be useful when the events are well localized in time. Finally R1C/D1C is
a more vectorial approach that achieves a gain in memory usage and comparison time with
similar mAPs results. But it depends on more parameters.

To go further, it could be interesting to use different evaluation methods for this task.
Computing of the mAP is a relative measure: in practice with retrieval tasks, the user is only
interesed in the 10/20 first results (e.g. a Google search). But here, we computed the AP on
the whole database. Furthermore, during measurement we mostly focused on maximizing
the average mAP. But we noticed that some parameters could positively influence an event,
when lowering the scores for another one. It could be interesting to create a classification of
the events using these informations, in order to optimize the algorithms.

Finally, we could use more of the inherent information contained in the video. In the
Appendix 6.3 we describe how we can use the shot boundary information on this task. But
we could also use audio data for example in order to compute a more accurate similarity
measure between video.

2Order of magnitude for R1C and D1C : nmax ∼ 65000;L ∼ 50nmax; β = 1
32
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6 Appendices
6.1 List of the events in the EVVE Dataset

Events Queries Data Positive Data
1. Obama’s Victory Speech 14 75 29
2. Kate and William’s Wedding 44 188 88
3. Arrest of DSK 9 79 19
4. Shakira’s Concert 19 174 39
5. Johnny Halliday’s Concert 87 401 174
6. Madonna’s Concert 51 171 104
7. Die toten Hosen’s Concert 32 207 64
8. Egyptian riots 36 99 72
9. Marrakech Bomb Attack 4 110 10
10. Thailand Flood 73 157 148
11. Barcelona Riots 13 149 27
12. Strokkur Geyser 215 498 431
13. Jurassic Park Ride 23 57 47
Total 620 2375 1252

Table 5: Details of the EVVE dataset

6.2 Computing an average precision
Given D a set of data labelled as positive or negative in relation to a query q (D = D+ ∩
D-), the event retrieval algorithm computes Lq, a sorted list of D in decreasing similarity
order. Intuitively, the algorithm would be optimal if all the videos of D+ appear at the
beginning of Lq. The average precision takes account of the repartition of the videos of D+

in Lq.
Formally, ∀v ∈ D+ we call k(v) the index of v in Lq. Then, we compute Preq(v),

the precision of the sub-list Lq|v = Lq[1 . . . k(v)], which is defined as the ratio Preq(v) =
card(D+∩Lq|v )
card(Lq|v ) . It is the number of positive videos retrieved so far, divided by the total

number of retrieved videos so far.
Finally, the expression of the average precision for the query q is given by:

AP(q) =

∑
v∈D+

Preq(v)

card(D+)

6.3 Potential Improvement : Using the Shot Boundaries
6.3.1 Motivation

The basis idea was to sum the descriptors belonging to the same shot: a whole shot is now
represented by a single vector. The resulting descriptors are less correlated, and they still
provide a good visual description of our videos. Furthermore, this method is robust against
resampling.

6.3.2 Detecting the Shot Boundaries

Let v = [v1 . . .vn] ∈ Rd×n be a video of length n. For each time t ∈ J2, . . . , n− 1K, we first
compute the value sv(t) = 〈vt−1,vt+1〉: it is the similarity between the frames vt−1 and
vt+1.
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A first approach is to define the shot boundaries as every time t for which sv(t) is
inferior to a threshold α. The inconvenients of this method are its strong depedency on the
parameter α, and its bad precision when the shot boundary is not neat (e.g fade transitions).

To address these problems,we browse the frames by groups of 10 (assuming that there
would never be more than one shot change in that lapse of time). This prevents detecting
duplicate shot boundaries when the transition is not neat.

Besides, we compute the variance of the sv(t) values in theses groups. If that variance
is greater than a certain threshold, we assume there is a shot change in that intervall; the
time t for which sv(t) is minimal in the group is marked as a shot boundary.
By using the variance, the idea is to look for group of frames that contains a brutal variation
in the similarities, it doesn’t depend on a threshold value for the similarity. See Figure 14
for a comparison of both methods.

http://www.youtube.com/watch?v=-5vWztiU7aI (First minute)
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Figure 14: Comparison of both methods - Overall, the cut transitions are well detected by
both methods. Finally the fade transitions (around 300th and 600th frame) are only

detected by the second approach.

6.3.3 Application on the EVVE dataset

I didn’t have much time to try this method, but the first results were not convincing enough
(final mAP around 0.275), and the precomputing time is longer. However, because the
treated videos are shorter, we can afford to use shorter padding lengths. Comparing two
videos is therefore much faster (around 1s per query in the final simulations).
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