Learning a prior for lifelong visual object categorization

ROYER Amélie

September 4, 2014

Institute of Science and Technology

Classification

Classifier f:

 $\mapsto \mathsf{Classes'score}: \begin{cases} \mathsf{Kit \ Fox?} \\ \mathsf{Chair?} \\ \mathsf{Cat?} \\ \mathsf{Cowboy \ Hat?} \end{cases}$

Classific	ation		

Classifier f:

 $\mapsto \text{Classes'score}: \begin{cases} \text{Kit Fox?} \\ \text{Chair?} \\ \text{Cat?} \\ \text{Cowboy Hat?} \end{cases}$

Usual Classification in real-life

- **Classifier**: Immediate visual information.
- Human Being: Infer additional knowledge from context.

On realistic sequences, how do we learn a context and use it?

Introductio

Database Generation

Results C

Conclusion

Introducing Example

Wood Rabbit

Expert Weighting

Database Generation

Results

Conclusion

Introducing Example

Wood Rabbit

Expert Weighting

Database Generation

Results

Conclusion

Introducing Example

Wood Rabbit

Watch

Expert Weighting

Database Generation

Results

Conclusion

Introducing Example

Wood Rabbit

Watch

Angora Rabbit

Database Generation

Results Conc

Introducing Example

Database Generation

Introducing Example

Watch

Angora Rabbit

Expert Weighting

Database Generation

Results

Conclusion

Introducing Example

Wood Rabbit

Watch

Angora Rabbit

Watch

Angora Rabbit

Expert Weighting

Database Generation

esults Concl

Introducing Example

Wood Rabbit

Watch

Angora Rabbit

Watch

Classifier predicts: Badger

With Context predicts: Wood Rabbit

Angora Rabbit

Angora Rabbit

Problem Formulation

Problem

- \mathcal{X} (images), \mathcal{Y} (classes)
- An initial classifier $f: \mathcal{X} \to R^{|\mathcal{Y}|}$
- A "realistic" sequence of queries $S = (x_i, y_i)_i \in (\mathcal{X}, \mathcal{Y})^N$

Problem Formulation

Problem

- \mathcal{X} (images), \mathcal{Y} (classes)
- An initial classifier $f: \mathcal{X} \to R^{|\mathcal{Y}|}$
- A "realistic" sequence of queries $S = (x_i, y_i)_i \in (\mathcal{X}, \mathcal{Y})^N$

Goals

- Learn the context of S;
- 2 Combine it with the classifier f.

 \implies context-sensitive classifier g

- For (x_i, y_i) in the sequence S
- **1**. *g* predicts a class \hat{y}_i ;

- For (x_i, y_i) in the sequence S
- **1**. *g* predicts a class \hat{y}_i ;
- 2. Receive feedback: (Fully Supervised) Receive the correct class y_i

(Reinforcement)

Receive the boolean information $(y_i == \hat{y}_i)$

(Unsupervised) No Feedback.

- For (x_i, y_i) in the sequence S
- **1**. *g* predicts a class \hat{y}_i ;
- 2. Receive feedback: (Fully Supervised) Receive the correct class y_i
- (Reinforcement)

Receive the boolean information $(y_i == \hat{y}_i)$

(Unsupervised) No Feedback.

3. g updates its knowledge of the context.

A probabilistic approach

Modelling a Context

Context model = a probability distribution over the classes

$$heta_y(\mathbf{y}_0^{n-1}) = \mathbb{P}(y \mid \mathbf{y}_0^{n-1})$$

A probabilistic approach

Modelling a Context

 $\label{eq:context_model} \textbf{Context model} = \texttt{a} \text{ probability distribution over the classes}$

$$\theta_{y}(\mathbf{y}_{0}^{n-1}) = \mathbb{P}(y \mid \mathbf{y}_{0}^{n-1})$$

Domain adaptation

Source (Training time)(\mathbb{P}_s): Uniform distribution of the queries. **Target** (Testing time)(\mathbb{P}_t): Unknown "context" of the sequence S.

A probabilistic approach

Modelling a Context

 $\label{eq:context_model} \textbf{Context model} = \texttt{a} \text{ probability distribution over the classes}$

$$\theta_{y}(\mathbf{y}_{0}^{n-1}) = \mathbb{P}(y \mid \mathbf{y}_{0}^{n-1})$$

Domain adaptation

Source (Training time)(\mathbb{P}_s): Uniform distribution of the queries. **Target** (Testing time)(\mathbb{P}_t): Unknown "context" of the sequence S.

$$\theta \sim \mathbb{P}_t$$

Database Generation

esults Con

Combining with the classifier

Combination

- Domain adaptation (prior probability shift)
- Bayes' rule in "source" and "target" settings.

Database Generation

Results Conc

Combining with the classifier

Combination

- Domain adaptation (prior probability shift)
- Bayes' rule in "source" and "target" settings.

$$\Longrightarrow$$

$$g_{y}(x) = \mathbb{P}_{t}(y|x_{n}) \propto f_{y}(x_{n}) \times \theta_{y}(\mathbf{y}_{0}^{n-1})$$
(1)

Database Generation

lesults Conc

Combining with the classifier

Combination

- Domain adaptation (prior probability shift)
- Bayes' rule in "source" and "target" settings.

$$g_{y}(x) = \mathbb{P}_{t}(y|x_{n}) \propto f_{y}(x_{n}) \times \theta_{y}(\mathbf{y}_{0}^{n-1})$$
(1)

 $g_y(x) =$ "score of y given by f" imes "probability of y in context θ "

(2)

sults Concl

Using past frequencies

Fully-supervised: Multinomial Model

$$heta_{y}(\mathbf{y}_{0}^{n-1}) = \mathbb{P}(y|\mathbf{y}_{0}^{n-1}) \triangleq rac{w_{n-1}(y) + arepsilon}{n + arepsilon |\mathcal{Y}|}$$

• w_n : classes' counts up to round n

• ε smoothing term

Using past frequencies

Fully-supervised: Multinomial Model

$$heta_{\mathcal{Y}}(\mathbf{y}_{0}^{n-1}) = \mathbb{P}(\mathcal{Y}|\mathbf{y}_{0}^{n-1}) \stackrel{\Delta}{=} rac{w_{n-1}(\mathcal{Y}) + \varepsilon}{n + \varepsilon |\mathcal{Y}|}$$

Update rule

receive true label y_n

 $w_n(y_n) = w_{n-1}(y_n) + 1$ $w_n(y) = w_{n-1}(y)$, otherwise

ults Conclus

A more general approach

Confidence weight

- classifier f: a score for each class (visual information)
- ${\ensuremath{ @ \hbox{ ontext model : a "confidence weight" for each class }}$

 \implies **Context** = weight vector *w*

$$g(x) = w \odot f(x)$$

(\odot : component-wise multiplication).

sults Conclus

A more general approach

Confidence weight

- Classifier f : a score for each class (visual information)
- ${\ensuremath{ @ \hbox{ ontext model : a "confidence weight" for each class }}$

 \implies **Context** = weight vector *w*

$$g(x) = w \odot f(x)$$

(\odot : component-wise multiplication).

Weight vector ?

- Online learning;
- Multiplicative Update;
- Winnow.

Expert Weighting

Correcting the mistake

Mistake \implies context must "correct" the initial classifier f.

Intuition of the update rule

If
$$y_n \neq \hat{y_n}$$
:
 $\forall y, w_n(y) \leftarrow \begin{cases} w_{n-1}(y) \times e^{\alpha(1-f_y(x_n))}, & \text{if } y = y_n \\ w_{n-1}(y) \times e^{-\alpha(1-f_y(x_n))}, & \text{if } y = \hat{y_n} \\ w_{n-1}(y), & \text{otherwise} \end{cases}$

Realistic Sequence

What is "realistic" ?

Realistic: Semantical relation (e.g.: image sequence from human environment)

Realistic Sequence

What is "realistic" ?

Realistic: Semantical relation (e.g.: image sequence from human environment)

TXT database

- Browsing english books
- Retrieving labels

Realistic Sequence

What is "realistic" ?

Realistic: Semantical relation (e.g.: image sequence from human environment)

TXT database

- Browsing english books
- Retrieving labels

KS^1 and MDS^2 database

- Hierarchical Distance (ImageNet)
- 2D Projection
- Random Walk

¹NIPS2008'0552.

²cox multidimensional 2001.

Database Generation

Where am I? Learning a prior for lifelong visual object categorization

KS Example

Figure : KS grid example

Experiments

Experimental Settings

f = CCV classifier (convolutional neural network)

- 10×5000 random label sequences
- 100 TXT sequences
- 100 × 1500 KS sequences
- 100×1500 MDS sequences

Results

Conclusion

/lultinomial Model

Expert Weighting

Database Generation

Results C

Introduction Multinomial Model Expert Weighting Database Generation Results Conclusion
TXT Experiments

/lultinomial Model

Expert Weighting

Database Generation

Results Co

Conclusion

n Results

Conclusion

Conclusion

- Context knowledge improves classification accuracy on semantically ordered sequence
- Best method so far = Multinomial model
- Reinforcement and Unsupervised perform well when f is accurate

Conclusion

- Context knowledge improves classification accuracy on semantically ordered sequence
- Best method so far = Multinomial model
- Reinforcement and Unsupervised perform well when *f* is accurate

Future Works

- Theoretical Analysis
- More specific structures of sequences ?
- More specific context modelling methods ?

Conclusion

- Context knowledge improves classification accuracy on semantically ordered sequence
- Best method so far = Multinomial model
- Reinforcement and Unsupervised perform well when *f* is accurate

Future Works

- Theoretical Analysis
- More specific structures of sequences ?
- More specific context modelling methods ?

Thanks for your attention

KS Results

MDS Results

RND Experiments

Combination

Domain adaptation (prior probability shift):

•
$$\mathbb{P}_s(y) \neq \mathbb{P}_t(y)$$

• $\mathbb{P}_s(x|y) = \mathbb{P}_t(x|y)$

Combination

Domain adaptation (prior probability shift):

•
$$\mathbb{P}_{s}(y) \neq \mathbb{P}_{t}(y)$$

• $\mathbb{P}_{s}(x|y) = \mathbb{P}_{t}(x|y)$

Bayes' rule in "source" and "target" settings.

$$\forall y \in \mathcal{Y}, \ f(x_n)_y = \mathbb{P}_s(y|x_n) = \frac{\mathbb{P}_s(x_n|y) \times \frac{1}{|\mathcal{Y}|}}{\mathbb{P}_s(x_n)}$$
(3)

$$\forall y \in \mathcal{Y}, \ \mathbb{P}_t(y|x_n) = \frac{\mathbb{P}_t(x_n|y) \times \theta_y(\mathbf{y}_0^{n-1})}{\mathbb{P}_t(x_n)}$$
(4)

Combination

Domain adaptation (prior probability shift):

•
$$\mathbb{P}_s(y) \neq \mathbb{P}_t(y)$$

•
$$\mathbb{P}_s(x|y) = \mathbb{P}_t(x|y)$$

$$g_{y}(x) = \mathbb{P}_{t}(y|x_{n}) \propto f_{y}(x_{n}) \times \theta_{y}(\mathbf{y}_{0}^{n-1})$$
(5)

 $g_y(x) =$ "score of y given by f" \times "probability of y in context θ "

(6)

Multinomial Model

Reinforcement

receive $y_n == \hat{y_n}$

If $y_n == \hat{y_n}$: Same rule Else: $w_n(y) = w_{n-1}(y) + \frac{1}{|\mathcal{Y}|-1}$, if $y \neq \hat{y_n}$

Multinomial Model

Reinforcement

receive $y_n == \hat{y_n}$

If
$$y_n == \hat{y_n}$$
: Same rule
Else: $w_n(y) = w_{n-1}(y) + \frac{1}{|\mathcal{Y}| - 1}$, if $y \neq \hat{y_n}$

Unsupervised

receive nothing

 $w_n(\hat{y_n}) = w_{n-1}(\hat{y_n}) + 1$ $w_n(y) = w_{n-1}(y)$, otherwise

Weighting Model

Reinforcement

receive $y_n == \hat{y_n}$

If
$$y_n == \hat{y_n}$$
: Positive update.
 $\forall y, w_n(y) \leftarrow \begin{cases} w_{n-1}(y) \times e^{\alpha(1-f_y(\mathbf{x}_n))}, & \text{if } y = y_n \\ w_{n-1}(y) \end{cases}$

Else: Negative update.

$$\forall y, w_n(y) \leftarrow \begin{cases} w_{n-1}(y) \times e^{-\alpha(1-f_y(x_n))}, & \text{if } y = \hat{y_n} \\ w_{n-1}(y) \end{cases}$$