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Introduction

Classification

Kit Fox?
Chair?

Cat?

Cowboy Hat?

Classifier f: — Classes'score :
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Introduction

Classification

Kit Fox?
Chair?

Cat?

Cowboy Hat?

Classifier f: — Classes'score :

Usual Classification in real-life

o Classifier: Immediate visual information.

@ Human Being: Infer additional knowledge from context.

On realistic sequences, how do we learn a context and use it?
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Introducing Example
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Introducing Example
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Angora Rabbit
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Angora Rabbit
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Introducing Example

Angora Rabbit
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Introduction

Introducing Example

- Classifier predicts: Badger
Angora Rabbit

s

e Angora Rabbit With Context predicts: Wood Rabbit
Angora Rabbit
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Introduction

Problem Formulation

Problem
e X (images), ) (classes)
e An initial classifier f : X — R
@ A ‘“realistic” sequence of queries S = (x;,y;); € (X,y)N
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Introduction

Problem Formulation

Problem

e X (images), ) (classes)
e An initial classifier f : X — R
@ A ‘“realistic” sequence of queries S = (x;,y;); € (X,JJ)N

@ Learn the context of S;

@ Combine it with the classifier f.

—> context-sensitive classifier g
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Introduction

Online Learning

For (xj,y;) in the sequence S

1. g predicts a class ¥;;
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Introduction

Online Learning

For (xj,y;) in the sequence S

1. g predicts a class ¥;;

2. Receive feedback:

Reinf
(Fully Supervised) ( ein orcement) .
Receive th h Receive the boolean (Unsupervised)
sy information No Feedback.
class y; «
(vi==y)
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Introduction

Online Learning

For (xj,y;) in the sequence S

1. g predicts a class ¥;;

2. Receive feedback:

Reinf
(Fully Supervised) ( ein orcement) .
Receive th h Receive the boolean (Unsupervised)
sy information No Feedback.
class y; «
(vi==y)

3. g updates its knowledge of the context.
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Multinomial Model

A probabilistic approach

Modelling a Context

Context model = a probability distribution over the classes

O,(yg ") =P(y | yg1)
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A probabilistic approach

Modelling a Context

Context model = a probability distribution over the classes

O,(yg ") =P(y | yg1)

Domain adaptation

Source (Training time)(Ps): Uniform distribution of the queries.
Target (Testing time)(P¢): Unknown “context” of the sequence S.

Multinomial Model Where am 17 Learning a prior for lifelong visual object categorization



Multinomial Model

A probabilistic approach

Modelling a Context

Context model = a probability distribution over the classes

O,(yg ") =P(y | yg1)

Domain adaptation

Source (Training time)(Ps): Uniform distribution of the queries.
Target (Testing time)(P¢): Unknown “context” of the sequence S.
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Multinomial Model

Combining with the classifier

Combination
@ Domain adaptation (prior probability shift)

@ Bayes' rule in “source” and “target” settings.
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Multinomial Model

Combining with the classifier

Combination

@ Domain adaptation (prior probability shift)

@ Bayes' rule in “source” and “target” settings.

=

gy (x) = Pe(ylxa) o< f,(xn) x 6, (yg™") (1)
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Multinomial Model

Combining with the classifier

Combination
@ Domain adaptation (prior probability shift)

@ Bayes' rule in “source” and “target” settings.

=

gy (x) = Pe(ylxa) o< f,(xn) x 6, (yg™") (1)

8y(x) = "“score of y given by f" x “probability of y in context 6"

(2)
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Multinomial Model

Using past frequencies

Fully-supervised: Multinomial Model

e pe1y A Wo1(y) +e
0,(yg™") =P(ylyg 1)=';7jr(€|)y|

@ w, : classes’ counts up to round n

@ ¢ smoothing term

Multinomial Model Where am 17 Learning a prior for lifelong visual object categorization



Multinomial Model

Using past frequencies

Fully-supervised: Multinomial Model

n— n— A Wp1ly +e€
ey(YO 1) = P(Y’Yo 1) = n—li—(s|)y|

Update rule

receive true label y,

Wn(¥n) = Wa-1(yn) + 1
wn(y) = wh—1(y), otherwise
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Expert Weighting

A more general approach

Confidence weight

© classifier f : a score for each class (visual information)

@ context model : a “confidence weight” for each class

—> Context = weight vector w

g(x) =wof(x)

(®: component-wise multiplication).
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Expert Weighting

A more general approach

Confidence weight

© classifier f : a score for each class (visual information)

@ context model : a “confidence weight” for each class
—> Context = weight vector w
g(x) =wo f(x)

(®: component-wise multiplication).

4

Weight vector 7

@ Online learning;

o Multiplicative Update;

@ Winnow.
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Expert Weighting

Expert Weighting

Correcting the mistake

Mistake = context must “correct” the initial classifier f.

Intuition of the update rule

If yn # Y

wn_1(y) x e?A=600)) if y =y,
Yy, wa(y) < § wp1(y) x e @A=hlxa) if y =y,

wp—1(y), otherwise
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Database Generation

Realistic Sequence

What is “realistic” ?

Realistic: Semantical relation (e.g.: image sequence from human
environment)
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Database Generation

Realistic Sequence

What is “realistic” ?

Realistic: Semantical relation (e.g.: image sequence from human
environment)

TXT database

@ Browsing english books

@ Retrieving labels
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Database Generation

Realistic Sequence

What is “realistic” ?

Realistic: Semantical relation (e.g.: image sequence from human
environment)

KSland MDS2database

TXT database @ Hierarchical Distance
@ Browsing english books (ImageNet)
@ Retrieving labels @ 2D Projection

@ Random Walk

INIPS2008°0552.

2 cox' multidimensional 2001.
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KS Example

se Generation

Database Generation

ringlet B sulphur butterfly | cricket [l australian terrier || Pekinese dalmatian red fox|

[ cabbage butterfly grasshopper

weevil damse

leaf beetle

ground beetle

ladybug bee
tiger beetle

Wolf spider ant
garden spider

tarantula tick

black widow

persian cat | yorkshire terri¢ standard poodle || grey fox | afric:

Ifly cicada tabby [ chihuahua | [ newfoundland hyena

cockroach leafhopper egyptian cat griffon

long-horned beetle dragonfly mayfly tiger cat | jaguar

mantis walking stick | | siamese cat lion

lacewing cougar cheetah || black-footed ferret | meerkal

fly horseshoe crab lynx tiger

millipede starfish leopard
mosquito trilobite snow leopard mink

centipede \ sea urchin skunk lesser panda| african elep

harvestman mussel] sea cucumber weasel

arctic fox b|

otter ice beal
badger

giant panda n

polecat angora|

raccoon Wi

indian elephant ||

Figure : KS grid example
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Results

Experiments

Experimental Settings

f = CCV classifier (convolutional neural network)

10 x 5000 random label sequences
100 TXT sequences

100 x 1500 KS sequences

100 x 1500 MDS sequences
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TXT Experiments

TXT_Means - all methods
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TXT Experiments

Results
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Results

TXT_Means - all methods
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Conclusion

Conclusion

Conclusion

o Context knowledge improves classification accuracy on
semantically ordered sequence

@ Best method so far = Multinomial model

@ Reinforcement and Unsupervised perform well when f is
accurate
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Conclusion

Conclusion

Conclusion

o Context knowledge improves classification accuracy on
semantically ordered sequence

@ Best method so far = Multinomial model

@ Reinforcement and Unsupervised perform well when f is
accurate

Theoretical Analysis

@ More specific structures of sequences ?

@ More specific context modelling methods ?
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Conclusion

Conclusion

Conclusion

o Context knowledge improves classification accuracy on
semantically ordered sequence

@ Best method so far = Multinomial model

@ Reinforcement and Unsupervised perform well when f is
accurate

Theoretical Analysis

@ More specific structures of sequences ?

@ More specific context modelling methods ?

Thanks for your attention
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KS_Means - all methods
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Appendix

MDS Results

MDS_Means - all methods
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Appendix

RND Experiments

RND_Means - all methods
1.0— . . .

0.8} R

0.6F k

Err-5
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Appendix

Combining with the classifier

Combination

@ Domain adaptation (prior probability shift):

o Py(y) # Pi(y)
o Py(x|y) = Pi(x]y)
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Appendix

Combining with the classifier

Combination
@ Domain adaptation (prior probability shift):

Ps(y) # P:(y)
o Py(x|y) = Pi(x]y)

© Bayes' rule in “source” and “target” settings.

Vy €Y, f(xn)y =Ps(y[xn) = (an(/)))( (3)
n—1
W €V, Pulyl) = BN )
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Appendix

Combining with the classifier

Combination

© Domain adaptation (prior probability shift):

o Ps(y) # Pe(y)
o Py(x|y) = Pi(x]y)
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Appendix

Combining with the classifier

Combination

© Domain adaptation (prior probability shift):

o P

(v) # Pe(y)

o Ps(xly) = Pe(xly)
@ Bayes' rule in “source” and “target” settings.

—

8y (x) = Pe(y|xn) o fy(xn) x by (y5 ")

(5)

gy(x) =

“score of y given by " x “probability of y in context 6"
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Appendix

Multinomial Model

Reinforcement

receive y, == y,

If y, == y,: Same rule
Else: wi(y) = wo-1(y) + . if y # v
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Appendix

Multinomial Model

Reinforcement

receive y, == y,

If y, == y,: Same rule
Else: wi(y) = wo-1(y) + . if y # v

Unsupervised

receive nothing

Wn(¥n) = Wn—1(¥n) + 1
wn(y) = wa—1(y), otherwise

Where am 17 Learning a prior for lifelong visual object categorization



Appendix

Weighting Model

Reinforcement

receive y, ==y,

If y, == y,: Positive update.
Wn—l(y) X eO‘(l_fy(x"))7 |fy = Vn

Vy, Wn(.y) «— Wn—1(y)

Else: Negative update.
wn_1(y) x e~ @A=h(x)) if y =y

Vy, Wn(y) «— Wn—1(y)
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