LA TRANSFORMÉE DE FOURIER RAPIDE (FFT).

Dans \mathbf{C}^N , on considère

$$\omega \equiv \omega_N = \exp\left(-\frac{2i\pi}{N}\right)$$

et si $f=(f(0),\ldots,f(N-1))^T\in \mathbf{C}^N,$ on appelle $\hat{f}\in \mathbf{C}^N$ sa transformée de Fourier discrète définie par :

$$\forall k \in \{0, \dots, N-1\}, \ \hat{f}(k) = \sum_{n=0}^{N-1} f(n)\omega^{kn}.$$

On appelle $F_N \in \mathcal{M}_N(\mathbf{C})$ la matrice :

$$\begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega & \omega^2 & \dots & \omega^{N-1} \\ 1 & \omega^2 & \omega^4 & \dots & \omega^{2(N-1)} \\ \vdots & & & & \end{pmatrix}$$

ce qui permet d'écrire de façon plus concise :

$$\hat{f} = F_N f$$
.

Théorème. Il existe un algorithme permettant de calculer le vecteur \hat{f} à partir du vecteur f en $\mathcal{O}(N \log N)$ opérations.

PREUVE. Quitte à rajouter quelques zéros, on peut supposer que N est pair et même que c'est une puissance de deux. La grande idée est de réordonner les colonnes de F_N : d'abord celles d'indice pair et ensuite les autres. Autrement dit, en notant en colonnes $F_N = (e_0, \ldots, e_{N-1})$, on regarde

$$F_N^r = (e_0, \dots, e_{N-2}, e_1, \dots, e_{N-1}).$$

Comme $\omega^N=1$ et $\omega^{N/2}=-1,$ la matrice F_N^r s'écrit :

$$F_N^r = \begin{pmatrix} 1 & 1 & \dots & 1 & 1 & 1 & \dots & 1 \\ 1 & \omega^2 & \dots & \omega^{N-2} & \omega & \omega^3 & \dots & \omega^{N-1} \\ \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{1 & \omega^{N-2} & \dots & \omega^{\frac{N}{2}-1}}{1 & 1 & \dots & 1 & -1 & \dots & -1 \\ 1 & \omega^2 & \dots & \omega^{N-2} & -\omega & \dots & -\omega^{N-1} \\ \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\ 1 & \omega^{N-2} & \dots & -\omega^{\frac{N}{2}-1} & \dots \end{pmatrix}$$

Et comme $\omega_N^2 = \omega_{N/2}$ on peut finalement écrire :

$$F_N^r = \left(\begin{array}{c|c} F_{N/2} & B \\ \hline F_{N/2} & -B \end{array}\right)$$

En plus, en factorisant la ligne $k \in \{1, ..., N/2\}$ de B par ω^{k-1} , on trouve :

$$B = DF_{N/2}$$
 avec $D = \text{diag}(1, \dots, \omega^{\frac{N}{2}-1})$.

Finalement, avec les vecteurs réordonnés :

$$f^{r} = \begin{pmatrix} f_{\text{pair}} \\ f_{\text{impair}} \end{pmatrix} := \begin{pmatrix} f(0) \\ \vdots \\ f(N-2) \\ f(1) \\ \vdots \\ f(N-1) \end{pmatrix} \text{ et } \hat{f} = \begin{pmatrix} \hat{f}^{1} \\ \hat{f}^{2} \end{pmatrix} := \begin{pmatrix} \hat{f}(0) \\ \vdots \\ \hat{f}(N/2-1) \\ \hat{f}(N/2) \\ \vdots \\ \hat{f}(N-1) \end{pmatrix}$$

on doit calculer :

$$\hat{f} = F_N^r f^r$$

ce qui s'écrit pr blocs :

$$\begin{pmatrix} \hat{f}^1 \\ \hat{f}^2 \end{pmatrix} = \begin{pmatrix} F_{N/2} & DF_{N/2} \\ F_{N/2} & -DF_{N/2} \end{pmatrix} \begin{pmatrix} f_{\text{pair}} \\ f_{\text{impair}} \end{pmatrix}$$

C'est fini:

$$\hat{f}^1 = F_{N/2} f_{\text{pair}} + D F_{N/2} f_{\text{impair}}$$

$$\hat{f}^2 = F_{N/2} f_{\text{pair}} - D F_{N/2} f_{\text{impair}}$$

On voit donc qu'il suffit de calculer deux transformée de Fourier de taille N/2 et il ne reste plus qu'à compter : si C(N) est le nombre de multiplications nécessaires au calcul du vecteur \hat{f} à partir de f, on voit :

$$C(N) = 2C(N/2) + \mathcal{O}(N)$$

et on en déduit en écrivant $N=2^p$ et C'(N)=C(N)/N:

$$C(N) = \mathcal{O}(N \log_2 N).$$

Une application rapide et élégante de ce résultat est le calcul et l'étude de la stabilité du θ -schéma pour l'équation de la chaleur.

Références.

P. D. Lax, Linear Algebra and its Applications, Second Edition

G. Peyré, L'Algèbre Discrète de la Transformée de Fourier

102 Groupe des nombres complexes de module 1. Sous-groupes des racines de l'unité. Applications.

110 Caractères d'un groupe abélien fini et transformée de Fourier discrète. Applications.