
UNIVERSITÉ DE LILLE – CRIStAL

ÉCOLE DOCTORALE SCIENCES POUR L’INGÉNIEUR

REACTING AND ADAPTING TO THE ENVIRONMENT

Designing Autonomous Methods
for Multi-Objective Combinatorial Optimisation

BLOT Aymeric

Thèse préparée et soutenue publiquement le 21 septembre 2018,
en vue de l’obtention du grade de Docteur en Informatique.

Jury:

Mr. BATTITI Roberto University of Trento Referee
Mr. DE CAUSMACKER Patrick KU Leuven Examiner
Mr. HOOS H. Holger Leiden University Examiner
Mrs. JOURDAN Laetitia University of Lille Supervisor
Mrs. KESSACI Marie-Éléonore University of Lille Co-adviser
Mr. MATHIEU Philippe University of Lille Examiner
Mr. SAUBION Frédéric University of Angers Referee
Mr. STÜTZLE Thomas Université Libre de Bruxelles Examiner

Centre de Recherche en Informatique, Signal et Automatique de Lille
Université Lille 1 – Bâtiment M3 extension – Avenue Carl Gauss

59655 Villeneuve d’Ascq Cedex FRANCE

Acknowledgements

First of all I would like to thank the jury members and especially Laetitia Jourdan and Marie-
Éléonore Kessaci, that supported me during the last three years on an every-day basis. Laetitia, I
am very grateful for everything you have done since I met you for the first time six years ago, in
particular for the many research opportunities in Lille but also in Nagano and in Vancouver. Marie-
Éléonore, you taught me perseverance and thoroughness; without your advising this thesis would
definitively not have happened. Many thanks to Patrick de Causmaecker, Philippe Mathieu, and
Thomas Stützle for accepting to be part of my jury, and to Roberto Battiti and Frederic Saubion for
also reporting on my manuscript; I am honoured for the interest you gave to my work.

I would like to thank my coauthors Patrick de Causmaecker, Holger H. Hoos, Manuel López-
Ibáñez, and Heike Trautmann, for the work we carried out together during this thesis. Our discus-
sions have brought so much and pushed this thesis much further than I could have done by myself.
I also want to thank Hernán Aguirre and Kiyoshi Tanaka: I only stayed in Nagano three months
but I will never forget them; they confirmed my passion for research and changed my life forever.
どうもありがとうございました。

Generally speaking, thank you everyone from the ORKAD team, the former DOLPHIN team,
and my colleagues from INRIA and the CRIStAL laboratory. I will also always keep very good
memories from the years I spent at the ENS Rennes: they brought me my passion for computer
science and research, and I could not have dreamt for a better formation.

I cannot thank enough the friends I made along the way, in Orsay, in Rennes, and in Lille. Thank
you Grégoire, Thomas, Hugo, Nicolas, Lauriane, Mathieu, Lucien, Maxence, and Léonard; I was
not always easy to put up with, but you supported me and I would not be where I stand today
without you.

Finally, I am grateful to my family. To my parents, for their constant support during the last 26
years; and to my brother and sister and their companions for giving me three wonderful nieces.

i

Contents

General Introduction 1
Motivations . 1
Outline . 2

I Multi-objective Optimisation and Algorithm Design 4

1 Multi-objective Metaheuristics 5
1.1 Multi-objective Combinatorial Optimisation . 5

1.1.1 Introduction . 5
1.1.2 Definition . 5
1.1.3 Solution Comparison . 6
1.1.4 Multi-objective Metaheuristics . 7

1.2 Performance Assessment . 8
1.2.1 Overview . 8
1.2.2 Hypervolume . 9
1.2.3 ∆ Spread . 10

1.3 Permutation Problems . 10
1.3.1 Permutation Flow Shop Scheduling Problem 11
1.3.2 Travelling Salesman Problem . 12
1.3.3 Quadratic Assignment Problem . 13

2 Automatic Algorithm Design 15
2.1 Preliminaries . 15
2.2 Overview . 16

2.2.1 Algorithm Selection . 17
2.2.2 Algorithm Configuration / Parameter Tuning 18
2.2.3 Parameter Control . 19
2.2.4 Hyper-heuristics . 20
2.2.5 Other Fields and Taxonomies . 20
2.2.6 Multi-objective Automatic Design . 21

2.3 Overall Automatic Design Taxonomy Proposition . 21
2.3.1 Temporal Viewpoint . 21
2.3.2 Structural Viewpoint . 22
2.3.3 Overview . 23
2.3.4 Additional Complexity Viewpoint . 24

II Multi-objective Local Search 25

3 Unified MOLS Structure 26
3.1 Preliminaries . 26

3.1.1 Definitions . 26
3.1.2 Historical Development . 27
3.1.3 Condensed Literature Summary . 31

ii

Contents iii

3.1.4 Analysis and Discussion . 31
3.2 MOLS Strategies . 33

3.2.1 Set of Potential Pareto Optimal Solutions (Archive) 33
3.2.2 Set of Current Solutions (Memory) . 33
3.2.3 Exploration Strategies . 34
3.2.4 Selection Strategies . 35
3.2.5 Termination Criteria . 35

3.3 Escaping Local Optima . 36
3.4 MOLS Unification Proposition . 36

3.4.1 Main Loop . 36
3.4.2 Local Search Exploration . 37
3.4.3 Iterated Local Search Algorithm . 37

3.5 Literature Instantiation . 38

4 MOLS Instantiations 41
4.1 Static MOLS Algorithm . 42

4.1.1 Algorithm . 42
4.1.2 Configuration Space . 42

4.2 Control Mechanisms Integration . 44
4.2.1 Parameter Analysis . 44
4.2.2 Knowledge Exploitation . 45
4.2.3 Knowledge Extraction . 45
4.2.4 Knowledge Modelling . 46
4.2.5 Decisional Schedule . 46

4.3 Adaptive MOLS Algorithm . 47
4.3.1 Algorithm . 47
4.3.2 Related adaptive MOLS Algorithms . 47

4.4 Configuration Scheduling . 49
4.4.1 Proposition . 49
4.4.2 Definitions . 49
4.4.3 Related Approaches . 50

4.5 AMH: Adaptive MetaHeuristics . 50
4.5.1 Motivation . 50
4.5.2 Philosophy . 51
4.5.3 Design and Implementation . 52
4.5.4 Execution Flow Examples . 52

4.6 Perspectives . 52

III Automatic Offline Design 56

5 MO-ParamILS 57
5.1 Multi-objective Automatic Configuration . 57

5.1.1 Definition . 57
5.1.2 Use Cases . 58

5.2 Single-objective ParamILS . 58
5.2.1 Core Algorithm . 58
5.2.2 BasicILS, FocusedILS . 59
5.2.3 Adaptive Capping Strategies . 61
5.2.4 Configuration Protocol . 63

5.3 Multi-objective ParamILS . 63
5.3.1 Motivations . 63
5.3.2 Core Algorithm . 64
5.3.3 Configuration Protocol . 67

5.4 Hybrid Multi-Objective Approaches . 67

Contents iv

5.4.1 Single Performance Indicator . 67
5.4.2 Aggregation of Multiple Performance Indicators 67

5.5 Framework Evaluation . 68
5.5.1 Experimental Protocol . 68
5.5.2 Results . 69

5.6 Perspectives . 73

6 MOLS Configuration 74
6.1 Exhaustive Analysis . 75

6.1.1 Experimental Protocol . 75
6.1.2 Parameter Distribution Analysis . 76
6.1.3 Optimal Configurations . 78
6.1.4 Discussions . 78

6.2 AAC Approaches Analysis . 81
6.2.1 Experimental Protocol . 81
6.2.2 Small Configuration Space Results . 83
6.2.3 Large Configuration Space Results . 83
6.2.4 Discussions . 87

6.3 Analysis of Objective Correlation . 88
6.3.1 Experimental Protocol . 88
6.3.2 Optimised Configurations . 89
6.3.3 Discussions . 89

6.4 Perspectives . 92

IV Automatic Online Design 100

7 MOLS Control 101
7.1 Adaptive MOLS Algorithm . 101

7.1.1 Adaptive Algorithm . 102
7.1.2 Generic Online Mechanisms . 102

7.2 Experimental Protocol . 105
7.3 Experimental Results . 106

7.3.1 3-arm Results . 107
7.3.2 2-arm Results . 107
7.3.3 Long Term Learning Results . 107

7.4 Discussions . 108
7.5 Perspectives . 109

8 MOLS Configuration Scheduling 111
8.1 MOLS Configurations . 111
8.2 Experimental Protocol . 112
8.3 Experimental Results . 113

8.3.1 Exhaustive Enumeration . 113
8.3.2 K = 2 Configuration Schedules . 115
8.3.3 K = 3 Configuration Schedules . 118

8.4 Discussions . 118
8.5 Perspectives . 121

General Conclusion 123
Contribution Summary . 123
Future Research . 125

Contents v

Publications 126

Bibliography 127

List of Figures

1.1 Normalised unary hypervolume indicator . 9
1.2 Normalised ∆ and ∆ ′ spread indicators . 10
1.3 Example of PFSP schedule . 11
1.4 Common PFSP schedule operations . 12
1.5 Example of TSP tour . 12
1.6 Example of 2-opt recombination . 13
1.7 Examples of QAP pairings . 14

2.1 Eiben et al. (1999) parameter setting taxonomy . 17
2.2 Algorithm selection general workflow . 18
2.3 Algorithm configuration general workflow . 18
2.4 Algorithm design overview . 23

3.1 Objective space with and without taking into account surrounding solutions 35

4.1 Inner MOLS loop . 42
4.2 Outer MOLS loop . 42
4.3 Control integration in the inner MOLS loop . 46
4.4 Control integration in the outer MOLS loop . 47
4.5 Examples of two configuration schedules . 50
4.6 Execution flow of an iterated MOLS algorithm . 51
4.7 Execution flow of an adaptive algorithm using multiple paths 53
4.8 Execution flow of an adaptive algorithm using reconstruction 54
4.9 MOLS schedule . 54

5.1 Final fronts on the Regions200 – CPLEX (cutoff) scenario 70
5.2 Final fronts on the Regions200 – CPLEX (running time) scenario 70
5.3 Final fronts on the CORLAT – CPLEX (cutoff) scenario 71
5.4 Final fronts on the CORLAT – CPLEX (running time) scenario 71
5.5 Final fronts on the QUEENS – CLASP scenario . 72

6.1 Exhaustive analysis parameter distribution on test instances 77
6.2 Experiments on the small configuration space – PFSP scenarios 84
6.3 Experiments on the small configuration space – TSP scenarios 85
6.4 Experiments on the large configuration space . 86

8.1 The seven types of schedules used in the experiments 112
8.2 Initial search space and optimal configurations (K = 1) 114
8.3 Final optimised configuration schedules (K = 2) . 116
8.4 Final optimised configuration schedules (K = 3) . 118
8.5 Final comparison . 121

vi

List of Tables

3.1 Condensed literature summary . 32
3.2 Condensed literature instantiation (LS Procedure) . 39
3.3 Condensed literature instantiation (EXPLORE Procedure) 40

4.1 Considered parameter space . 43

5.1 Configuration scenarios . 69
5.2 Target algorithm parameters (with number of possible values) 69
5.3 Hypervolume (top) and ε indicator values (bottom) for final test fronts. 70
5.4 Average percentages of timeouts for final CPLEX configurations 71

6.1 Small version of the MOLS configuration space . 75
6.2 PFSP (optimal configurations) . 79
6.3 TSP (optimal configurations) . 80
6.4 Large version of the MOLS configuration space . 82
6.5 AAC Experimental Protocol . 82
6.6 Indicator bounds used in the HV+∆ ′ approach . 82
6.7 Number of configurations after training, validation and testing 87
6.8 PFSP 50 jobs 20 machines (optimised configurations) . 90
6.9 PFSP 100 jobs 20 machines (optimised configurations) 91
6.9 PFSP 100 jobs 20 machines (optimised configurations, continued) 92
6.10 TSP 50 cities (optimised configurations) . 93
6.11 TSP 100 cities (optimised configurations) . 94
6.12 QAP 50 facilities (optimised configurations) . 95
6.13 QAP 100 facilities (optimised configurations) . 96
6.14 AAC performance: number of final configurations and objective ranges 97

7.1 Experiments summary . 106
7.2 3-arm ranking . 107
7.3 2-arm ranking . 107
7.4 Long-time learning ranking . 108
7.5 Complete ranking . 108

8.1 Investigated MOLS configuration space . 112
8.2 Training computational time . 113
8.3 Optimal configurations (K = 1) . 114
8.4 Optimal configurations (K = 1) . 115
8.5 Final optimised configuration schedules (K = 2; PFSP 20 jobs) 116
8.6 Final optimised configuration schedules (K = 2; PFSP 50 jobs) 117
8.7 Final optimised configuration schedules (K = 3; PFSP 20 jobs) 119
8.8 Final optimised configuration schedules (K = 3; PFSP 50 jobs) 120

vii

List of Algorithms

3.1 Procedure LS(memory, archive) . 36
3.2 Procedure EXPLORE(current, ref, archive) . 37
3.3 Procedure ITER(archive) . 38

4.1 Static Iterated Multi-Objective Local Search . 43
4.2 Adaptive Iterated Multi-Objective Local Search . 48
4.3 Inner Multi-Objective Local Search (mols) . 48

5.1 Single-objective ParamILS . 60
5.2 Procedure localsearch(config) . 60
5.3 Procedure compare(config, challenger) . 61
5.4 Procedure update(config, reference) . 61
5.5 Procedure update(config, reference) . 62
5.6 Procedure intensify(config) . 62
5.7 Multi-objective ParamILS . 65
5.8 Procedure localSearch(init_arch) . 66
5.9 Function archive(arch, challenger) . 66

viii

General Introduction

The journey of a thousand miles begins with
a single step.

Lao-Tzu

This thesis lays on the intersections between multi-objective combinatorial optimisation, local
search algorithms, and automatic algorithm design. It was carried out in the ORKAD1 team, that
focuses on combining combinatorial optimisation and data mining to solve optimisation problems.
Before its creation in 2017 as an independent research team in the CRIStAL2 laboratory, the ORKAD
team was a research group associated to the DOLPHIN3 joint project team, collaboration between
the CRIStAL laboratory and the Inria Lille-Nord Europe research institute.

Motivations

Optimisation problems are ubiquitous. Numerous real-world problems, such as planning sched-
ules, building financial portfolios, routing vehicles, or predicting future patients at risk in health-
care, can be formulated by determining the best solution among a very large number of possible
ones. For many optimisation problems, while evaluating the quality of a single solution is usually
fairly easy and quick, solving them to optimality is much more computationally expensive as their
difficulty increases at least exponentially with the size of the problem. The question of whether of
not these problems, called NP-hard, can theoretically be solved efficiently is at the core of one of
the major unsolved problem of computer science: the P versus NP problem.

In order to obtain good solutions for NP-hard problems that would be too large to be solved to
optimality in reasonable time, or in general for any large-scale optimisation problem, approxima-
tion algorithms such as metaheuristics have been proposed and are usually preferred. Local search
algorithms are metaheuristics that focus on the structure of the problem to solve, in order to bene-
fit from the relation between similar solutions and progressively and iteratively approach optimal
solutions. They have been shown to be very efficient, either used as self-contained algorithms or
hybridised into more complex metaheuristics.

Along with the other metaheuristics, local search algorithms are very generic approaches that
can be applied to many combinatorial optimisation problems as long as few assumptions over
the problem modelling are respected, such as a finite or at least countable number of solutions.
However, it is to be expected that no single algorithm can perform the best on every problem,
so metaheuristics usually involves many possible variants, using many alternative strategies, to
improve performance on specific problems structures. Given a specific problem, automatically
determining which of the many variants of the algorithm will be the most efficient, or, more broadly,
automatically designing the optimal algorithm that use the most efficient strategies, is a recent but
thriving research field.

Finally, optimisation problems as well as automatic design problems can involve more than a
single criteria to optimise. If as single quality is to be maximised, or a single cost is to be minim-
ised, the resolution process usually results in a single final optimal solution. However, considering

1Operational Research, Knowledge And Data
2Centre de Recherche en Informatique, Signal et Automatique de Lille (UMR CNRS 9189)
3Discrete multiobjective Optimization for Large-scale Problems with Hybrid dIstributed techNiques

1

Outline 2

multiple objectives usually involves a much richer context in which many incomparable comprom-
ise solutions are to be sought. If classical multi-objective optimisation problems are increasingly
studied and understood, multi-objective concepts for algorithm design problems have only been
considered recently.

Based on these observations, we investigate in this thesis the different intersections between
combinatorial optimisation, local search algorithms, and automatic algorithm design, in the context
of multi-objective optimisation. In particular, our focus is divided in one hand on multi-objective
automatic algorithm design, i.e., the automatic design of algorithms relatively to multiple per-
formance metrics, and on the other hand on the automatic design of multi-objective algorithms,
using multi-objective local search algorithms. Finally, we investigate two aspects of adaptation us-
ing automatic algorithm design: first with a predictive viewpoint, where algorithms are configured
with regard to performance on learning instances, and with an complementary adaptive viewpoint,
where algorithms autonomously react during their execution to the instance being solved.

Outline

Following this general introduction, this thesis is organised in four successive parts, starting from
general notions about multi-objective optimisation and presenting the state of the art of automatic
algorithm design, then focusing on multi-objective local search (MOLS) algorithms, before focusing
on automatically designing MOLS algorithms using offline algorithm design, and finally discussing
two possible online extensions.

Part I: Multi-objective Optimisation and Algorithm Design
First, Part I lays the foundations of this thesis down, and presents the research fields of both

combinatorial optimisation and algorithm design.

Chapter 1 details the multi-objective context that we use in this thesis. We give the general defin-
itions and notions of multi-objective combinatorial optimisation, we discuss the performance
assessment of multi-objective algorithms, and we present the three combinatorial problems
that will be tackled in the experiments of Part III and Part IV.

Chapter 2 presents the research field of automatic algorithm design (AAD) with a proposition of a
new taxonomy. We first introduce the foundations of our proposition, then we give a detailed
overview of the existing related research fields and state of the art methods. Finally we present
and motivate our taxonomy proposition by discussing existing works according to several gen-
eral viewpoints: a temporal viewpoint: “when does the automatic design take place?”, a structural
viewpoint: “how much of the algorithmic design can be modified?”, and finally a complementary
complexity viewpoint, related to the available knowledge sources.

Part II: Multi-objective Local Search
Next, Part II focuses on the class of algorithms studied in this thesis, the multi-objective local

search (MOLS) algorithms.

Chapter 3 provides a technical and historical background on MOLS algorithms. We first present
their specific notions and philosophy, and conduct a chronological survey of the use of local
search techniques in multi-objective algorithms. Then, we discuss the local search strategies
found in the literature, and finally we propose a new unification of MOLS algorithms and
detail how the major literature algorithms are instantiated.

Chapter 4 details the specific implementations of the MOLS algorithms that will be used in the
following chapters, based on the unified structure presented in Chapter 3. We first present a
classical MOLS algorithm that exposes many parameters in order to automatically configure
it in Chapter 6. Then, we discuss how we can involve generic mechanisms to dynamically
control the value of some parameters of MOLS algorithms during their execution, and present
the adaptive MOLS algorithm that is considered in Chapter 7. Finally, we present the notion
of configuration scheduling that is investigated in Chapter 8.

Outline 3

Part III: Automatic Offline Design
Then, Part III investigates offline AAD approaches, and more specifically multi-objective al-

gorithm configuration, when the algorithm configuration is optimised before its execution.

Chapter 5 introduces MO-ParamILS, a multi-objective automatic configuration framework based
on MOLS techniques, as a dedicated approach for multi-objective configuration scenarios.
First we formally define multi-objective algorithm configuration and detail some use cases.
Then, we present ParamILS, a prominent and well-known single-objective algorithm config-
urator based on a single-objective local search, before proposing MO-ParamILS, that we based
on a MOLS algorithm. Finally, we study the performance of the multiple variants of MO-
ParamILS against approaches directly using ParamILS only on various use cases, to show the
worth of using multi-objective approaches against classical single-objective approaches.

Chapter 6 deals with the automatic design of MOLS algorithms. In the course of three successive
studies, the use of a multi-objective configurator is compared against the use a single-objective
configurator. Three configuration approaches are compared: first a classical baseline of optim-
ising the convergence of the MOLS algorithms, then an aggregated approach focusing on con-
vergence while taking into account the distribution of solutions, and finally the simultaneous
optimisation of both convergence and distribution independently. The first study provides
comprehensive preliminary results on classical problems by limiting itself to a small subset
of possible MOLS configurations. The second study provides conclusive results by tackling a
much larger pool of configuration. Finally the third study validates our observations by tack-
ing artificially constructed scenarios on which the correlation between objectives is controlled.
To ensure fair comparisons, the multi-objective and single-objective approaches used are based
on ParamILS and MO-ParamILS, as they are based on the same principles.

Part IV: Automatic Online Design
Last, Part IV discusses two extensions of MOLS automatic design, involving online elements, i.e.,

when modifications of the MOLS configuration occur during the execution.

Chapter 7 uses notions of parameter control to delay the prediction of the optimal configuration.
Instead of only using the prediction resulting from the offline configuration process, we invest-
igate how MOLS algorithms can benefit from generic control mechanisms by using multiple
efficient strategies. Following the discussion of Chapter 4, we first survey some of the gen-
eric control mechanisms that can easily be integrated in our adaptive MOLS structure, before
discussing the actual performance of the simplest of them.

Chapter 8 extends the configuration process investigated in Chapter 6 by considering schedules
of configurations, rather than using a unique configuration during the entire execution. Fol-
lowing the discussion of Chapter 4, we investigate the automatic configuration of schedules
dividing the execution between two and three different strategies.

If you can’t criticise, you can’t optimise.

Harry Potter and the Methods of Rationality
Eliezer Yudkowsky

Part I

Multi-objective Optimisation and
Algorithm Design

4

Chapter 1

Multi-objective Metaheuristics

In the beginning there was nothing, which
exploded.

Lords and Ladies.
Terry Pratchet

In this chapter, we present multi-objective optimisation, its necessary definitions and notions,
then give a short overview of multi-objective metaheuristics. We also present the performance
indicators and the permutations problems that we will use in the following chapters.

1.1 Multi-objective Combinatorial Optimisation

1.1.1 Introduction

Optimisation problems arise in many fields of mathematics, computer science and engineering.
They deal with finding the best solutions from all possible solutions. Optimisation problems com-
prise continuous optimisation problems, in which solutions are described using decision variables
taking uncountable values, and discrete optimisation problem, in which all these variables neces-
sarily take specific and countable values. In this thesis, we consider combinatorial optimisation
problems: discrete optimisation problems in which the number of solutions is finite, although in
practice often too high to be exhaustively enumerated in a reasonable computation time.

If possible solutions can naturally be ranked using a single scalar metric, such as for example
a cost to minimise, or a reward to maximise, then the optimisation problem is denoted as single-
objective. On the contrary, if the goal is to find the solutions simultaneously optimising several
metrics, then the problem is denoted as a multi-objective (or multi-criteria) optimisation problem. In
that case, it usually involves a trade-off between multiple conflicting objectives.

1.1.2 Definition

In multi-objective optimisation (MOO), a set D of solutions is investigated regarding multiple cri-
teria characterising their quality. A MOO problem (MOOP) involves optimising simultaneously
a vector of n (n > 2) distinct functions F(x) = (f1(x), f2(x), . . . , fn(x)) over the set D, and can be
formulated following Equation 1.1, where x = (x1, x2, . . . , xm) is a vector of decision variables.

(MOOP)
{

optimise F(x) = (f1(x), f2(x), . . . , fn(x))
subject to x ∈ D

(1.1)

The set D is also called the search space. Its image through F is called the objective space. A function
fk is either called a criterion, an objective function, or simply an objective.

In multi-objective combinatorial optimisation (MOCO) problems, the set D of solutions is finite
and the domains of the decisions variables of x are all discrete. Each function fk can be assumed

5

1.1. Multi-objective Combinatorial Optimisation 6

without loss of generality to be minimised, as maximising or mixed MOO problems can be easily
mapped to analogous minimising MOO problems using opposite functions f ′i(x) = −fi(x).

In the following sections and chapters, unless specified otherwise, every criterion will be sup-
posed to be minimised.

1.1.3 Solution Comparison

The two main approaches used to deal with MOO problems are either to use an a priori approach,
if preferences over the different objectives are known (e.g., scalarising the vector F(x) to a single
objective f(x)), or to use an a posteriori approach, optimising each objective simultaneously. There
are also interactive approaches in which the preferences of a decision maker are taken in account
during the optimisation process, but they are much less used due to the heavy cost of constant
human interaction.

In the following, we present first the Pareto dominance, then some of its many a priori alternat-
ives.

Pareto Dominance

A posteriori approaches are based on the concept of Pareto dominance, used to capture trade-offs
between the criteria fk. Pareto dominance (or Pareto efficiency) is originally an economical notion
proposed by Pareto (1896), which has then be broadly applied in many contexts beyond economics
such as mathematics, engineering, or life sciences.

A solution s1 is said to dominate a solution s2 (denoted as s1 � s2) if, and only if, (i) s1 is better
than or equal to s2 according to all criteria, and (ii) there is at least one criterion according to which
s1 is strictly better than s2 (Equation 1.2, when every criterion is to be minimised).

s1 � s2⇐⇒
{
∀ k ∈ {1, . . . ,n}, fk(s1) 6 fk(s2), and
∃ k ∈ {1, . . . ,n}, fk(s1) < fk(s2)

(1.2)

The Pareto dominance does not imply a complete order on the set of all possible solutions. If
neither s1 � s2 nor s2 � s1, then the solutions s1 and s2 are said incomparable. A set S of solutions in
which there are no s1, s2 ∈ S such that s1 � s2 is called a Pareto set or a Pareto front. The goal when
solving a MOOP is to determine the best Pareto set, i.e., the set S? ⊂ D such that there is no s ′ ∈ D

that dominates any of the s ∈ S?; this set is referred to as the Pareto optimal set.

Weighted linear scalarisation

The most simple way to aggregate all criteria into a single function is to use a weighted sum of the
different objectives. Given W = (w1,w2, . . . ,wn) a weight vector of n coefficients, the goal is to
optimise a scalar function f(x) instead of optimising the vector F(x) (Equation 1.3).

f(x) =

n∑
k=1

wkfk(x) with
n∑
k=1

wk = 1 (1.3)

Using this approach, optimising a weighted sum of multiple objectives corresponds to searching
for an optimal solution for a given MOOP in a specific direction in objective space. It is known
that under certain circumstances (namely, when the Pareto optimal front S? is not convex) some
optimal solutions cannot be obtained in this manner. In such cases, Pareto-based multi-objective
optimisation algorithms are usually preferred.

Weighted Chebyshev norm

Instead of minimising a linear aggregation of the different objective, the weighted Chebyshev norm
associates the quality of a solution x to the worse of its component fk(x), using the distance to a

1.1. Multi-objective Combinatorial Optimisation 7

given reference point z (Equation 1.4).

f(x) = max
16k6n

wk · |fk(x) − fk(z)| with
n∑
k=1

wk = 1 (1.4)

While this approach pressures the algorithm to optimise each objective simultaneously, it con-
sequently makes it impossible to find the extreme solutions of the Pareto set.

Lexicographical ordering

If the objective functions fk can be ordered according to their order of importance, a lexicographical
ordering can also replace the Pareto dominance (Equation 1.5).

s1 � s2⇐⇒ ∃ k ∈ {1, . . . ,n},
{
∀ i ∈ {1, . . . ,k}, fi(s1) = fi(s2), and
fk(s1) < fk(s2)

(1.5)

Multi-objective indicators

Finally, in addition to using the Pareto dominance, it is possible to use binary quality indicators,
such as for example hypervolume (Zitzler and Thiele, 1999), to compare solutions to either other
single solutions or to whole fronts of solutions. This approach has been successfully applied to
many algorithms, leading to the indicator-based algorithm family including, not exhaustively, the
indicator-based evolutionary algorithm (IBEA, Zitzler and Künzli, 2004), the indicator-based multi-
objective local search algorithm (IBMOLS, Basseur and Burke, 2007), and the indicator-based ant
colony optimisation algorithm (IBACO, Mansour and Alaya, 2015).

1.1.4 Multi-objective Metaheuristics

Metaheuristics are high-level algorithms designed to quickly find good solutions for a large range
of optimisation problems too difficult for exact algorithms. Indeed, many combinatorial optim-
isation problems are NP-hard with an number of possible solutions growing exponentially, there-
fore requiring approximation mechanisms in order to obtain high-quality solutions in a reasonable
amount of time. However, approximation algorithms do not guaranty the optimality of the final
solutions. Exact algorithms can nevertheless be used to get optimal solutions, either on small in-
stances or sub-problems, or after reduction of the problem size.

Metaheuristics can be classified into nature-inspired and local search algorithms. While the
former generally involve evolution, culture, or group characteristics to simultaneously evolve mul-
tiple solutions together, the latter focus more on intensifying individual solutions by intensifying
the search on similar solutions. In the following, we present some of the more common multi-
objective metaheuristics.

Nature-inspired Algorithms

Nature-inspired algorithms, or bio-inspired algorithms, are generally inspired by biological pro-
cesses, and based on abstract concepts such as evolution, environmental pressure, and natural se-
lection (survival of the fittest), as well as on concrete observations such as animal behaviour mod-
elling. The most well known include evolutionary algorithms (EA’s) such as the genetic algorithm
(GA, Holland, 1992), swarm algorithms such as the particle swarm optimisation algorithm (PSO,
Kennedy and Eberhart, 1995) and ant colony optimisation algorithms (ACO, Dorigo et al., 1996).

As for multi-objective nature-inspired algorithms, the most popular are nowadays recent vari-
ants based on the MOEA/D (Zhang and Li, 2007), a multi-objective EA based on decomposition;
NSGA-II (Deb et al., 2000, 2002), a non-dominated sorting GA; SPEA2 (Zitzler and Thiele, 1999;
Zitzler et al., 2001), a strength Pareto EA; and IBEA (Zitzler and Künzli, 2004), an indicator-based
EA. The reader is referred to Coello et al. (2007) or Deb (2001) for more in-depth presentations of
many multi-objective population-based and evolutionary algorithms.

1.2. Performance Assessment 8

We note in particular the existence of the MOACO framework (López-Ibáñez and Stützle,
2010a,b), which specifically provides a general multi-objective ant colony optimisation framework
to use with automatic design tools. It is able to instantiate most of the multi-objective ACO al-
gorithms from the literature and many combinations of components yet never investigated.

Local Search Algorithms

Local search (LS) algorithms exploit the structure of the search space to iteratively find better and
better solutions. They are based on the idea that small modifications in the representation of a solu-
tion may lead to either a small improvement or a small deterioration of its initial quality, leading to
the notion of neighbourhood, that gives a structure to the search space by connecting close solutions.
This notion is often called the proximate optimality principle (e.g., Glover and Laguna, 1997).

LS algorithms are originally very efficient metaheuristics designed for single-objective prob-
lems (Hoos and Stützle, 2004). They have been adapted for multi-objective problems in various
ways, either directly extended from well-known and established single-objective algorithms (e.g.,
Serafini, 1994; Ulungu et al., 1995; Czyzak and Jaszkiewicz, 1996; Hansen, 1997), or hybridised with
and within evolutionary algorithms (e.g., Ishibuchi and Murata, 1996; Knowles and Corne, 1999;
Talbi et al., 2001).

A detailed chronological overview of multi-objective local search algorithms will be given in
Chapter 3.

1.2 Performance Assessment

The use of Pareto-based multi-objective algorithms leads to fronts of final solutions. In order to
compare the performance of such algorithms, it is then necessary to be able to quantify the quality
of Pareto sets.

1.2.1 Overview

Several characteristics of Pareto sets can be measured. Through the use of the many performance
indicators proposed in the literature (Knowles and Corne, 2002; Okabe et al., 2003), three main
properties of Pareto can be assessed: accuracy, diversity, and cardinality.

Accuracy: the front of solutions is close to the theoretical Pareto optimal front, either by volume or
distance.

Diversity: the solutions of the front are either well-distributed or well-spread.
Cardinality: the front contains a large number of high-quality solutions.

According to a recent survey (Riquelme et al., 2015), the most commonly used performance
indicators in the literature are the following.

Hypervolume (HV): (accuracy, diversity) based on the volume of the search space that contains
dominated solutions (Zitzler and Thiele, 1999);

Generational distance (GD): (accuracy) based on the distance of the solutions of the front to the
solutions of a reference front (van Veldhuizen and Lamont, 2000);

Epsilon family (ε): (all) based on the minimum factor ε (additive or multiplicative) by which the
front is worse than a reference front regarding all objectives (Zitzler et al., 2003);

Inverted generational distance (IGD): (accuracy, diversity) similar to GD, based on the distance of
the solutions of a reference front to the solutions of the given front (Coello and Cortés, 2005);

Spread (∆): (diversity) based on the distribution and spread achieved among the solutions (Deb
et al., 2002);

Two set coverage (C): (all) based on the fraction of solutions of the front dominated by at least one
solution of a reference front (Zitzler and Thiele, 1998).

1.2. Performance Assessment 9

It was shown that it is generally not possible to aggregate all of these properties into a single
indicator; it is thus recommended to consider multiple performance indicators, preferably ones that
complement each other, in order to assess the efficiency multi-objective optimisation algorithms
fairly (Zitzler et al., 2003). In practice, the hypervolume indicator (Zitzler and Thiele, 1999) is by far
the indicator the most commonly used in the multi-objective literature, while the other indicators
are much less used.

Finally, multi-objective performance indicators are either binary metrics, that compare two dif-
ferent sets of solutions (e.g., one set of solution with a reference set or a reference point), or unary
metrics, that are able to give independent quality assessment.

In the following, we present in more detail the hypervolume indicator and the ∆ spread indic-
ator, that will be used in the experiments of this thesis. These two specific indicators have been
chosen first because they are unary performance indicators, a restriction of the current automatic
algorithm configurators; they are also well known and used in the literature, and the spread enable
to more explicitly consider diversity, as hypervolume is first and foremost an indicator focused on
accuracy.

1.2.2 Hypervolume

Hypervolume (HV) is a performance indicator proposed by Zitzler and Thiele (1999); the idea is to
compute the volume of dominated space in objective space. Assuming normalised objective values
in [0, 1], the unary hypervolume measures the volume between a given Pareto set of solutions and
the point (1, 1), as pictured on Figure 1.1.

f2

f1

+
(0, 0)

+
(1, 1)

f2

f1

+
(0, 0)

+
(1, 1)

Figure 1.1 – Normalised unary hypervolume indicator (left: HV ; right: 1 −HV)

Hypervolume needs to be maximised, with a normalised minimal value of 0 when the front is
reduced to the point (1, 1) and an optimal value of 1 when the front is reduced to the point (0, 0).
In the later chapters, in order to facilitate analysis, we use a minimising variant of hypervolume
instead, computed as 1 − HV . This variant can be seen as the indicator aiming to minimise the
volume of non-dominating space, in contrast to the hypervolume which aims to maximise the
volume of dominating space.

Finally, while primarily being an accuracy performance indicator, hypervolume also captures
information about the diversity of the front of solutions, which is one of the reasons making the
popularity of hypervolume.

1.3. Permutation Problems 10

1.2.3 ∆ Spread

As a complementary indicator, we use a variant of spread to capture the distributional properties
of the Pareto set. Figure 1.2 shows two sets of solutions: one well-distributed (squares) and the
other unbalanced (circles).

f2

f1

+
(0, 0)

+
(1, 0)

+
(1, 1)

+
(0, 1)

f2

f1

+
(0, 0)

+
(1, 0)

+
(1, 1)

+
(0, 1)

Figure 1.2 – Normalised (left) ∆ and (right) ∆ ′ spread indicators

The ∆ spread indicator (Deb et al., 2002) is defined by Equation 1.6 for a given Pareto set S,
ordered regarding the first criterion, where df and dl are the Euclidean distances between the
extreme positions (1, 0) and (0, 1), respectively, and the boundary solutions of S, and d̄ denotes the
average over the Euclidean distances di for i ∈ [1, |S|−1] between adjacent solutions on the ordered
set S.

∆ :=
df + dl +

∑|S|−1
i=1 |di − d̄|

df + dl + (|S|− 1) · d̄
, (1.6)

This indicator is to be minimised; it takes small values for large Pareto sets with evenly distrib-
uted solutions, and values close to 1 for Pareto sets with few or unevenly distributed solutions.

In practice the distances between the extreme solutions of the set S of the points (1, 0) and (0, 1)
are much bigger than the distances between consecutive solutions of S. This is especially true if
the reference points of the normalisation are taken conservatively, which is the case in the current
context of algorithm configuration where the normalisation needs to be fixed before the execution
of the algorithm.

In consequence, we use the following variant instead, denoted as ∆ ′, and defined simply by
Equation 1.7, where the two distances df and dl to the reference points (1, 0) and (0, 1) have been
removed, thus removing spread information and making this variant a solely distance-based dis-
tribution performance indicator.

∆ ′ :=

∑|S|−1
i=1 |di − d̄|

(|S|− 1) · d̄
, (1.7)

This indicator keeps the property of ∆ of having values independent to the problem instance being
solved.

1.3 Permutation Problems

In this section, three permutation problems are presented; they will then be used in the follow-
ing chapters. All three problems share the same solution representation (or genotype), a fixed-size
permutation, which enables the analysis of the same algorithm and strategies on very diverse situ-
ations, as each problem lead to very different solution models (or phenotypes) and objectives.

1.3. Permutation Problems 11

1.3.1 Permutation Flow Shop Scheduling Problem

The permutation flow shop scheduling problem (PFSP) is a classical combinatorial optimisation
problem, and one of the best-known problems in the scheduling literature since it models several
typical problems in manufacturing. It involves a set of n jobs {J1, . . . , Jn} that need to be scheduled
on a set of m machines {M1, . . . ,Mm}. Each job Jk need to be processed sequentially on each of the
m machines, with fixed processing times (pk,1, . . . ,pk,m). Finally, machines are critical resources
that can only process a single job at a time. For the permutation flow shop scheduling problem, each
machine process the jobs in the same order, so that a solution may be represented by a permutation
of size n. The completion times Ci,j for each job on each machine for a given permutation π =

(π1, . . . ,πn) are computed using Equation 1.8 to Equation 1.11.

Cπ1,1 := pπ1,1 (1.8)

Cπ1,j := Cπ1,j−1 + pπ1,j ∀j ∈ {2, . . . ,m} (1.9)

Cπi,1 := Cπi−1,1 + pπi,1 ∀i ∈ {2, . . . ,n} (1.10)

Cπi,j := max(Cπi−1,j, Cπi,j−1) + pπi,1 ∀i ∈ {2, . . . ,n} ∀j ∈ {2, . . . ,m} (1.11)

The completion time Ck of a job Jk is then simply its completion time on the last machine Ck,m.
An illustration of a small permutation flow shop instance (n = 3 jobs, m = 4 machines) is given in
Figure 1.3. It features examples of waiting time, e.g., on machineM2 as job J1 is still being processed
on machine M1, and an example of idle time for job J2 on machine M3 as the processing of job J1 is
not yet completed. The corresponding completions times of the three jobs J1, J2 and J3 are 21, 23
and 11, respectively.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

M1 Jπ1 = J3 Jπ2 = J1 Jπ3 = J2

M2 J3 J1 J2

M3 J3 J1 J2

M4 J3 J1 J2

Figure 1.3 – Example of PFSP schedule for n = 3 jobs,m = 4 machines, and π = (3, 1, 2)

The most common objective to minimise on flow shop scheduling problem is the makespan (i.e.,
the total completion time of the schedule Cπn,m, here 23 in Figure 1.3). Other classical objectives
include the total flow time (i.e., the sum of completion times, and consequently their average), or
when due dates are introduced, the maximum or total tardiness (Lawler et al., 1993). Weighted
variants of these objectives are also common (Dubois-Lacoste et al., 2011b). In the following, we
will study two bi-objective PFSP, with first a classical combination of makespan and total flow time
(Dubois-Lacoste et al., 2011c; Bezerra et al., 2014). Because the makespan and total flow time ob-
jective are quite correlated, we will also study a second bi-objective PFSP, obtained by considering
a combination of two makespan objectives computed with hand-tuned correlated processing times
(Kessaci-Marmion et al., 2017).

The classical literature PFSP instances are given by Taillard (1993). They are randomly gen-
erated with independent processing times following the uniform distribution U[1; 99]. There are
110 Taillard’s instances, with number of jobs n ∈ {20, 50, 100, 200, 500} and number of machines
m ∈ {5, 10, 20}, 10 instances being available for each valid combination (n,m).

Classical PFSP neighbourhoods include the exchange neighbourhood, where the positions of
two jobs are exchanged, and the insertion neighbourhood, where one job is reinserted at another

1.3. Permutation Problems 12

position in the permutation. It was shown that for multi-objective local search algorithms the hy-
brid neighbourhood defined as the union of the exchange and insertion neighbourhoods lead to
better performance than considering a single neighbourhood (Dubois-Lacoste et al., 2015). Other
common operations on schedules include the adjacent swap, special case of exchange when the
two jobs are necessary adjacent – thus highly reducing the computational cost but also the interest
of such an operation – or the block-move, generalisation of both the insertion and the adjacent swap
when the positions of two adjacent subsets of jobs are exchanged. Block-moves are less commonly
used as they induce much bigger neighbourhoods. These operations are illustrated in Figure 1.4
starting from an ordered permutation.

J1 J2 J4 J5 J7 J8J6 J3

(a) Exchange (J6 with J3)

J1 J2 J7 J8J3 J4 J5J6

(b) Insertion (J6 before J3)

J1 J2 J3 J4 J7 J8J6 J5

(c) Adjacent swap (J6 with J5)

J1 J2 J8J6 J7 J3 J4 J5

(d) Block-move ({J6, J7} with {J3, J4, J5})

Figure 1.4 – Common PFSP schedule operations on an ordered permutation

1.3.2 Travelling Salesman Problem

The travelling salesman problem (TSP) is one of the most widely studied combinatorial optimisa-
tion problems, optimising the tour of an hypothetical salesman needing to visit once each of the
n cities of a given set {C1,C2, . . . ,Cn}. The TSP can be defined by a complete weighted graph G
whose n nodes represent the cities, while edges corresponds to direct paths between cities. In the
symmetric TSP, this graph is undirected, and edge weights correspond to distances between cities.
Given a TSP instance G, the goal is to determine a tour passing through every city exactly once,
such that the total distance travelled is minimised, i.e., a minimum-weight Hamiltonian cycle in G.
This cycle corresponds to a permutation of the n cities. There is no real meaning of the “beginning”
or “direction” of the tour – e.g., for an instance with 4 cities the solutions (1, 2, 3, 4) and (2, 1, 4, 3)
both map to the same tour – so permutations may need to be normalised (e.g., requiring to begin
the tour with C1 and to visit C2 before C3) so that each possible tour has a unique representation.
An illustration is given in Figure 1.5 for a small instance of n = 8 cities.

C1

C2

C3 C4

C5

C6

C7C8

Figure 1.5 – Example of TSP tour for n = 8 cities and π = (1, 2, 3, 8, 7, 5, 6, 4)

Multi-objective TSP instances can easily be obtained by considering either correlated additional
costs, such as distance and travel time, or simply multiple independent uncorrelated costs. A
benchmark set of Euclidean instances (available online1) has been widely used in the literature
to assess the performance of bi-objective TSP algorithms. These instances were constructed by

1https://eden.dei.uc.pt/~paquete/tsp/#Exp2

https://eden.dei.uc.pt/~paquete/tsp/#Exp2

1.3. Permutation Problems 13

combining two independently generated distance matrices, the two objectives being therefore un-
correlated. In addition to these instances, we will also consider variably correlated instances, by
first generating a set of cities, then duplicating it and slightly moving each city, to obtain two cor-
related matrices of Euclidean distances (Kessaci-Marmion et al., 2017).

A classical neighbourhood for the travelling salesman problem is the 2-opt (or pairwise exchange)
neighbourhood, where two tours are neighbours if, and only if, one can be obtained from the other
by removing two non-adjacent edges reconnecting the resulting tour fragments by two other edges.
It has the visual property of repairing routes that cross themselves. An illustration is given by
Figure 1.6, in which edges (C1,C4) and (C3,C8) are removed and reinserted, reordering the tour of
cities {C1,C2,C3} to remove the crossing. Note that the 2-opt method is a special case of the more
general k-opt method (or Lin–Kernighan method, Kernighan and Lin (1970); Lin and Kernighan
(1973)), but that using k > 2 usually leads to a much bigger neighbourhood size and thus far higher
computational cost. The permutation neighbourhoods (e.g., exchange, insertion; see Figure 1.4) can
also be used on the TSP, albeit much less used and efficient than the k-opt methods.

C1

C2

C3 C4

C5

C6

C7C8

C1

C2

C3 C4

C5

C6

C7C8

Figure 1.6 – Example of 2-opt recombination (left: removal; right: reinsertion)

1.3.3 Quadratic Assignment Problem

The quadratic assignment problem (QAP) involves assigning a set of n facilities {F1, F2, . . . , Fn} to
a set of n given locations {L1,L2, . . . ,Ln}, minimising a cost function that depends both on the dis-
tance between locations and the flow between the facilities assigned to these locations. A solution
is a permutation π = (π1, . . . ,πn), where each location Lk is associated to the facility Fπk

. The
objective is then to minimise the cost C associated to the solution, defined by Equation 1.12 for a
given permutation π, with wi,j the flow between facilities Fi and Fj, and di,j the distance between
locations Li and Lj.

C :=

n∑
i=1

n∑
j=1

wi,jdπi,πj
(1.12)

Figure 1.7 shows two solutions of a small QAP instance (n = 8), in which for clarity most of the flow
is supposed equal to 0 and is not represented (otherwise the graph would necessarily be complete).
This figure highlights that the locations are fixed, the permutation only changing the mapping
according to which facilities are associated to locations.

Similarly to the TSP, multi-objective QAP instances can be obtained by considering either cor-
related additional costs or multiple independent uncorrelated costs. To our present knowledge,
there are publicly available multi-objective QAP instance generators (Knowles and Corne, 2003)
but no widely recognised multi-objective QAP benchmarks in the literature. To obtain bi-objective
instances, we consider two correlated flow matrices, both tied to a single distance matrix. As for
both previous problems, it enables for the correlation between the two objectives to be manually
adjusted (Kessaci-Marmion et al., 2017).

1.3. Permutation Problems 14

L1 F1

L2 F2

L3 F3 L4F4

L5F5

L6F6

L7F7L8 F8

L1 F1

L2 F2

L3 F3 L4F7

L5F5

L6F6

L7F4L8 F8

Figure 1.7 – Examples of QAP pairings for n = 8 locations (thus facilities); left: π =

(1, 2, 3, 4, 5, 6, 7, 8); right: π = (1, 2, 3, 7, 5, 6, 4, 8)

The neighbourhood commonly used on QAP is the exchange neighbourhood (see Figure 1.4).
Indeed, while other neighbourhood such as insertions or k-opt operations can be used, they have
here no real meaning as positions in the permutation are not related in any way to an ordering of
the facilities, but solely their mapping to the different locations, which stay fixed.

Chapter 2

Automatic Algorithm Design

If I have seen further it is by standing on the
shoulders of Giants.

Isaac Newton

In this chapter, we present the research field of automatic algorithm design (AAD). After some
necessary preliminary definitions, we give an overview of the different research fields of the liter-
ature, such as automatic algorithm control, algorithm selection, hyper-heuristics, and state of the
art methods that are related to AAD. Then, we propose and discuss a new taxonomy of AAD to
better group under a single label these research fields.

In the process of solving problems and obtaining solutions, one generally needs to go through
many analysis, decisional and computational steps, steps that may be automatised with the use of
algorithms. The usual procedure is to: (i) formally define the problem to solve, (ii) either choose
an existing algorithm or design a new specific one to solve the problem, (iii) run the algorithm on
the particular input of interest, to finally (iv) obtain relevant solutions. These steps describe an
algorithm, for the theoretical higher-order “problem solving” problem. More particularly, the second
step is related to answering the question “which algorithm should I use to solve my problem”,
which can also be better worded as “what is the best algorithm to solve this problem”. While these
questions are generally left to human expertise, they can be tackled automatically, through what
we call automatic algorithm design.

2.1 Preliminaries

In order to better contextualise the automatic algorithm design research field and better compare
the different algorithm design approaches, we first give the necessary definitions and notions re-
garding to algorithms and design choices.

Problem: a description, semantic, and formal definition of the problem and the possible solutions
(e.g., the travelling salesman problem (TSP)).

(Problem) instance: the particular data, relative to a given problem, over which an algorithm is
used to obtain final solutions (e.g., the graph of distances corresponding to a list of cities for
the TSP).

(Problem) instance class: a subset of problem instances sharing common characteristics (e.g., in-
stances of the same size, sharing a similar structure, or originating from the same source).

(Problem) instance feature: a measurable property or characteristic of the instance. Note that se-
lection or extraction of instance features are in themselves very hard machine learning prob-
lems.

15

2.2. Overview 16

Algorithm: a complete and unambiguous description of how to obtain solutions for a given prob-
lem instance; in the following, we also identify an algorithm to the decisional schedule it in-
duces.

Parameter: a decision point in an algorithm reflecting a design choice.
Parameter value: the value associated to a given parameter.
Parameterised algorithm: an algorithm exposing design choices as parameters; a set of default

parameter values is usually available.
(Algorithm) configuration: the set of parameter values necessary to run a parameterised al-

gorithm, by specifying a setting to each of its parameters.

Virtually all algorithms are based on a succession of design choices that enables them to success-
fully run and achieve results. If some of these design choices may be left to the user discretion in the
form of parameters, most of them are statically defined in the algorithm following early decisions
of the algorithm designer. Each of these design choices ultimately heavily impact the performance
of the algorithm. Nowadays the tendency is hopefully to propose frameworks more open in their
design. Indeed, with more available parameters, they can potentially reach far better performance
if adequately configured. Eventually, almost every design choice could potentially (and probably
should) be automatically optimised (Hoos, 2012).

Parameters are usually classified into three categories:

Categorical parameters, which have a finite number of unordered discrete values, often used to
select between alternatives mechanisms (e.g., to select a specific strategy, or to enable or disable
a mechanism);

Integer parameters, which have discrete and ordered domains (e.g., to specify a number of itera-
tions or the size of a set of solutions); and

Continuous parameters, that take numerical values on a continuous scale (e.g., to set a probability
or percentage threshold).

The distinction between structural parameters (i.e., categorical parameters, or integer parameter
with high impact on the comportment of the algorithm) and behavioural parameters (i.e., other in-
teger and continuous parameters) is also common, under many different appellations: qualitat-
ive/quantitative, symbolic/numeric, categorical/numerical, component/parameter, nominal/ordinal, or cat-
egorical/ordered (see Eiben and Smit, 2012). In addition, some conditional parameters may only be
used depending on the setting of other parameters, and some combinations of parameters may be
forbidden when they are known to lead to incorrect or undesirable algorithmic behaviour.

2.2 Overview

Offline approaches are usually opposed to online approaches (Hamadi et al., 2012), following the
taxonomy of Eiben et al. (1999) of parameter setting (Figure 2.1), which divides parameter tuning
approaches, which aim to find good values for the parameters before the run of the algorithm,
and parameter control approaches, which start the run with initial parameter values that are then
controlled and adapted during the run.

Offline approaches (parameter setting) focus on getting the best possible algorithm prior of its
actual use on the input data; once the algorithm is fixed it runs following its specification. They
can therefore be seen as prediction-based approaches. Conversely, online approaches (parameter
control) do not predict the best possible algorithm but rather focus on optimising its configuration
during its execution. In other words, online approaches try to adapt the schedule of decisional and
computational steps of the algorithm using its impact on the input data, while offline approaches
try to predict the entire fixed schedule. Of course, if this theoretically leads to much more effi-
cient algorithms, general automatic adaption in algorithms is orders of magnitude more complex
than just optimising over all possible static algorithms. This distinction between offline and online
approaches deeply shaped the research on automatic algorithm design.

2.2. Overview 17

Parameter Setting

Parameter Tuning Parameter Control

Deterministic
Adaptive

Self-adaptive

before the run during the run

Figure 2.1 – Eiben et al. (1999) parameter setting taxonomy

Finally, to quote Karafotias et al. (2015) on the tuning and control of evolutionary algorithms:
‘From a practical perspective, tuning is an absolute ‘must’ [. . .] Meanwhile, parameter control is
more of a neat-to-have than a need-to-have. ’

In the following, we present and discuss many of the research fields related to AAD, and how
they differ between each others. While fields such as algorithm configuration and parameter con-
trol directly falls under Eiben taxonomy, we observe than many others such as algorithm selection
or hyper-heuristics also closely relates to the same problematic: automatically devising better al-
gorithms for given problems.

2.2.1 Algorithm Selection

Algorithm selection focuses on understanding the relation between algorithm performance and
problem instance features. The basis is that, for a given set of problem instance classes, there is a
corresponding set of complementary algorithms that can be used to improve overall performance.

Formally (Rice, 1976), the algorithm selection problem consists in, given a portfolio P of al-
gorithms A ∈ P, a set of instances I, and a cost metric o : P × I → R, optimising a mapping
s : I→ P across all instances of i ∈ I, as given in Equation 2.1.

{
optimise

∑
i∈I
o(s(i), i)

subject to s : I→ P
(2.1)

Because this problem optimises the performance on each instance of the set independently, al-
gorithm selection is also sometimes called per-instance algorithm selection. A simplified general
workflow of algorithm selection is given in Figure 2.2., in which a selection tool construct the final
mapping by iteratively providing an algorithm A and an instance i to a runner, whose role is to
simply returns the subsequent performance.

Some of the most prominent algorithm selection tools include SATzilla (Xu et al., 2008), ISAC
(Kadioglu et al., 2010), 3S (Kadioglu et al., 2011) and CSHC (Malitsky et al., 2013). A recent ex-
tensive survey on algorithm selection for combinatorial search problem can by found in Kotthoff
(2016), which also keeps an up to date online literature summary on algorithm selection literature1.

One extension of the traditional per-instance algorithm selection problem is per-instance al-
gorithm scheduling, that associates to each instance not a single algorithm anymore, but a sched-
ule of different algorithms. This extension allows to increase robustness, in particular regarding

1https://larskotthoff.github.io/assurvey/

https://larskotthoff.github.io/assurvey/

2.2. Overview 18

Selection tool
Portfolio P

Instance set I

Runner

Mapping I→ P

instance i ∈ I,
algorithm A ∈ P

performance o(A, i)

Figure 2.2 – Algorithm selection general workflow

instances for which multiple algorithms might perform well. The algorithm schedules can be op-
timised globally for all instances (Hoos et al., 2015), determined for each instance relatively to al-
gorithm performance on similar instances (Amadini et al., 2014), or used statically as a pre-solving
mechanism before traditional algorithm selection (Kadioglu et al., 2010, 2011; Hoos et al., 2014).
These approaches have been shown to be very efficient and to achieve strong performance on many
algorithm selection scenarios (Lindauer et al., 2016).

2.2.2 Algorithm Configuration / Parameter Tuning

Algorithm configuration (or parameter tuning) focuses on getting the best performance of a given
algorithm on a given distribution of instances, through modifications of its parameters. The al-
gorithm being optimised is called the target algorithm, while the algorithm optimising the para-
meters of the target algorithm is called the configurator. It can be seen as the automatic process to
find the best “default” parameters for a given algorithm on a given instance class. As algorithm
selection, algorithm configuration is an offline process. In the machine learning community, this
problematic is also referred to as hyperparameter optimisation (e.g., Bergstra and Bengio, 2012).

Formally, the algorithm configuration problem consists in, given a parameterised target al-
gorithm A, the space Θ of configurations of A, a distribution of instances D, a cost metric
o : Θ × D → R, and a statistical population parameter E, optimising the aggregated perform-
ance of the target algorithm A across all instances i ∈ D, as given in Equation 2.2 (in which Aθ
denotes the algorithm obtained by associating the configuration θ to the target algorithm A).

{
optimise E[o(Aθ, i), i ∈ D]

subject to θ ∈ Θ (2.2)

Algorithm configuration supposes that the limit implied by Equation 2.2 exists and is finite. In
practice, a machine learning approach is taken, by considering a finite set of training instance I

instead, and validating the performance of the final configuration on a separate set of instances.
The most commonly used statistical population parameter is the simple average of the perform-
ance of the target algorithm. A simplified general workflow of algorithm configuration is given in
Figure 2.3.

ConfiguratorConfiguration space Θ
Instance set I

Target Algorithm

Best configuration

instance i ∈ I,
configuration θ ∈ Θperformance o(θ, i)

Figure 2.3 – Algorithm configuration general workflow

2.2. Overview 19

While in practice the terms algorithm configuration and parameter tuning have been in the past
commonly used interchangeably, more recently the former is preferred when the parameter space
mostly contains categorical parameters and the latter when it mostly contains numerical paramet-
ers.

Many different types of automatic configuration tools can be found in the literature. For ex-
ample, irace (López-Ibáñez et al., 2016), one of the most popular configurator, uses statistical racing
(Birattari et al., 2002; Balaprakash et al., 2007) to find efficient configurations while discarding the
one statistically outperformed. CALIBRA (Adenso-Díaz and Laguna, 2006), as well as ParamILS
(Hutter et al., 2007, 2009), are based on iterative search. SPO (Bartz-Beielstein et al., 2005), or SMAC
(Hutter et al., 2011), are other examples of configurators that build and refine a model for the para-
meter values (see also Bartz-Beielstein and Markon, 2004). Finally, GGA++ (Ansótegui et al., 2015)
is a model-based configurator based on GGA (Ansótegui et al., 2009), an anterior configurator itself
based on genetic algorithms.

2.2.3 Parameter Control

Parameter control focuses on adapting the parameter values of the running algorithms during its
execution, rather than only using initial values that would otherwise stay fixed during its whole
run. It is based on the observation that there is no reason for a specific parameter value to be and
stay optimal the entire execution of the algorithmic process.

The classical taxonomy of parameter control algorithms is given by Eiben et al. (1999, 2007),
and categorises three types of algorithms in which adaptation takes place: deterministic, adaptive,
and self-adaptive algorithms. While it originally only applies on evolutionary algorithms, it is now
used much more broadly.

Deterministic algorithms: parameters values are altered using deterministic rules. In other words,
the adaptation is independent of some feedback from the search process, and only uses prede-
termined schedules (e.g., based on the number of iteration, or the running time elapsed).

Adaptive algorithms: parameters values are altered using some form of feedback from the search
process. Decisions may involve credit assignment based on the performance linked to the
parameter values.
An additional subdivision of adaptive algorithms into functionally-dependant algorithms and
self-adjusting algorithms can also be found, based on whether the parameter values can be
decided looking at the current state of the algorithm only, or if they depend on the success of
previous iterations (Doerr and Doerr, 2015).

Self-adaptive algorithms: parameters values are encoded into solution genotypes and evolved
naturally during the search process.

Recent and extensive surveys on parameter control in evolutionary algorithms can be found in
Karafotias et al. (2015); di Tollo et al. (2015); Aleti and Moser (2016). While many methods have
been proposed in the literature, most of them are tied to specific algorithms (e.g., evolutionary al-
gorithms) or specific parameters of specific algorithms (e.g., controlling the population size of an
evolutionary algorithm). In this thesis, we are interested in generic, parameter independent, adapt-
ive control mechanisms, among which four types, increasingly sophisticated, of generic methods
can be distinguished.

Formula and rules: albeit typically strongly tied to specific contexts, formula and rules can in prac-
tice be devised regardless of the specific parameter or algorithm. Rules can be based on time,
number of iterations, or any feedback from the search; they may be based on theoretical res-
ults or on intuition; they can have absolute effects (i.e., using specific values) or relative effects
(i.e., modifying the parameter with regard to its current value (e.g., the 1/5th rule; Schumer and
Steiglitz, 1968).

2.2. Overview 20

Probability-based decisions: using feedback from the search, it becomes possible to associate to
each parameter value a reward. Mechanisms such that the probabilistic rule-driven adapt-
ive model of Wong et al. (2003), probability matching (Thierens, 2005), and adaptive pursuit
(Thierens, 2005) all base their decisions on probabilities computed from search feedback.

Multi-armed bandits: similarly to probability-based decisions mechanisms, multi-armed bandit
approaches can be used to take decisions by considering each parameter value as a distinct
arm, thus transforming the problem into a known probability theory one. The dynamic multi-
armed bandit of Costa et al. (2008); Maturana et al. (2009) and the adaptive range parameter
selection mechanism of Aleti and Moser (2011) are examples of such multi-armed bandits al-
gorithms applied to automatic algorithm design.

Reinforcement learning: finally, reinforcement learning (Sutton and Barto, 1998) can also be used
by superimposing an additional layer of states in order for the decisions to better take into
account the environment (e.g., Eiben et al., 2006), again enabling the use of known machine
learning mechanisms.

Generic online mechanisms will be detailed in more depth in Chapter 4.

2.2.4 Hyper-heuristics

The term hyperheuristic originates from Cowling et al. (2000) in which it is used to describe ‘heur-
istics to choose heuristics’. Burke et al. (2010) (see also Burke et al., 2013) proposed a much broader
taxonomy for hyper-heuristic approaches, founded on two dimensions: the source of feedback
during learning and the nature of the heuristic search space, detailed hereafter.

Offline learning: knowledge is gathered from a set of training instances, and hopefully generalises
to unseen instances.

Online learning: learning is done while the algorithm is solving one particular instance of the
problem.

No learning.

Heuristic selection: methodologies for choosing or selecting existing heuristics.
Heuristic generation: methodologies for generating new heuristics from components of existing

heuristics.

Burke et al. (2010) also follow Hoos and Stützle (2004) to refine this second dimension accord-
ing to the search paradigm of the hyper-heuristic and whether it uses either a constructive or a
perturbative search process.

Construction heuristics: the search process considers complete candidate solutions and alters
them by modifying one or more of their components.

Perturbation heuristics: the search process considers incomplete candidate solutions, in which
one or more components are missing, and iteratively extends them.

2.2.5 Other Fields and Taxonomies

Other research fields are also related to AAD, while others taxonomies have already been proposed.

Battiti et al. (2008) proposed definitions of both reactive search and intelligent optimisation. While
the latter broadly corresponds to applications of machine learning strategies in heuristics, the
former focuses on integration of machine learning techniques in local search heuristics for solv-
ing complex optimisation problems.

Autonomous search systems (Hamadi et al., 2012) already encompass most of the others research
fields and taxonomies. Most importantly, they generalise the online–offline distinctions of Eiben
et al. (1999) to fields outside parameter control. The taxonomy focuses around building singular
monolithic systems, able without outside expert knowledge to find solutions to any problem, in-
ternally using one or many algorithm design tools and techniques. In other words, an autonomous

2.3. Overall Automatic Design Taxonomy Proposition 21

search system is an easy-to-use interface for end-users, that aims to minimise technical interaction
and knowledge by internally automatising configuration and solving processes.

Finally, genetic programming and genetic improvement are related research fields that apply tradi-
tional optimisation techniques (e.g., genetic algorithms) to software engineering problems in order
to improve existing software (Langdon, 2015; Petke et al., 2017). Examples of goals include op-
timising performance (e.g., quality, running time, memory or energy consumption), but also fixing
program behaviour.

2.2.6 Multi-objective Automatic Design

All of the notions presented before were originally proposed as single-objective tools, to optimise
the performance of single-objective algorithms. In order to apply such tools to multi-objective al-
gorithms, one would need to use a single performance indicator, such as the hypervolume resulting
of the final set of solutions (e.g., Dubois-Lacoste et al., 2011a).

However, the last few years have seen the development of many different tools either based on
multi-objective optimisation or specifically designed for multi-objective optimisation. Among oth-
ers, we can cite MOSAP (Horn et al., 2016), a multi-objective algorithm selection framework, S-Race
and SPRINT-Race (Zhang et al., 2015, 2016, 2018), extending statistical racing for model selection
according to multiple criteria, and MO-ParamILS (Blot et al., 2016), a multi-objective configurator
for multi-objective configuration we proposed. MO-ParamILS will be presented and studied in
depth in Chapter 5.

2.3 Overall Automatic Design Taxonomy Proposition

In this section, we propose a new taxonomy of automatic algorithm design. It follows and expends
the temporal viewpoint already present in the Hamadi et al. (2012) taxonomy, while proposing a
second, transverse, viewpoint based on the algorithmic structure of the elements being optimised.
An important motive for this taxonomy is to propose a taxonomy for researchers focused on the
design tools and techniques themselves, as autonomous search systems focus more to giving an
autonomous black-box to non-technical end-users.

2.3.1 Temporal Viewpoint

The first point of view of our taxonomy is based on when are applied the algorithm design tools.
Eiben et al. (1999), then Hamadi et al. (2012), separate tools that are applied before and after the first
actual computational step on the given problem instance. Tools that are used to choose an algorithm
and its parameters are classified as offline tools, while techniques used to adapt the algorithm or its
strategies during the execution are classified as online techniques.

We propose to distinguish three phases in this timeline, rather than only two. First, we have
tools that only require a description of the problems and the classes of instances that will be tackled,
such as the learning process of algorithm selection and parameter tuning. More precisely, they do
not require to know the specific instance that will be solved in the future, and they are used to
obtain generalisations and to give predictions. We say that they only use problem features.

Then, we have tools or recommendations that use the specific features of the instance to solve.
For example, the application of the mapping found using algorithm selection, or more generally the
choice of parameter values following the algorithm designer recommendations (e.g., parameters
with recommended values depending of the instance size). We say that they use a priori features.

Finally, following Eiben et al. (1999), the last phase begins when the first computational step
starts the search. Search features, directly linked to the algorithm progression and the solutions
considered, are then available to be used.

One of the advantages of separating the online phase into two distinct phases is first to better
compare algorithm configuration to algorithm selection, as it splits the latter into two parts the

2.3. Overall Automatic Design Taxonomy Proposition 22

machine learning first, then the application of the resulting mapping. Furthermore, it also enables
to better include recommendations and rules based on manual preliminary experiments or simply
intuition, that wouldn’t otherwise be considered as not suitable as generic design tools.

2.3.2 Structural Viewpoint

The second point of view of our taxonomy is based on what is manipulated by the algorithm design
tools, and more precisely how much of the solving process can be modified. On the one hand, para-
meter tuning mostly deals with numerical parameters, for which it is usually expected to imply
very small and controlled variations in performance. Indeed, categorical parameters usually lead
to much more stronger variation in performance. On the other hand, when selecting different
algorithms, they can possibly be based on entirely different techniques and induce completely dif-
ferent performance profiles (which is incidentally the main motivation of algorithm selection).

These differences in expectation explain why some similar research fields were developed based
on different assumptions and leading to very distinct principles. For example, why algorithm se-
lection require problem features to compute a mapping of which algorithm is better on which type
of instances, or why some efficient parameter tuning techniques can use local search techniques.
However, both ends of the spectrum ultimately deal with the same problem of how to obtain what
is predicted to be the best algorithm to use on a given instance.

Indeed, parameter tuning, algorithm configuration, and algorithm selection can all be gener-
alised into a broader problem, given in Equation 2.3, in which D is a distribution of instances, A
is the algorithm space (e.g., obtained by a description of a given algorithm parameters values, or
given by a portfolio), E is a statistical population parameter, and o is the (possibly multivariate)
cost metric (o : A→ Rn, with n > 1).

{
optimise E[o(s(i), i), i ∈ D]

subject to s : D→ A
(2.3)

Equation 2.2 (parameter tuning; algorithm configuration) is a specialisation of Equation 2.3
when the mapping is supposed to be constant (i.e., a single configured algorithm Aθ is sufficient
to achieve optimal performance over the distribution D of instances). To our present knowledge,
most parameter tuning and algorithm configuration scenarios either suppose that the distribution
of instances is homogeneous to a single class of instances, or nevertheless aim for a single “gen-
eral” configuration. Similarly, Equation 2.1 (algorithm selection) is a specialisation of Equation 2.3
when the distribution of instances is reduced to a simple set of instances. In both cases, either all
instances are supposed to be part of a single instance class, or each individual instance is optimised
separately; the task of figuring out the instances classes is left to the expert knowledge of the end-
user. Tools able to simultaneously both analyse the distribution to determine instances classes and
optimise a mapping over these classes are, to the best of our knowledge, yet to be proposed.

Equation 2.3 can in theory be further refined into Equation 2.4 by considering that (i) the al-
gorithm output itself is to be minimised, without the need of an additional cost metric (i.e., to
optimise directly a(i) instead of o(a, i), with a ∈ A an algorithm) and that (ii) there is no need to
explicitly first select an algorithm to then apply it on the instance (i.e., optimising f(i) = s(i)(i)).

{
optimise E[f(i), i ∈ D]

subject to f : D→ Rn (2.4)

This definition is closer to the idea of autonomous search systems proposed in Hamadi et al.
(2012) as it see the entire problem as a black-box system and does not expose the underlying selec-
ted algorithm to the end-user.

This viewpoint can rightfully be seen as more or less artificial. Indeed, to give some examples:
a tool designed to deal with categorical parameters can be applied on continuous parameters after

2.3. Overall Automatic Design Taxonomy Proposition 23

Tuning Configuration Mapping

Setting Selection

Control Scheduling

Algorithmic viewpoint

parameters components algorithms

Te
m

po
ra

lv
ie

w
po

in
t

problem
features

a priori
features

search
features

Figure 2.4 – Algorithm design overview

discretisation; very different algorithms can be seen as a single algorithm with a main, rather
drastic, categorical parameter; and categorical parameters can be arbitrarily ordered and seen as
integer parameters. However, it can be expected that in these cases the overall performance of the
algorithm design tool will be worse than if the more suitable tool was used instead.

Under certain circumstances these different approaches can be used simultaneously and achieve
even increased performance: e.g., the AutoFolio (Lindauer et al., 2015) selection tool relying on the
automatic configurator SMAC (Hutter et al., 2011) to seed the portfolio of claspfolio 2 (Hoos et al.,
2014), or Auto-WEKA (Thornton et al., 2013; Kotthoff et al., 2017) simultaneously selecting the
WEKA2 learning algorithm and optimising its parameters.

2.3.3 Overview

Figure 2.4 illustrates our taxonomy proposition and describes several sub-problems of the al-
gorithm design problem, clarified hereafter.

First, we describe the offline sub-problems, that correspond to both problem and a priori fea-
tures.

Tuning: the algorithm is already known, but it needs to be adapted for the given instance class
of interest. Most parameters are either continuous or behavioural. Performance is usually
predictable between similar configurations.

Configuration: the chosen algorithm has multiple available strategies or heuristics, that need to be
set before the execution. Configuration includes categorical parameters that makes predictions
less relevant, as a single parameter change can lead to very different (even possibly improper
and unfeasible) algorithm behaviour and performance. Tuning may also be necessary, either
during or after configuration.

Mapping: the algorithm is yet to be chosen, usually because not enough information on the future
instances is known and they may be different enough to warrant having to study instances
classes and to map each of them to an optimal algorithm. Evidently, configuration and tuning
may also be necessary.

These three sub-problems all aim to predict what will be the best algorithm on the possible future
problem instances. They should all be seen as machine learning process, with training data on past
or artificial instances and testing generalisation on distinct unseen instances.

2https://www.cs.waikato.ac.nz/ml/weka/

https://www.cs.waikato.ac.nz/ml/weka/

2.3. Overall Automatic Design Taxonomy Proposition 24

Setting: now that the instance of interest is known, the different parameters can be set using either
the recommended configuration, basic rules (e.g., parameter values based on the instance size,
or the presence or absence of some features), or obviously using the prediction resulting of
specific tuning and configuration.

Selection: likewise, either following a choice based on literature recommendation or a previously
obtained mapping, the algorithm and its parameters is chosen for execution.

As mentioned before, these distinctions are mainly there to easily include manual design pro-
cesses that result of standard algorithm development or preliminary analyses. The only difference
between setting and selection is that in latter also selects the algorithm, while it is already known in
the former. This also enables us to keep the term selection, as mapping was preferred to designates
the learning phase of algorithm selection.

Then, we describe the online sub-problems which can also use search features.

Control: starting from their initial values, continuous parameters can now be adapted during the
execution of the algorithm, to better match their values with regard of the particular search
context encountered. Specific control mechanisms can also handle generic categorical para-
meters, strategies, and heuristics It enables many possible improvements, such as for example
combining the strength of multiple strategies, delaying the strategy choice to after the start of
the resolution.

Scheduling: the solving process can use different strategies at different moments of the search.
Multiple distinct algorithms can now be used sequentially on the instance in order to mul-
tiply the chances of using one able very well adapted to quickly solve the instance, with the
drawback of generally not being able to efficiently use the knowledge collecting a previous
algorithm.

Note that if online mechanisms are not taken into account during the preliminary design phases,
it is likely that the parameter values obtained are only optimal in average during the run, and not
specifically optimal as initial parameter values for the online adaptation.

2.3.4 Additional Complexity Viewpoint

Our taxonomy proposition presented in Figure 2.4 does not include the classical parameter control
taxonomy of algorithms proposed by Eiben et al. (1999). Instead, we propose the following defin-
itions to update the original one and complement our taxonomy while also matching the learning
categorisation of Burke et al. (2010).

Static algorithms: the description of the algorithm is not altered during the execution; every para-
meter that would was been considered for tuning or configuration has a fixed, final, value.

Dynamic algorithms: parameter values can change, but only according to random, predictive, and
deterministic events, such as elapsed running time or number of iterations.

Adaptive algorithms: the algorithm can use explicit feedback from the search process to modify
itself through control mechanisms, such as machine learning or credit assignment procedures.

The main differences between this taxonomy and the one of Eiben et al. (1999) are as follow.
First, we include static algorithms into the taxonomy. Then, we use the term “deterministic al-
gorithm” instead of “dynamic algorithm”; Eiben et al. (1999) already raised concerns that “the term
’deterministic’ control might not be the most appropriate” and mentioned “’fixed’ parameter con-
trol” as a possible preferred alternative. The adaptive definition is directly taken from the original
one. Finally, as for now the self-adaptive distinction does not really seems to have meaning outside
the scope of evolutionary algorithms and is therefore not included.

Finally, these three categories of algorithms directly correspond to the three categories of the
learning dimension in Burke et al. (2010): static algorithms use no learning, dynamic algorithms
use offline learning (i.e., knowledge from previous instances), and adaptive algorithms use online
learning (i.e., knowledge from the current instance).

Equipped with his five senses, man explores
the universe around him and calls the
adventure Science.

Edwin Hubble

Part II

Multi-objective Local Search

25

Chapter 3

Unified MOLS Structure

Everything must be made as simple as
possible. But not simpler.

Albert Einstein

In this chapter, we investigate multi-objective local search (MOLS) techniques in the literature.
We first give a detailed overview of local search techniques in multi-objective metaheuristics,

following their historical development. Then, we survey and discuss the different MOLS strategies.
Finally, we propose a unification of MOLS techniques into a general framework.

This chapter provides the necessary materials that are used in Chapter 4 to instantiate the differ-
ent MOLS algorithms used in the following chapters: the static MOLS algorithm of Chapter 6, the
adaptive MOLS algorithm of Chapter 7, and finally the MOLS configuration schedules of Chapter 8.

This chapter contributions are closely linked to the following publication:

• Blot, A., Kessaci, M., and Jourdan, L. (2018b). Survey and unification of local search tech-
niques in metaheuristics for multi-objective combinatorial optimisation. Journal of Heurist-
ics.

3.1 Preliminaries

3.1.1 Definitions

In this thesis, we focus on multi-objective combinatorial optimisation problems in which the search
space is a finite set of solutions. These problems are generally NP-hard, making exhaustive numer-
ation of the search space is generally not feasible for large instances.

For solving such problems, approximation algorithms that exploit the structure of the search
space to iteratively find better and better solutions are used, such as local search algorithms. The
idea behind local search algorithms is that small modifications in the representation of a solution
may lead to either a small improvement or a small deterioration of its initial quality. The notion
of neighbourhood is defined from this idea. A neighbourhood operator is a function that modifies part
of a given solution that produces a new solution called a neighbour. The set of neighbours that
can be generated from a given solution x defines the neighbourhood N(x) of x. This concept of
neighbourhood gives a structure to the search space by connecting close solutions.

Several definitions result from this concept. When the neighbourhood N(x) of a solution x
contains no improving neighbour, x then constitutes a local optimum. Note that a solution x can be a
local optimum for a neighbourhood N1 without being a local optimum for another neighbourhood
N2. Furthermore, there is no guarantee for a local optimum to be a global optimum, and it is
generally not one. On the contrary, a global optimum is always a local optimum regardless of the
neighbourhood considered since it is of the best possible quality.

26

3.1. Preliminaries 27

Local search algorithms iteratively use neighbourhood operators to reach better and better solu-
tions. Unfortunately, local optima are fundamentally detrimental to local search algorithms as
there is usually no means to distinguish between local and global optima. Thus, to continue the
search after having converged to a local optima, researchers have proposed multiple techniques,
including either performing multiple random moves over the search space called kicks (e.g., Iter-
ated Local Search, Lourenço et al. (2010)), accepting to move temporarily to worse solutions (e.g.,
Simulated Annealing, Kirkpatrick et al. (1983), doing a Tabu Search, Glover (1989); Glover and La-
guna (1997)) or switching between several neighbourhood structures (e.g., variable neighbourhood
search, Mladenović and Hansen (1997)).

In a multi-objective combinatorial optimisation context, this notion is extended by defining
Pareto local optima (PLO) as the solutions whose neighbourhood contains no dominating neighbour,
i.e., the solutions whose every neighbour is either dominated or incomparable. Likewise, there is
no guarantee for a PLO to be a Pareto optimum, although Pareto optima are always PLO regardless
of the neighbourhood considered. Furthermore, many, if not all, of the above techniques used to
escape local optima in a single-objective context have been extended to multi-objective ones to deal
with PLO.

3.1.2 Historical Development

Historically, local search algorithms have been initially designed to solve single-objective com-
binatorial optimisation problems and thus are themselves single-objective algorithms (Hoos and
Stützle, 2004). Multi-objective local search (MOLS) algorithms are used on the same combinatorial
problems, e.g., multi-objective travelling salesman problems, multi-objective scheduling problems
(Jaszkiewicz, 2002; Basseur and Burke, 2007; Liefooghe et al., 2012; Dubois-Lacoste et al., 2015),
and bioinformatics problems (Abbasi et al., 2015). The majority of the literature works focuses on
bi-objective and tri-objective problems, while very fewer works tackle more than three objectives
simultaneously. This is due to the nature of the induced search space; indeed, in these many-objective
problems (Ishibuchi et al., 2008) solutions are much more often incomparable to each others, thus
majorly hindering the neighbourhood exploration of MOLS algorithms.

The development of MOLS algorithms simultaneously occurred following two different direc-
tions. On the one hand, they were directly extended from some of the well-known and established
single-objective algorithms (e.g., Serafini, 1994; Ulungu et al., 1995; Czyzak and Jaszkiewicz, 1996;
Hansen, 1997). On the other hand, they were also either integrated into evolutionary algorithms as
inner components or used as post-processing algorithms (e.g., Ishibuchi and Murata, 1996; Knowles
and Corne, 1999; Talbi et al., 2001). Nowadays, the prominent MOLS algorithms in the literature
have grown into the PLS algorithms, which are derived from the second type of MOLS algorithms.

In the following, we detail chronologically the development of these two algorithmic families
before summarising their common characteristics.

Extensions of Single-objective Algorithms

Since local search algorithms have been originally designed for single-objective optimisation, they
are single-trajectory algorithms, meaning that they follow a single solution: the current solution.
Unsurprisingly, the first MOLS algorithms were extensions of these single-objective local search
algorithms.

Simulated Annealing (SA) (Kirkpatrick et al., 1983) is a local search procedure that optimises a
single solution, using a decreasing parameter, the temperature, to slowly converge to the global op-
timal solution. Serafini (1994) and Ulungu et al. (1995, 1999) have independently proposed the same
algorithm, Multi-Objective Simulated Annealing (MOSA). Like in the original single-objective al-
gorithm, a single current solution is considered and moved through the search space, while a sub-
sidiary set is used to store the potential Pareto optimal solutions. The current solution is updated
by evaluating a single random neighbour and potentially accepting it with regard to rules based

3.1. Preliminaries 28

on probabilities, which are themselves based on whether the neighbour dominates, is dominated
by or is incomparable to the current solution, and on weighted projections of the fitness function.
Czyzak and Jaszkiewicz (1996, 1998) proposed the Pareto Simulated Annealing (PSA), in which,
rather than a single current solution, a set of current solutions is used to converge into multiple op-
tima at the same time. The diversity of having multiple current solutions is also used to guide the
parallel searches in diverse directions. Engrand (1998) and then Suppapitnarm and Parks (1999)
proposed other MOSA variants, in which the current solution is periodically replaced by one of
the archived solutions (SMOSA). Other variants also include the Pareto Archived Simulated An-
nealing (PASA) by Suresh and Mohanasundaram (2004), the Archived Multi-Objective Simulated
Annealing (AMOSA) by Bandyopadhyay et al. (2008) and those based on both Pareto dominance
(PDMOSA) and weights (WMOSA) proposed in literature reviews by Suman (2003); Suman and
Kumar (2006).

Tabu Search (TS) (Glover, 1989; Glover and Laguna, 1997) is a local search algorithm that uses
an auxiliary set of solutions, the tabu list, to guide the search and escape local optima by preventing
a backward move on the search space by banning the acceptance of neighbours too similar to recent
considered solutions. In a TS local search, when a solution is explored, each of the solution’s neigh-
bours is evaluated and the best non-tabu one is selected to replace the current solution, even if it has
a worse quality. The first multi-objective algorithm based on TS is the Multi-Objective Tabu Search
(MOTS) proposed by Hansen (1997). It uses a set of current solutions and independently explores
their neighbourhoods using an aggregation of the multiple objectives. After a given number of it-
erations, a drift strategy is applied: the set of solutions is updated by replacing one of the solutions
by another one, both uniformly selected at random in it, to explore the whole front and not merely
to focus on one part of the objective space. Other TS algorithms have been proposed, such as the
one by Baykasoglu et al. (1999), which is based on a local search with an intensification memory to
restart from when no more improving move is available, or the two algorithms proposed by Jaeggi
et al. (2004, 2008), based on the Hooke and Jeeves move (MOTS) and path-relinking (PRMOTS),
respectively. Multi-objective variants of scatter search using TS and path-relinking have also been
proposed (Beausoleil, 2001; Molina et al., 2007).

Greedy Randomised Adaptive Search Procedure for Maximum Independent Set (GRASP) is a
procedure originally presented by Feo et al. (1994) for single-objective optimisation problems. It has
been extended by Vianna and Arroyo (2004) for multi-objective optimisation problems (GRASP-
MULTI). Both algorithms are multi-start metaheuristics that alternate two phases, the first being
the construction of an initial solution, and the second being the iterative improvement of that
solution through a local search procedure; the best overall solution (or set of solutions, for the
multi-objective version) is then returned. The local search procedure simply replaces the current
solution by any improving neighbour until there is no more improving neighbour. In the case of
the multi-objective version, the different local search iterations use different aggregation weights
and a list of all potential Pareto optimal solutions is automatically kept up to date. An extensive
survey of multi-objective GRASP can be found in Martí et al. (2015), in which the authors propose
a multi-objective GRAPS with path-relinking.

Lastly, Variable Neighbourhood Search (VNS) (Mladenović and Hansen, 1997) is a local search
algorithm that solves the local optima problem by simply considering multiple other neighbour-
hoods. Indeed, a PLO regarding a given neighbourhood may have dominating neighbours regard-
ing other neighbourhoods. Geiger (2008) proposed the Multi-Objective Variable Neighbourhood
Search (MOVNS) based on PLST (Talbi et al., 2001) and the VNS methodology. Like in PLS, an
archive is used to store all potential Pareto optimal solutions. In every iteration, both a solution
and a neighbourhood, if they have not been explored yet, are selected uniformly at random, and
then the solution is entirely explored and the Pareto set is updated using all the neighbours. Ar-
royo et al. (2011) proposed an interesting alternative to the MOVNS algorithm by adding a shaking
mechanism: instead of generating the neighbourhood of a solution of the Pareto set, their algorithm
generates the neighbourhood of a neighbour of the solution of the Pareto set.

3.1. Preliminaries 29

In Evolutionary Algorithms

In addition to the single-objective local search algorithms, the development of MOLS algorithms
also occurred at the same time jointly with the multi-objective evolutionary algorithms.

Evolutionary Algorithms (EAs) constitute a class of metaheuristics based on the iterative im-
provement of a set of solutions (namely, the population), which is often used to tackle multi-objective
optimisation problems. EAs usually iterate both crossover and mutation techniques to improve the
population. There are two types of hybridisation of multi-objective EAs with local search mech-
anisms. The first type integrates the local search inside the EA, either complementing or replacing
the mutation, by using a local search on every solution of the population at each iteration. The
local search is then generally a single-objective algorithm, based on an aggregation of the different
objectives. The second type uses a MOLS as a post-processing procedure at the end of the EA.

Ishibuchi and Murata (1996, 1998) first proposed the Multi-Objective Genetic Local Search
(MOGLS), which hybridises a genetic algorithm with a single-objective local search by perform-
ing a local search on every solution generated at every iteration. During the local search, at most
k neighbours of the current solution are produced and any improving neighbour is accepted. The
crossover and the mutation strategies generate new solutions where the local search is applied us-
ing a new aggregation, i.e., the weights are randomly chosen. A cellular variant, called C-MOGLS,
was proposed by Murata et al. (2000), which divides solutions into cells associated with weight
vectors to guide the selection and local search procedures of the MOGLS. Jaszkiewicz (2002) pro-
posed another Genetic Local Search (GLS) where the main differences are the way the solutions are
selected for recombination and the local search aggregation, which uses a weight vector selected
at random from a set of possible weight vectors. Knowles and Corne (1999, 2000a) proposed the
Pareto Archived Evolutionary Strategy (PAES), an EA without crossover that only relies on local
search techniques. PAES was presented as “the simplest non-trivial approach to a multi-objective
local search procedure”, and three versions were introduced. All versions maintain a single current
solution to be explored, while the population takes the role of a Pareto set. In the simple (1+1)-
PAES, the current solution is explored by generating a single neighbour. The neighbour replaces
the current solution either if it dominates the latter or if it is in a less crowded region of the popula-
tion. The population itself is updated in such a way that any dominated solution is discarded and
the solutions of less crowded spaces replace the solutions of more crowded spaces. The (1+λ)-PAES
variant generates λ neighbours of the current solution at every iteration, which are all considered
for updating the population and replacing the current solution. The (µ+λ)-PAES variant replaces
the current solution with a list of µ current solutions, one of which is explored, selected using a bin-
ary tournament. Knowles and Corne (2000b) also proposed the memetic-PAES (M-PAES), a variant
periodically employing a crossover.

Talbi et al. (2001) also proposed a genetic algorithm hybridised with a MOLS procedure. The
execution of the algorithm is divided into two separate steps, beginning with the execution of a
genetic algorithm. Once the genetic algorithm finishes, every solution of the final population is
then explored by generating and archiving every possible non-dominated neighbour, a procedure
that is then iterated until the end of the algorithm. This second step of the algorithms is sometimes
referred to as PLS-2 due to its similarities to the Pareto local search algorithms (see the following).
To avoid confusions due to the numbering, we will refer to it as PLST instead.

Similarly, Moslehi and Mahnam (2011) proposed a hybridisation of a multi-objective particle
swarm optimisation algorithm with a single-objective local search procedure (MOPSO+LS).

Pareto Local Search Algorithms

Following the steps of algorithms such as PAES (Knowles and Corne, 1999) and PLST (Talbi et al.,
2001), which are based on Pareto dominance and use the population of the EA as a Pareto set, many
more algorithms solely based on local search techniques have been designed that are not simple
extensions of known single-objective local search algorithms. These simple extensions can still be
seen as either single-trajectory algorithms or multiple-trajectory algorithms, as multiple solutions
are simultaneously iteratively improved. On the contrary, the notion of trajectory is more blurred in

3.1. Preliminaries 30

the following algorithms, which are based more on improving iteratively the full archive (originally
the evolutionary population) than on focusing on single solutions.

Paquete et al. (2004) and Angel et al. (2004) simultaneously proposed the first standalone local
search algorithms: the Pareto Local Search (PLS) and the Bi-criteria Local Search (BLS). Both al-
gorithms are very similar and are both known as the original PLS algorithm. Unlike in the previ-
ous EAs, in PLS algorithms, a population is called an archive and always consists of a Pareto set. At
every iteration of the PLS algorithm, a single solution not yet considered is taken from the archive
to explore its neighbourhood and all of its neighbours are used to update the archive.

Aguirre and Tanaka (2005) proposed the multiple multi-objective random bit climbers (moRBC)
algorithm, which also follows a local search scheme. At each iteration, all the possible moves of the
neighbourhood are generated. They are all successively applied to the current solution, which can
be immediately replaced when a dominating neighbour is found. These authors proposed multiple
versions of moRBC wherein incomparable neighbours may be accepted and a separate archive may
be used for crowding or restarting purposes.

Using the idea of employing a separate standalone procedure to generate the initial solutions of
the local search, Paquete and Stützle (2003) proposed the Two-Phase Local Search procedure (TPLS)
for bi-objective optimisation problems. First, an initial solution is generated (originally, using a
local search), considering the first objective only. Then, a local search is performed, starting from
the resulting solution, but using an aggregation of the objectives slightly more oriented towards
the second objective. This step is then repeated until the final local search considers the second
objective only. Many variants of the TPLS procedure have been proposed, among which is the
2-Phase Pareto Local Search (2PPLS) procedure by Lust and Teghem (2010), which hybridises the
first step by constructing potentially extreme supported efficient solutions as the initial set of a PLS
algorithm and an adaptive version of TPLS, likewise hybridised with a PLS algorithm, by Dubois-
Lacoste et al. (2011b).

Instead of using the Pareto dominance or an aggregation-based comparison, the Indicator-Based
Multi-Objective Local Search (IBMOLS) (Basseur and Burke, 2007; Basseur et al., 2012) accepts
neighbours that are better than any solution of the population, by using a binary multi-objective
indicator, such as the hypervolume indicator (Zitzler and Thiele, 1999). The population size of
IBMOLS is fixed, the worse solution being replaced as soon as a new neighbour is accepted. The
authors also proposed an iterative version of IBMOLS, in which the new initial Pareto set is ob-
tained by applying random noise to a given number of solutions of the Pareto set. If the Pareto set
is not big enough, additional solutions randomly generated are considered.

Drugan and Thierens (2012) proposed a multi-restart version of PLS with the Iterated PLS
(IPLS). IPLS follows the PLST algorithm, but associates with every solution a Boolean flag that
is turned off after the solution neighbourhood is explored. When all solutions are flagged, the
search first restarts from a new solution that is randomly generated. After a given number of PLS
runs, instead of considering a new solution, IPLS uniformly selects at random a solution from the
archive, applies a mutation and restarts from the resulting solution.

Two separate generalisations of the PLS algorithms have since been independently proposed:
the Dominance-based Multi-objective Local Search (DMLS) of Liefooghe et al. (2012) and the
Stochastic Pareto Local Search (SPLS) of Drugan and Thierens (2012). The DMLS generalisation
uses an archive of solutions and includes multiple strategies related to the selection of solutions to
explore and to the exploration of the neighbourhood. DMLS(α ·β) denotes that the DMLS uses the
selection strategy α (with α ∈ {1, ?} for the selection of a single random solution and all solutions,
respectively) and the exploration strategy β (with β ∈ {1, 1 6≺, 1�, ?} for the acceptance of a single
neighbour at random, a single non-dominated neighbour at random, a single dominating neigh-
bour at random and all neighbours, respectively). The SPLS generalisation also uses an archive of
solutions from which at each iteration a solution is selected uniformly to be explored. Similarly,
multiple exploration strategies are discussed. Furthermore, like in IPLS, a Boolean flag is associ-
ated with each solution to avoid exploring it multiple times and to enable faster termination and
restarts when the exploration is not performed exhaustively. Indeed, the aforementioned authors
also proposed a more generic process to restart PLS algorithms, together with a hybrid genetic PLS
algorithm. Moalic et al. (2013) also proposed the Fast Local Search (FLS), which behaves like SPLS

3.1. Preliminaries 31

in that the exploration of a solution neighbourhood stops as soon as a neighbour not dominated by
the archive is found. Tricoire (2012) also proposed the multi-directional local search (MDLS), loosely
based on PLS, in which at every iteration a solution from the archive is taken at starting point of a
subsidiary local search, before merging the resulting archives by filtering dominating solutions.

The anytime behaviour of PLS algorithms has been investigated by Dubois-Lacoste et al. (2012);
Dubois-Lacoste et al. (2015), who proposed variants that optimise not just the quality of the final
archive only, but also the quality of intermediate archives. They proposed the optimistic hyper-
volume improvement (OHVI), an alternative mechanism for selecting the solution of the archive
whose neighbourhood will be explored, and, more importantly, they showed that changing the
exploration strategy during the search could improve the performance of the PLS algorithm.

Finally, Inja et al. (2014) proposed the Queued Pareto Local Search (QPLS), another restart
scheme using a queue to avoid premature convergence. Starting from the initial solutions, QPLS
recursively explores every solution of the queue by using dominating neighbours to finally obtain
a single final solution. If this final solution is not dominated by the archive, it is merged and k
incomparable neighbours are added to the queue. The authors also proposed the Genetic Queued
Pareto Local Search (GQPLS), which hybridises genetic algorithm techniques to update the queue.

3.1.3 Condensed Literature Summary

All of the MOLS algorithms outlined above share a common structure, in which a Pareto set of solu-
tion is iteratively improved by considering either a solution or a set of solutions as current, which
is then explored to merge some or all of their neighbouring solutions to the Pareto set. Table 3.1
summarises the main local search algorithms in the literature, according to the five following local
search attributes.

Current solutions: A single current solution or a current set of multiple solutions is used by the
local search.

Archive: The local search keeps track of a separate current set, or the current solutions can be
directly selected from the archive.

Neighbourhood exploration: A single neighbour, the full neighbourhood or only a subset of the
neighbourhood (if a stopping criterion is used) is evaluated.

Acceptance criterion: Incomparable and dominated neighbour may be accepted and returned
after the neighbourhood exploration, either as the stopping criterion of the exploration or in
addition to the final neighbour.

Quality: The comparison of the quality of two neighbours is done by considering either an aggreg-
ation or the Pareto dominance.

Reference: During the neighbourhood exploration, neighbours are compared either to the current
solution or to other solutions such as the full Pareto set.

In Table 3.1, an “X” means that the algorithm possesses the corresponding characteristic, pos-
sibly depending of the context during the resolution (e.g., SA algorithm accepting dominated solu-
tions by means of the temperature), whereas a “C” means that the characteristic is only present
in some particular variant of the algorithm (e.g., the DMLS structure is able to instantiate many
different local search algorithms).

3.1.4 Analysis and Discussion

Table 3.1 shows a trend between the two algorithmic families of the MOLS algorithms, where ex-
tensions of single-objective local search algorithms generally separate the archive and the current
solutions and use aggregations, and the family of the PLS algorithms, which generally directly
select the current solutions from the archive and use Pareto dominance.

One of the apparent weakness of MOLS algorithms relates to the possible number of solu-
tions included in the archive and thus the size and shape of the optimal Pareto front. Indeed, if
a MOLS algorithm does not use any mechanism to bound the size of its archive, exploration of

3.1. Preliminaries 32

Table 3.1 – Condensed literature summary

“X”: the algorithm possesses the given characteristic
“C”: the algorithm may be configured to possess the given characteristic

Current Archive Neighbours Acceptance Quality Reference
Criterion

Algorithm Si
ng

le
cu

rr
en

ts
ol

ut
io

n

M
ul

ti
pl

e
cu

rr
en

ts
ol

ut
io

ns

Se
pa

ra
te

ar
ch

iv
e

an
d

cu
rr

en
ts

ol
ut

io
n

C
ur

re
nt

so
lu

ti
on

(s
)f

ro
m

th
e

ar
ch

iv
e

Si
ng

le
ne

ig
hb

ou
r

ex
pl

or
ed

Pa
rt

ia
ln

ei
gh

bo
ur

ho
od

ex
pl

or
at

io
n

Fu
ll

ne
ig

hb
ou

rh
oo

d
ex

pl
or

at
io

n

A
cc

ep
ti

fi
nc

om
pa

ra
bl

e

A
cc

ep
ti

fd
om

in
at

ed

A
gg

re
ga

ti
on

Pa
re

to
do

m
in

an
ce

C
om

pa
re

to
cu

rr
en

ts
ol

ut
io

n

C
om

pa
re

to
Pa

re
to

se
t

MOSA X X X X X X X
PSA X X X X X X X
MOTS X X X X X X X
MOVNS X X X X X X
MOGLS X X X X X X
PAES X C X C C X X X
PLST X X X X X X
PLS X X X X X X
moRBC X X X X C X X
IBMOLS X X X X X X
DMLS C C X C C C C X C C
SPLS X X C C C C X C C
FLS X X X X X X

MOSA (Serafini, 1994; Ulungu et al., 1995); PSA (Czyzak and Jaszkiewicz, 1996); MOTS (Hansen,
1997); MOVNS (Geiger, 2008); MOGLS (Ishibuchi and Murata, 1996); PAES (Knowles and Corne,
1999, 2000a); PLST (Talbi et al., 2001); PLS (Paquete et al., 2004; Angel et al., 2004); moRBC
(Aguirre and Tanaka, 2005); IBMOLS (Basseur and Burke, 2007); DMLS (Liefooghe et al., 2012);
SPLS (Drugan and Thierens, 2012); FLS (Moalic et al., 2013)

3.2. MOLS Strategies 33

too many solutions (and furthermore exhaustive neighbourhood explorations) can become pro-
hibitively computationally expensive slowing the convergence of the algorithm to a halting point
(Liefooghe et al., 2012). MOLS are similarly much weakened when using too large neighbourhood,
especially when explorations are performed exhaustively. Another current weakness of MOLS al-
gorithms is that there is usually no explicit handling of the intensification/diversification trade-off.
If some works focus on preserving diversity at the cost of some convergence speed (Blot et al., 2015),
in most of the MOLS algorithms only intensification is rewarded and diversification is delegated
as a side-effect of the archiving process. Furthermore, some variants of MOLS algorithms may re-
quire long computational time to reach high-quality approximations of the Pareto fronts and result
on poor solutions if stopped early. Anytime mechanisms for MOLS algorithms have been proposed
to deal with this particular limitation (Dubois-Lacoste et al., 2015).

The two DMLS and SPLS generalisations can be configured to instantiate a large range of PLS
strategies, but are not compatible with many extensions of single-objective strategies (and do not
claim to be). The first fundamental limitation is that these generalisations do not use an explicit set
of current solutions that is conveyed through the iterations of the local search, but instead select
new current solutions from the archive every iteration. This also implies that the current solu-
tions are always non-dominated. They can, through the use of an activation/deactivation scheme,
emulate to some extent some trajectory-based strategies by keeping track of the selection of the
previous iteration, but without the flexibility of keeping a separate set of current solutions, which
allows, for example, to easily perform explorations outside their current archive (e.g., to explore
dominated neighbours or when the algorithm allows some deterioration of the current solutions).
The second main limitation is that the use of an archive as the main set of solutions leads to the use
of the Pareto dominance (or a weakened version) for quality comparison, which leaves out the use
of scalar-based comparisons in the exploration procedure.

To overcome these limitations, to allow more flexibility and to incorporate more diverse
strategies, we propose a new MOLS generalisation, which is detailed in the following sections.
Its main characteristics are the use of two explicit sets of solutions (namely, the set of current solu-
tions and the archive), the separation of acceptance and stopping criteria in the exploration strategy,
the possibility of using a simple set and not a Pareto set for the set of current solutions, the pos-
sibility of using scalar-based acceptance criteria and, finally, the use of an explicit reference during
neighbourhood comparisons.

3.2 MOLS Strategies

In this section, we describe different sets and strategies of the MOLS algorithms through examples
from the literature review of the previous section. They are the basic components of our unification
of MOLS that will be presented in Section 3.4.

3.2.1 Set of Potential Pareto Optimal Solutions (Archive)

The archive is the Pareto set at the core of all MOLS algorithms. It holds potential Pareto optimal
solutions, i.e., solutions not yet dominated by any other found solutions. This is the set of solutions
finally returned by the procedure.

Depending on the problem considered, the size of the archive can become very large. Unless
this size is kept unbounded, a mechanism such as a diversity criterion (e.g., crowding, relaxed
dominance) or a basic filtering mechanism may be used to remove the less important potential
Pareto optimal solutions once a given size is reached (Liefooghe et al., 2012).

3.2.2 Set of Current Solutions (Memory)

In addition to the archive, the current set, a second set of solutions, is used to keep all the solutions
whose neighbourhood may be explored. These solutions are taken either from the archive or from
previous iterations and may possibly be dominated by some solutions of the archive. To avoid

3.2. MOLS Strategies 34

using the same term (i.e., current) for both the current set and the current solutions it contains, we
propose to call this set memory.

We identify three categories of strategies concerning the usage of the memory. First, as a direct
extension of the single-objective local search algorithms, the memory can contain a single current
solution (e.g., MOSA algorithm (Ulungu et al., 1999)). Iteration after iteration, the current solution
is explored, potentially replaced by one of its neighbours, while the archive is automatically up-
dated. If the current solution appears to be a PLO, a restart can then be performed from one of
the other potential Pareto optimal solutions. However, considering a single current solution means
focusing on a single trajectory in the search space, whereas the multi-objective setting requires op-
timising the whole Pareto front. Thus, the second category of strategies includes algorithms that
keep a set of multiple current solutions and explores it sequentially, with the direct consequence
of an improved diversity since each of the separate trajectories can then focus on the subset of the
Pareto front (e.g., PSA (Czyzak and Jaszkiewicz, 1998), MOTS algorithms (Hansen, 1997)). Finally,
the third category includes algorithms that do not keep track of the trajectory, but rather directly
select and explore solutions from the archive (e.g., PAES (Knowles and Corne, 1999), PLS (Paquete
et al., 2004), DMLS algorithms (Liefooghe et al., 2012)).

Note that, like in the archive, the size of the memory may become very large, and, therefore,
the same bounding mechanisms may be used. However, as such mechanisms were proposed for
algorithms in which the memory and the archive were joined, it may be advantageous to bound
only the memory and keep the archive unbounded.

We may envision a new exploration strategy where multiple solutions could be explored at the
same time by combining their neighbourhoods. In that case, without loss of generality, the current
object would be itself a set of solutions and the memory would be a set of sets of solutions.

3.2.3 Exploration Strategies

The exploration of the current solution consists in the construction of its neighbourhood, i.e., the
generation of its neighbours.

Like in the single-objective case, two types of exploration strategy are distinguished: the best
improvement strategy and the first improvement strategy. The best strategies compare every neighbour
to the current solution or to the reference so that only the best non-dominated neighbours are ac-
cepted. On the contrary, the first strategies generate neighbours one by one and stop when a given
stopping criterion is reached. Of course, the latter strategies are not limited to stopping after a
single accepted neighbour. In both the best and the first strategies, the exploration procedure gen-
erates some neighbours, accepting some of them, and then returns the set of accepted neighbours.
For each of these neighbours, three questions arise: (i) Should it be included into the archive? (ii)
Should it replace the current solution? (iii) Should the exploration continue or stop in regard to its
quality?

The quality of a neighbour can be a function of either the current solution or a part or the total-
ity of the archive. Figure 3.1 shows how the objective space is divided into dominating solutions
(a), incomparable solutions (b) and dominated (c) solutions, regarding (left) a single solution x and
(right) multiple solutions x, u, v and w. Solutions in the (c) space are dominated by the current
solutions and are generally ignored, whereas exploration strategies usually consider solutions in
the (a) or (a+b) spaces. Considering the neighbouring solutions enables to make better-informed
decisions, e.g., distinguishing between the (α), (β), and (γ) spaces; the main drawback, however, is
the added cost (e.g., computational time) of an overall more expensive exploration procedure. An
alternative to using the Pareto dominance criterion is to aggregate the objectives, to obtain a scalar
value subsequently used to either rank neighbours or compute probabilities. The weights of the ag-
gregation can be either globally set, associated with the current solution or updated automatically
in regard to the state of the archive.

The archive (the set of potential Pareto optimal solutions) can be updated directly either during
the exploration of a current solution or after the exploration of all current solutions has been per-
formed. In the direct update, the explorations of the remaining current solutions may be impacted,
i.e., the reference set is modified on the fly. Similarly, the memory (the set of current solutions)

3.2. MOLS Strategies 35

f2

f1

x

a

b

b

c

f2

f1

u

v

x

w
a

c
α

α

γ

γ

β

β

β

β

β

Figure 3.1 – Objective space around x, without (left) and with (right) taking into account surround-
ing solutions u, v and w

(a), (b) and (c): objective space partitions in which the solution respectively dominates, is incom-
parable with and is dominated by the solution x.
(α), (β) and (γ): subdivisions of the (b) objective space partition in which the solution respectively
dominates, is incomparable with and is dominated by the solution u, v or w.

can be updated during the exploration to replace the current explored solutions (e.g., in trajectory-
based local search algorithms (Serafini, 1994; Ulungu et al., 1995; Czyzak and Jaszkiewicz, 1996;
Hansen, 1997)) or to include promising new neighbours directly (Blot et al., 2015). If the mem-
ory contains multiple solutions, they are all explored before the search continues unless an early
stopping criterion is met. Note that, if multiple solutions are explored and either the memory or
the archive is updated during the exploration, the order in which the solutions of the memory are
explored can strongly impact the performance.

3.2.4 Selection Strategies

After the exploration step has been completed, the solutions of the memory will have been ex-
plored and the archive will have been updated with the accepted neighbours. The memory has
to be updated for the next iteration. Generally, the solutions are taken from the archive (e.g., ran-
domly, with regard to a crowding or sharing property (Deb, 2001), to an individual contribution
(Dubois-Lacoste et al., 2012) or to the order of insertion in the archive (Blot et al., 2017a)). However,
in trajectory-based local search algorithms, the memory is unchanged since it has been updated
during the previous exploration step.

3.2.5 Termination Criteria

The local search has a natural termination criterion, which is reached when the memory becomes
empty, meaning that no more solution is to be explored. Such an event generally means that every
solution of the archive is a PLO. This situation also arises when the algorithm intentionally removes
partially explored solutions from the memory, for example, to force a quick convergence or ensure
diversification. Other commonly used termination criteria include the whole computational time;
the total number of iterations, explorations or evaluations; and the number of successive iterations
without improvement.

3.3. Escaping Local Optima 36

Procedure 3.1: LS(memory, archive)
Input: memory, a set of solutions to generate neighbourhoods
Input: archive, a Pareto set of solutions
Output: the updated archive set

until local search stopping condition is met
or memory = ∅ do
candidates← ∅;
until iteration stopping condition is met

or every current ∈ memory has been considered do
let current ∈ memory;
ref← REFERENCE(current, memory, archive, candidates);
accepted← EXPLORE(current, ref, archive);
memory← UPDATE(memory, current, accepted);
candidates← candidates ∪ accepted;

archive← COMBINE(archive, candidates);
memory← SELECT(memory, archive, candidates);

return archive;

3.3 Escaping Local Optima

In single-objective optimisation, local search algorithms are generally trapped in local optima.
However, various mechanisms (e.g., SA, TS) can be used to converge further towards a global
optimum. Likewise, the basic instantiations of the procedures detailed in this paper will generally
be trapped in sets of PLO. Likewise, the same various mechanisms can be and have been adapted
for MOLS procedures to converge further towards the set of Pareto optima.

First, a temperature can be used to compute the probabilities of accepting neighbours of lesser
quality (Serafini, 1994; Ulungu et al., 1995; Czyzak and Jaszkiewicz, 1996). This temperature can be
either a global parameter of the local search or a specific temperature that can be associated with
each and every solution of the memory when the local search follows a set of solutions of fixed size.
The Tabu paradigm can also be used to drive the search out of the PLO (Hansen, 1997). Similarly,
a global tabu list or a set of tabu list can be used for each followed solution. Finally, it is possible
to use an iterated local search scheme (Drugan and Thierens, 2012) to stop the local search early,
before reaching a true set of PLO. In this case, a convergence condition is defined as, for example,
a threshold in the convergence rate or a stagnation criterion. The search can then restart either
from the new solutions selected uniformly in the search space or from the solutions in the close
neighbourhood of the current or the best solutions, using a kick. In the single-objective case, a kick
consists in taking a solution, either the current one or the best one, and performing a given number
of random moves over the search space. In the multi-objective case, some solutions are selected
(either a single one, a fixed number or a ratio of solutions, or all of them) from the memory or
the archive; a single-objective kick is performed on each of them, and the resulting solutions are
included in a new Pareto set, and then the algorithm restarts from it.

3.4 MOLS Unification Proposition

3.4.1 Main Loop

Procedure 3.1 (LS) describes the main loop of the local search. This procedure takes an initial
current set and an archive as input and returns the updated archive. It consists in iterating three
steps (the names in parentheses are the names of the sub-procedures described as they appear in
Procedure 3.1).

1. First, the solutions of the memory are explored one by one: for each, a reference is chosen to

3.4. MOLS Unification Proposition 37

Procedure 3.2: EXPLORE(current, ref, archive)
Input: current, a solution to generate the neighbourhood
Input: ref, a set of solutions to compare neighbours with
Input: archive, a Pareto set of solutions
Output: accepted, the set of accepted solutions
Side effect: modifies the archive set

accepted← ∅;
until exploration stopping condition is met

or every neighbour ∈ N(current) has been considered do
let neighbour ∈ N(current);
accepted← ACCEPT(accepted, neighbour, ref);
current, ref, archive← UPDATE(ref, accepted, current, archive,
neighbour);

return accepted;

compare the neighbours with (REFERENCE), then some or all of the neighbours are accep-
ted as candidates (EXPLORE), and, finally, the memory may be updated with the neighbours
(UPDATE).

2. When all the current solutions have been explored, or when an early stopping condition is met,
all accepted neighbours are used to update the archive (COMBINE). Note that it is possible to
update the archive during the exploration, in which case the COMBINE procedure can still be
used to bound its size.

3. Finally, the memory is set up with the new solutions to explore.

These three steps are iterated until the memory is empty or as soon as a given stopping condition
is met.

3.4.2 Local Search Exploration

The exploration mechanism (EXPLORE) is described in Procedure 3.2. This procedure handles
how neighbouring solutions are generated and accepted, and how the reference set is updated. It
takes as input a solution to explore, which is used to generate the neighbourhood; a reference set
to compare the neighbours with; and the archive of the local search. It returns a set of accepted
neighbours of the input solution and possibly modifies the archive as a side effect.

The neighbours of the current solution are generated one by one, and for each new neighbour,
the set of accepted neighbours is updated (ACCEPT). To implement some local search algorithms
from the literature, it is possible to immediately update the current solution, the reference set and
the archive (UPDATE). Neighbours are generated until every possible neighbour of the current
solution has been generated or as soon as a given stopping condition is met.

3.4.3 Iterated Local Search Algorithm

The local search of Procedure 3.1 (LS) can eventually stop because either the archive contains only
PLO or an early stopping condition has been met. One of the possible mechanisms to iterate the
local search (LS) and continue the search is described in Procedure 3.3 (ITER). It follows the iterated
local search (ILS) scheme (Lourenço et al., 2003; Drugan and Thierens, 2010, 2012) where the final
archive given by the local search is slightly modified and given again as input to the local search
procedure.

First, the local search is performed once, which sets up archive∗, the Pareto set that contains
the overall best non-dominated solutions across local search iterations. Then, until the global stop-
ping condition is met, new initial memory and archive are generated (PERTURB), subsequent local
search are performed and the two archives are combined to update archive∗ (COMBINE).

3.5. Literature Instantiation 38

Procedure 3.3: ITER(archive)
Input: archive, a Pareto set of solutions
Output: the updated archive∗ set

archive← LS(archive);
archive∗← archive;
until global stopping condition is met do

memory, archive← PERTURB(archive, archive∗);
archive← LS(memory, archive);
archive∗← COMBINE(archive, archive∗);

return archive∗;

3.5 Literature Instantiation

Following the unification presented in Section 3.4, Table 3.2 and Table 3.3 detail how the main liter-
ature algorithms are instantiated in Procedure 3.1 and Procedure 3.2, respectively, of our structure.
In Table 3.2, k designates a constant of the algorithm set beforehand. In Table 3.3, the “∗” symbol
means that the memory size is variable.

Table 3.2 shows that many of the MOLS algorithms in the literature use the current solution as
a reference. However, recent studies increasingly encourage the use of the archive as a reference
since it leads to improved results (Blot et al., 2017a,c). The recombination column highlights that
the recombination only makes sense when the exploration step returns a new Pareto archive; for
trajectory-based local search algorithms, such a step is directly performed during the exploration,
when a neighbour replaces the current solution in the memory. Not mentioned here is the pos-
sible bounding of the archive size, which is also performed on some problems after Pareto filtering
(e.g., Liefooghe et al., 2012). The selection column mainly differentiates between trajectory-based
algorithms, for which such a step is likewise irrelevant, and algorithms that do not use a memory
mechanism but recreate the set of new solutions every iteration.

Lastly, Table 3.3 shows that, if the first MOLS algorithms predominantly accepted improving
neighbours, newer MOLS algorithms have shown that considering incomparable neighbours leads
to improved results.

3.5. Literature Instantiation 39

Ta
bl

e
3.

2
–

C
on

de
ns

ed
lit

er
at

ur
e

in
st

an
ti

at
io

n
(L

S
Pr

oc
ed

ur
e)

im
p.

:i
m

pr
ov

in
g

(i
m

pl
ie

s
un

de
rl

yi
ng

sc
al

ar
is

at
io

n)
do

m
.:

do
m

in
at

in
g

nd
om

.:
no

n-
do

m
in

at
ed

(e
it

he
r

do
m

in
at

in
g

or
in

co
m

pa
ra

bl
e)

A
lg

or
it

hm
R

EF
ER

EN
C

E
U

PD
A

T
E

C
O

M
BI

N
E

SE
LE

C
T

M
is

ce
lla

ne
ou

s

M
O

SA
cu

rr
en

ts
ol

ut
io

n
re

pl
ac

e
if

im
p.

ir
re

le
va

nt
do

no
th

in
g

PS
A

cu
rr

en
ts

ol
ut

io
n

re
pl

ac
e

if
im

p.
ir

re
le

va
nt

do
no

th
in

g
M

O
TS

ir
re

le
va

nt
al

w
ay

s
re

pl
ac

e
ir

re
le

va
nt

dr
if

ti
fl

on
g

en
ou

gh
M

O
V

N
S

ir
re

le
va

nt
re

m
ov

e
cu

rr
en

t
if

fu
lly

ex
pl

or
ed

;
ad

d
nd

om
.n

ei
gh

bo
ur

s;
fil

te
r

Pa
re

to
do

m
in

an
ce

al
ls

ol
ut

io
ns

M
O

G
LS

cu
rr

en
ts

ol
ut

io
n

re
pl

ac
e

if
im

p.
Pa

re
to

do
m

in
an

ce
do

no
th

in
g

st
op

af
te

r
a

gi
ve

n
nu

m
be

r
of

ex
-

pl
or

at
io

ns
w

it
ho

ut
im

pr
ov

em
en

t
(1

+
1)

-P
A

ES
cu

rr
en

ts
ol

ut
io

n
re

pl
ac

e
if

do
m

.o
r

le
ss

cr
ow

de
d

Pa
re

to
do

m
in

an
ce

do
no

th
in

g
(1

+
λ
)-

PA
ES

cu
rr

en
ts

ol
ut

io
n

re
pl

ac
e

if
do

m
.o

r
le

ss
cr

ow
de

d
Pa

re
to

do
m

in
an

ce
do

no
th

in
g

(µ
+
λ
)-

PA
ES

cu
rr

en
ts

ol
ut

io
n

re
pl

ac
e

if
do

m
.o

r
le

ss
cr

ow
de

d
Pa

re
to

do
m

in
an

ce
do

no
th

in
g

re
fe

re
nc

e
ch

os
en

vi
a

bi
na

ry
to

ur
-

na
m

en
t

PL
ST

ar
ch

iv
e

do
no

th
in

g
Pa

re
to

do
m

in
an

ce
al

ls
ol

ut
io

ns
PL

S
ir

re
le

va
nt

re
pl

ac
e

if
do

m
.

Pa
re

to
do

m
in

an
ce

si
ng

le
un

ex
pl

or
ed

m
oR

BC
cu

rr
en

ts
ol

ut
io

n
re

pl
ac

e
if

im
p.

ir
re

le
va

nt
ir

re
le

va
nt

re
st

ar
to

n
lo

ca
lo

pt
im

a
IB

M
O

LS
m

em
or

y
do

no
th

in
g

ir
re

le
va

nt
al

ls
ol

ut
io

ns
D

M
LS

(1
·)

cu
rr

en
ts

ol
ut

io
n

do
no

th
in

g
Pa

re
to

do
m

in
an

ce
si

ng
le

un
ex

pl
or

ed
D

M
LS

(?
·)

cu
rr

en
ts

ol
ut

io
n

do
no

th
in

g
Pa

re
to

do
m

in
an

ce
al

ls
ol

ut
io

ns
SP

LS
cu

rr
en

ts
ol

ut
io

n
do

no
th

in
g

Pa
re

to
do

m
in

an
ce

si
ng

le
no

n-
fla

gg
ed

FL
S

cu
rr

en
ts

ol
ut

io
n

al
w

ay
s

re
pl

ac
e;

fil
te

r
Pa

re
to

do
m

in
an

ce
do

no
th

in
g

M
O

SA
(S

er
afi

ni
,1

99
4;

U
lu

ng
u

et
al

.,
19

95
);

PS
A

(C
zy

za
k

an
d

Ja
sz

ki
ew

ic
z,

19
96

);
M

O
TS

(H
an

se
n,

19
97

);
M

O
V

N
S

(G
ei

ge
r,

20
08

);
M

O
G

LS
(I

sh
ib

uc
hi

an
d

M
ur

at
a,

19
96

);
PA

ES
(K

no
w

le
s

an
d

C
or

ne
,

19
99

,2
00

0a
);

PL
ST

(T
al

bi
et

al
.,

20
01

);
PL

S
(P

aq
ue

te
et

al
.,

20
04

;A
ng

el
et

al
.,

20
04

);
m

oR
BC

(A
gu

ir
re

an
d

Ta
na

ka
,2

00
5)

;I
BM

O
LS

(B
as

se
ur

an
d

Bu
rk

e,
20

07
);

D
M

LS
(L

ie
fo

og
he

et
al

.,
20

12
);

SP
LS

(D
ru

ga
n

an
d

Th
ie

re
ns

,2
01

2)
;F

LS
(M

oa
lic

et
al

.,
20

13
)

3.5. Literature Instantiation 40

Ta
bl

e
3.

3
–

C
on

de
ns

ed
lit

er
at

ur
e

in
st

an
ti

at
io

n
(E

X
PL

O
R

E
Pr

oc
ed

ur
e)

im
p.

:i
m

pr
ov

in
g

(i
m

pl
ie

s
un

de
rl

yi
ng

sc
al

ar
is

at
io

n)
do

m
.:

do
m

in
at

in
g

nd
om

.:
no

n-
do

m
in

at
ed

(e
it

he
r

do
m

in
at

in
g

or
in

co
m

pa
ra

bl
e)

M
em

or
y

si
ze

:1
:s

in
gl

e
so

lu
ti

on
;k

:c
on

st
an

t;
∗:

va
ri

ab
le

;o
th

er
:o

th
er

co
ns

ta
nt

A
lg

or
it

hm
M

em
or

y
si

ze
A

C
C

EP
T

U
PD

A
TE

M
is

ce
lla

ne
ou

s

M
O

SA
1

if
im

p.
up

da
te

bo
th

PS
A

∗
if

im
p.

up
da

te
bo

th
M

O
T

S
∗

be
st

no
n-

ta
bu

ne
ig

hb
ou

r
up

da
te

bo
th

M
O

V
N

S
1

if
nd

om
.

ir
re

le
va

nt
us

e
an

un
ex

pl
or

ed
ne

ig
hb

ou
rh

oo
d

M
O

G
LS

∗
fir

st
im

p.
do

no
th

in
g

st
op

af
te

r
fir

st
im

p.
ne

ig
hb

ou
r

or
k

ne
ig

hb
ou

rs
(1

+
1)

-P
A

ES
1

if
do

m
.o

r
le

ss
cr

ow
de

d
do

no
th

in
g

st
op

af
te

r
1

ne
ig

hb
ou

r
(1

+
λ
)-

PA
ES

1
if

do
m

.o
r

le
ss

cr
ow

de
d

do
no

th
in

g
st

op
af

te
r
λ

ne
ig

hb
ou

rs
(µ

+
λ
)-

PA
ES

µ
if

do
m

.o
r

le
ss

cr
ow

de
d

do
no

th
in

g
st

op
af

te
r
λ

ne
ig

hb
ou

rs
PL

ST
∗

if
nd

om
.

do
no

th
in

g
PL

S
1

if
nd

om
.

do
no

th
in

g
m

oR
BC

(1
+

1)
1

if
do

m
.

re
pl

ac
e
r
e
f

if
ac

ce
pt

ed
ne

ig
hb

ou
rs

ge
ne

ra
te

d
us

in
g

th
e

cu
rr

en
tr

ef
er

en
ce

m
oR

BC
(1

+
1)
∗

1
if

nd
om

.
re

pl
ac

e
r
e
f

if
ac

ce
pt

ed
ne

ig
hb

ou
rs

ge
ne

ra
te

d
us

in
g

th
e

cu
rr

en
tr

ef
er

en
ce

m
oR

BC
(1

+
1)
A

1
if

do
m

.o
r

le
ss

cr
ow

de
d

nd
om

.
re

pl
ac

e
r
e
f

if
ac

ce
pt

ed
ne

ig
hb

ou
rs

ge
ne

ra
te

d
us

in
g

th
e

cu
rr

en
tr

ef
er

en
ce

IB
M

O
LS

∗
if

no
tw

or
st

w
.r.

t.
th

e
in

di
ca

to
r

re
m

ov
e

w
or

st
fr

om
r
e
f

D
M

LS
(
·1
)

k
if

do
m

.o
r

nd
om

.
do

no
th

in
g

st
op

af
te

r
1

ne
ig

hb
ou

r
D

M
LS

(
·1
6≺
)

k
if

do
m

.o
r

nd
om

.
st

op
af

te
r

1
nd

om
.

D
M

LS
(
·1
�
)

k
if

do
m

.o
r

nd
om

.
do

no
th

in
g

st
op

af
te

r
1

do
m

.
D

M
LS

(
·?
)

k
if

do
m

.o
r

nd
om

.
do

no
th

in
g

SP
LS

1
if

do
m

.o
r

nd
om

.
do

no
th

in
g

FL
S

∗
if

nd
om

.
do

no
th

in
g

st
op

af
te

r
fir

st
nd

om
.n

ei
gh

bo
ur

M
O

SA
(S

er
afi

ni
,1

99
4;

U
lu

ng
u

et
al

.,
19

95
);

PS
A

(C
zy

za
k

an
d

Ja
sz

ki
ew

ic
z,

19
96

);
M

O
TS

(H
an

se
n,

19
97

);
M

O
V

N
S

(G
ei

ge
r,

20
08

);
M

O
G

LS
(I

sh
ib

uc
hi

an
d

M
ur

at
a,

19
96

);
PA

ES
(K

no
w

le
s

an
d

C
or

ne
,

19
99

,2
00

0a
);

PL
ST

(T
al

bi
et

al
.,

20
01

);
PL

S
(P

aq
ue

te
et

al
.,

20
04

;A
ng

el
et

al
.,

20
04

);
m

oR
BC

(A
gu

ir
re

an
d

Ta
na

ka
,2

00
5)

;I
BM

O
LS

(B
as

se
ur

an
d

Bu
rk

e,
20

07
);

D
M

LS
(L

ie
fo

og
he

et
al

.,
20

12
);

SP
LS

(D
ru

ga
n

an
d

Th
ie

re
ns

,2
01

2)
;F

LS
(M

oa
lic

et
al

.,
20

13
)

Chapter 4

MOLS Instantiations

A computer program can modify itself but it
cannot violate its own instructions – it can at
best change some parts of itself by *obeying*
its own instructions.

Gödel, Escher, Bach: An Eternal Golden Braid
Douglas Hofstadter

In this chapter, following the discussions of Chapter 3, we discuss the specific multi-objective
local search (MOLS) algorithms that will be used for experiments in Chapter 6, Chapter 7, and
Chapter 8, together with their implementation.

First, we describe a highly configurable MOLS algorithm, resulting from the unification pro-
position of Chapter 3. We discuss its possible parameters and configuration space. This MOLS
algorithm is thoroughly analysed in Chapter 6, and serves as basis for all MOLS algorithms used
in this thesis.

This first MOLS algorithm is static: once set, its parameters are used during the entire execution
and cannot be changed. In order to study MOLS algorithms in which the value of the parameters
are adapted during its execution, we then discuss the steps necessary to obtain an adaptive MOLS
algorithm. We also examine the most impactful parameter of the static MOLS algorithm, and dis-
cuss how generic control mechanisms can be integrated. The resulting adaptive MOLS algorithm is
analysed in Chapter 7.

Then, we discuss the possibility of considering schedules of MOLS configurations, as an inter-
mediary proposition between offline and online design of MOLS algorithms. Parameters values and
strategies can change during the execution of the MOLS algorithm, but only according to a static
schedule. These schedules of MOLS configurations are investigated in Chapter 8.

Finally, we present AMH (Adaptive MetaHeuristics), the C++ framework in which all the in-
stantiations presented in this chapter have been implemented. It was designed according to the
experimental needs of the following chapters, in order to facilitate the automatic construction, con-
trol, and integration into automatic design tools.

While the publications regarding the different MOLS instantiations are described in the chapters
in which they are respectively studied, the AMH framework is specifically linked to the following
publication:

• Blot, A., Kessaci-Marmion, M., and Jourdan, L. (2017b). AMH: a new framework to design
adaptive metaheuristics. In 12th Metaheuristics International Conference, MIC 2017. Proceedings,
pages 586–588.

41

4.1. Static MOLS Algorithm 42

4.1 Static MOLS Algorithm

Chapter 3 proposed a unification of MOLS strategies into a general framework. In this section, we
describe the specific instantiation that will be used in Chapter 6 together with the parameters that
comprise its configuration space.

4.1.1 Algorithm

Algorithm 4.1 describes a basic static MOLS algorithm. It is based on an iterated local search (see
Procedure 3.3) and the DMLS algorithm of Liefooghe et al. (2012). The inner MOLS loop iterates
three successive steps: the selection step in which some solutions of the current set are selected,
the exploration step in which the neighbourhood of every selected solution is investigated, and the
archive step in which the resulting neighbours are merged into the current set of solutions. The
outer MOLS loop simply performs a perturbation of the current archive, calls the inner MOLS loop
on the perturbed set of solution, merges the resulting set with the current archive, and iterates until
the global termination criterion is met.

This instantiation differs from the unification of Chapter 3 by the set of strategies we choose
to focus on. In particular, it only features dominance-based strategies, while strategies based on
aggregation are not taken into account. Other differences include a selection step before the explor-
ation step, at the beginning of the main loop, rather than at its end, a complete exploration of every
solution selected, and an explicit combination mechanisms that first remove dominated solutions
before bounding the size of the archive. Finally, as in the DMLS algorithm, the “memory” is not
updated during the exploration, as it is discarded at the end of every iteration.

Finally, Figure 4.1 and Figure 4.2 illustrate the inner and outer loops of the MOLS algorithm and
the chronological succession of the MOLS and the ILS iterations.

time

S. E. A. S. E. A. S.

MOLS iteration

.

Figure 4.1 – Inner MOLS loop (labels: “S.”: selection, “E.”: exploration, “A.”: archive)

time

P. LS A. P. LS A. P.

ILS iteration

.

Figure 4.2 – Outer MOLS loop (labels: “P.”: perturbation, “LS”: local search, “A.”: archive)

4.1.2 Configuration Space

The complete configuration space of Algorithm 4.1 considered in this thesis is summarised in
Table 4.1. It features five main categorical parameters, that are tied to the different choices of
strategies of the MOLS algorithm, and five integer parameters, that each enable fine tuning of one
strategy.

We shortly describe hereafter the meaning of every parameter and every parameter value. They
are discussed more deeply in Chapter 3.

4.1. Static MOLS Algorithm 43

Algorithm 4.1: Static Iterated Multi-Objective Local Search
Input: archive, a Pareto set of solutions
Output: the updated archive set

current← archive;
/* Inner MOLS loop */

until inner termination criterion is met do
/* Selection */

memory← SELECT(current);
/* Exploration */

candidates← ∅;
for solution ∈ memory do

ref← REFERENCE (solution, current);
accepted← EXPLORE(solution, ref);
candidates← candidates ∪ accepted;

/* Archive */

current← bound (pareto (current ∪ candidates));

archive← pareto (archive ∪ current);
/* Outer MOLS loop (ILS) */

until termination criterion is met do
/* Perturbation */

current← PERTURB (archive);
/* Inner MOLS loop, again */

until inner termination criterion is met do
/* Selection */

memory← SELECT(current);
/* Exploration */

candidates← ∅;
for solution ∈ memory do

ref← REFERENCE (solution, current);
accepted← EXPLORE(solution, ref);
candidates← candidates ∪ accepted;

/* Archive */

current← bound (pareto (current ∪ candidates));

archive← pareto (archive ∪ current);

return archive;

Table 4.1 – Considered parameter space

Phase Parameter Parameter values

Selection select-strat {all, rand, newest, oldest}
Selection select-size N+

Exploration explor-strat {all, all-imp, imp, imp-ndom, ndom}
Exploration explor-ref {sol, arch}
Exploration explor-size N+

Archive bound-strat {unbounded, rand, replace}
Archive bound-size N+

Perturbation perturb-strat {kick, kick-all, restart}
Perturbation perturb-size N+

Perturbation perturb-strength N+

4.2. Control Mechanisms Integration 44

select-strat: the selection strategy: with the value all, every solution of the archive will be
explored; otherwise, with either of the values rand, newest, or oldest, only some solutions,
respectively uniformly chosen at random from the archive, or chosen within the latest or oldest
solutions included in the archive will be explored.

select-size: the (strictly positive) number of solution selected from the archive.
explor-strat: the exploration strategy: with the values all or all-imp, every neighbour is

evaluated and the non-dominated and dominating neighbours, respectively, are returned; with
the values imp, imp-ndom, or ndom, the neighbours are iteratively evaluated until a sufficient
number of dominating, dominating and non-dominated neighbours, respectively, are found
and returned. Finally, with the value imp-ndom, the non-dominated neighbours does not
contribute to the number of neighbours selected but are also returned.

explor-ref: the reference of the exploration, either the current explored solution (with the value
sol), or the current archive (with the value arch).

explor-size: the number of neighbours selected in the imp, imp-ndom, and ndom exploration
strategies.

bound-strat: the bounding strategy after Pareto dominance. With the value unbounded, it re-
turns the current archive. With the value rand, solutions chosen uniformly at random are dis-
carded from the archive as long as the size of the archive is too large; with the value replace,
it uses the DMLS strategy of removing newly accepted solutions if they did not replaced at
least one solution of the archive.

bound-size: the maximum number of solution in the archive above which the bounding strategy
will apply.

perturb-strat: the perturbation strategy: with the value kick, some solutions of the archive
will be selected uniformly at random and then iteratively replaced by one of their neighbours;
with the value kick-all, the kick strategy applies for every solution of the archive; with
the value restart, some solution of the search space, selected uniformly at random, will be
considered instead.

perturb-size: the number of solutions considered in the kick and restart strategies.
perturb-strength: the number of kick iterations in the kick and kick-all strategies.

4.2 Control Mechanisms Integration

The philosophy of integrating online mechanisms in static algorithms is to make the most of mul-
tiple strategies, mechanisms, or parameter values, during a single execution of the algorithm,
whereas the static algorithm would only have used a single one.

In this section, we discuss how to integrate generic control mechanisms into the static MOLS
algorithm introduced in the previous section. This discussion is divided into five successive steps,
each answering a different question of the integration process:

Parameter analysis: what alternative strategies can be used?
Knowledge exploitation: how to use knowledge to select the strategy to use?
Knowledge extraction: what information from the search process can be used?
Knowledge modelling: how to store extracted knowledge?
Decisional schedule: when and how frequently extract and use knowledge?

Similar discussions are for example described in Karafotias et al. (2012) as first considering the
parameters (“what is to be controlled”), then a set of observables (“what evidence is used”), and
the algorithm making decisions (“how the control is performed”); or in di Tollo et al. (2015) as the
following steps: aggregation criteria computation, reward computation, credit assignment, and operator
selection.

4.2.1 Parameter Analysis

The parameters of our static MOLS algorithm, described in Table 4.1, are either categorical and
numerical parameters. For each phase of the MOLS algorithm, the categorical parameters defines

4.2. Control Mechanisms Integration 45

the strategy that will be applied, while the numerical parameters are used to further fine-tune the
behaviour of the algorithm and are common to all strategies.

In order to use a control mechanism, a choice of which parameter will be controlled is neces-
sary. Several possibilities naturally arise. First, the control mechanism can be limited to a single
parameter of the MOLS algorithm, either a categorical or a numerical one, while all the other para-
meters values are fixed during the run. The control mechanisms could also deal with multiple
parameters, either independently or through the use of combinations of parameter values. Finally,
multiple control mechanisms could theoretically be used independently on multiple parameters.
To keep the our adaptive MOLS algorithm simple and to ensure its viability we will use standard
literature control mechanisms and focus on controlling a single parameter.

The most impactful phase of the static MOLS algorithm is without doubt the exploration phase,
that exposes up to nine possible exploration strategies (with the combination of the explor-strat
and explor-ref parameters). We choose to focus on the strategy categorical parameter, rather
than on the fine-tuning numerical parameter, as we expect its control to have a more significant
impact of the performance of the MOLS algorithm.

4.2.2 Knowledge Exploitation

From the choice of the selected parameters to be controlled follows the choice of the control mech-
anism itself. While a large number of possible control mechanism can be found in the literature (see
Chapter 2), the majority of them are fundamentally tied to a given algorithm or a given parameter,
and cannot simply be extended to other algorithms.

However, as we focus on a single, categorical, parameter, a class of generic control parameters
including probability based mechanisms, multi-armed bandits, and also reinforcement learning
can still conveniently be applied. An overview of these generic control mechanisms will be given
in the following section.

4.2.3 Knowledge Extraction

The two main types of algorithm in which parameter control is used are deterministic and adaptive
algorithms, that differ in their use of feedback from the search process (see Chapter 2). While
control mechanisms in deterministic algorithm only use predictable feedback such as elapsed time
or number of iterations, control mechanisms of adaptive algorithms requires feedback that is based
on the search process itself, the current instance and the solutions evaluated so far. This feedback is
essential to fuel the decisions that enable the control mechanism to select efficient strategies during
the search. Hence follows the following crucial question: what information from the search process
can be used as feedback?

Knowledge that can be assessed or computed during the execution of the algorithm is called an
observable. A possible set of simple observable would for example for evolutionary algorithms be
genotypic diversity, phenotopic diversity, fitness standard deviation, fitness improvement, or also
stagnation counters (Karafotias et al., 2014).

For our adaptive MOLS algorithm, we choose to use the fitness improvement as observable,
computed through the mean of the hypervolume (see Chapter 1). While hypervolume is a by itself
a very good and widespread multi-objective accuracy performance indicator, and incidentally one
of the two quality indicators that will be used in the following chapters, it was shown to be a
efficient measure to feed control mechanisms in multi-objective optimisation (Moffaert et al., 2013).

To motivate our choice of hypervolume as feedback, preliminary observations on other possible
observables have been conducted, namely based on direct objective values, number, distribution of
solutions in the archive, and distance between successive and extreme solutions. None of these in-
vestigated observables was deemed a reasonable alternative to the use of hypervolume as feedback
to the control mechanism.

4.2. Control Mechanisms Integration 46

4.2.4 Knowledge Modelling

Having chosen the hypervolume as feedback for the control mechanism, the second question to
answer is how to store the extracted knowledge.

As a result of the well-separated and categorical nature of the MOLS exploration strategy para-
meter, that we choose to focus on, and the ensuing simple control mechanisms, we decided to
model each possible exploration strategy by an individual arm, and to associate to every arm a
single value associated to the predicted feedback of the arm.

Note that the use of reinforcement learning control mechanisms would require to also model
the possible states of the search and then to associate a single prediction value to every combination
of an arm and a possible state. Furthermore, some other control mechanisms not considered in the
experiments could possibly require to have access to a more detailed version of the whole history
of feedback, rather than a single aggregated value, e.g., to use a sliding window of the history
(Maturana et al., 2009).

4.2.5 Decisional Schedule

Most importantly, after the questions of what strategies can be used, how to select them dynamically,
what knowledge can be used to that end, and finally how to store said knowledge, comes the final,
central, question of when to take decisions.

Of course, extracting knowledge, store it, and use it to drive a control mechanism has an inher-
ent cost that slows down the algorithm, compared to the static version that always use the same
statically determined configuration and set of strategies. However, this cost is necessary to accur-
ately use the best strategies on every instance rather than only relying the a static offline prediction
made for all instances. It is nevertheless important to not impair computation time too much in
favour of the additional learning overhead. Additionally, while some strategies may require some
time before reaching their peak efficiency, the knowledge sources may also require sufficient time
between extractions for the feedback to be relevant and useful.

In our MOLS algorithm (Algorithm 4.1), there are at least two meaningful places where a con-
trol mechanism could be integrated. First, it could be placed inside the inner loop of the MOLS,
meaning that it would take the decision of which exploration mechanism to use before its actual ap-
plication at the beginning of the MOLS iteration, and could gather the feedback of its performance
at the end of the iteration. This possibility is illustrated in Figure 4.3.

time

C. S. E. A. F. C. S. E.

MOLS iteration

.

Figure 4.3 – Control integration in the inner MOLS loop (labels: “C.”: control, “S.”: selection, “E.”:
exploration, “A.”: archive, “F.”: feedback)

This would probably be the most natural approach, if not for the following issues. First, not all
explorations use the same computation time, as exhaustive explorations are naturally much more
time-consuming that partial explorations. This could however be alleviated by scaling the follow-
ing feedback value using the elapsed computation time. On the other hand, a second problem is
that if a single exploration is ineffective, the feedback associated to that exploration strategy will
instantaneously be affected negatively. To easily allow more time for the exploration strategy to
be effective, the selection and feedback steps of Figure 4.3 could be performed once every k MOLS
iterations, where k is an additional parameter that should be determined experimentally. However,
the third problem, which is that our MOLS algorithm is based on an iterated local search algorithm,

4.3. Adaptive MOLS Algorithm 47

and as such occasionally performs perturbations, after which the previous feedback may not relev-
ant to chose the exploration strategy.

In view of these problems, a second possibility was considered instead, illustrated in Figure 4.4.
This time, the control mechanism is placed inside the outer loop of the MOLS instead, i.e., in the ILS
loop. Decisions about which exploration to use are then taken before the call the the inner MOLS
procedure, that then use the same exploration until it finishes, and the feedback is computed after
the archive resulting of the MOLS procedure is merged into the final archive.

time

C. P. LS A. F. C. P. LS

ILS iteration

.

Figure 4.4 – Control integration in the outer MOLS loop (labels: “C.”: control, “P.”: perturbation,
“LS”: local search, “A.”: archive, “F.”: feedback)

4.3 Adaptive MOLS Algorithm

Having discussed in the previous section the integration into Algorithm 4.1 of control mechanisms,
we present in this section the adaptive MOLS algorithm that will be used in Chapter 7 along with
the generic control mechanisms that could be integrated into it.

4.3.1 Algorithm

Algorithm 4.2 describes the resulting adaptive MOLS algorithm used in this thesis. It is based on
Algorithm 4.1 and adds the necessary structure to control the exploration strategy of the iterated in-
ner MOLS (Algorithm 4.3). All other strategies are fixed since they were shown to be less impactful
MOLS components on the PFSP (see Chapter 6).

Note that both the static Algorithm 4.1 and the adaptive Algorithm 4.2 become strictly identical
when the INIT_ARM and CONTROL_ARM procedures always returns the same exploration pro-
cedure.

4.3.2 Related adaptive MOLS Algorithms

Other adaptive versions of MOLS algorithms have already been proposed. The most related to our
adaptive algorithm is the Pareto Autonomous Local Search presented in Veerapen and Saubion
(2011), in which several possible exploration strategies are controlled on two permutation prob-
lems, the QAP and the TSP, using a probability matching control mechanism. The main differences
follow.

First, they focus controlling operators on solutions, directly in the MOLS iteration loop, and
the MOLS is not iterated. On the contrary, we focus on improving the entire set of solutions, and
the control is performed outside the MOLS iteration loop. Then, they use both the the relative
change in quality (of a solution), and distance between the solutions, while we only use the relative
change in hypervolume to capture both aspect of quality and diversity. Finally, they use a sliding
window mechanism, when we will prefer in the experiments a more simple reinforcement learning
mechanism (see Equation 7.5).

4.3. Adaptive MOLS Algorithm 48

Algorithm 4.2: Adaptive Iterated Multi-Objective Local Search
Input: archive, a Pareto set of solutions
Output: the updated archive set

current← archive;
/* Initialise all rewards */

INIT_REWARDS ();
/* Select initial exploration strategy */

exploration← INIT_ARM ();
/* Apply the MOLS algorithm */

current←MOLS (current, exploration);
/* Merge resulting archive and update rewards */

tmp← pareto (archive ∪ current);
UPDATE_REWARDS (exploration, current, tmp);
archive← tmp;
until termination criterion is met do

/* Select exploration strategy */

exploration← CONTROL_ARM ();
/* Perturbation */

current← PERTURB (archive);
/* Apply the MOLS algorithm */

current←MOLS (current, exploration);
/* Merge resulting archive and update rewards */

tmp← pareto (archive ∪ current);
UPDATE_REWARDS (exploration, current, tmp);
archive← tmp;

return archive;

Algorithm 4.3: Inner Multi-Objective Local Search (mols)
Input: A set of solutions, an exploration strategy
Output: A set of solutions

archive← initial set of solutions;
until termination criterion is met do

/* Select a random solution */

selected← select_1_rand (archive);
/* Apply the given exploration strategy */

reference← archive;
accepted← exploration_strat (current, reference);
/* Update archive with accepted neighbours */

archive← bounded_pareto (archive, accepted);

return archive;

4.4. Configuration Scheduling 49

4.4 Configuration Scheduling

In the previous sections, we presented the instantiations of two MOLS algorithms: a static one
(Algorithm 4.1), in which the parameters values are fixed before the search, and an adaptive one
(Algorithm 4.2), in which a control mechanism modifies the exploration strategy during the search.

In this section, we propose a hybrid approach, that enables both the modification of parameter
values during the search and the use of offline parameter configuration.

4.4.1 Proposition

Parameter configuration deals with a single target algorithm and its configuration space; its goal
is to predict the configurations of the search space that are optimal on a given distribution of pos-
sible instances. Once a seemingly optimal configuration is found, selected, and finally used on an
instance, this configuration is obviously used for the entirety of the run of the target algorithm.
Automatic parameter configuration of MOLS algorithms is tackled in depth in Chapter 6.

On the other hand, parameter control enables to start the run from an initial configuration (pos-
sibly given by an automatic configurator) and to progressively adapt the configuration of the run-
ning algorithm to better fit the instance and ultimately use parameter values that are optimal for
the given instance, rather than optimal for the entire possible distribution of instance. However,
adaptation time is usually rather limited, restraining control to very few parameters and parameter
values. Additionally, the optimal configuration may also depend of the state of the search, making
strategies stronger in the initialisation phase or on the contrary better fitted for the final steps of the
algorithm. Automatic parameter configuration of MOLS algorithms is tackled in Chapter 7.

Our proposition is to consider schedules of configurations. Instead of considering a single con-
figuration for the entire run of the algorithm, or trying to controlling parameter values automatic-
ally, we will use a static timed sequence of multiple configurations. There are two major benefits
of manipulating a static time-based sequence of configurations are. It uses no feedback from the
search process, making it a deterministic parameter control approach (see Chapter 2) and avoiding
to implement an online reward-based decision mechanism. It also enables the use of classical AAC
tools with no restrictions on the number of parameters of being modified during the execution:
indeed online mechanisms generally control very few parameters simultaneously, usually a single
one and very rarely more than two at the same time.

4.4.2 Definitions

Given a configurable algorithm A and it associated configuration spaceΘ, let us first denote by Aθ,T

the algorithm obtained that use the specific configuration θ ∈ Θ for a given time budget T . Then, let
us define, given a maximal schedule length K > 1, k ∈ {1, . . . ,K} configurations (θ1, θ2, . . . , θk) ∈ Θk
of A, and k time budgets (T1, T2, . . . , Tk), the dynamic algorithm framework F(θi)k,(Ti)k obtained
by sequentially applying in sequence every configuration θi using the respective time budget Ti,
i.e., (Aθ1,T1 ,Aθ2,T2 , . . . ,Aθk,Tk). The total time budget of the dynamic algorithm framework is then
T =

∑k
i=1 Ti. Note that algorithm A is not restarted when the configuration is modified: at time

t = Ti the run seamlessly continues by switching from the configuration θi to configuration θi+1,
in an online way.

The configuration space of the resulting framework is directly function of Θ, the configuration
space of the original configurable algorithm. Indeed, if every possible parameter can be modi-
fied during the run, the resulting configuration space is directly related to the Cartesian product
Θk. This exponential growth implies that considering both a long schedule length k and a large
associated configuration space Θ is not recommended.

Two examples of dynamic algorithm frameworks F and F ′ are given in Figure 4.5. While the
framework F uses k = 3 configurations to divide the total time budget into three interval of equal
length, the framework F ′ use k = 4 configurations, using in quick succession two configurations in
the beginning of the run and then using for more time the two other configurations as the search
progresses.

4.5. AMH: Adaptive MetaHeuristics 50

t = 0 t = T
time

θ ′1 θ ′2 θ ′3 θ ′4

θ1 θ2 θ3

T ′1 T ′2 T ′3 T ′4

T1 T2 T3

F ′

F

Figure 4.5 – Examples of two configuration schedules F and F ′

4.4.3 Related Approaches

In addition to being related to parameter control or hyper-heuristics, as it enables modifications
in the algorithm configuration during its execution, this approach of scheduling configurations is
also similar in design to per-instance algorithm scheduling (see Chapter 2, e.g., Amadini et al.,
2014; Hoos et al., 2015; Lindauer et al., 2016). There are however major differences. First, per-
instance algorithm scheduling is related to algorithm selection, and deals with a portfolio of dis-
tinct, hopefully complementary algorithms. Configuration scheduling is more related to parameter
configuration, as it deals with a single algorithm and its configuration space. Then, in per-instance
algorithm scheduling the search is restarted every times to algorithm changes, while in our con-
figuration scheduling approach simply continues the search with the updated configuration as in
parameter control. Finally, the goal of per-instance algorithm scheduling is robustness: for every
instance at least one of the algorithm of the schedule has to be efficient on the instance. The goal of
configuration scheduling is in the contrary control, to improve the performance compared to using
a single configuration for the entire run.

4.5 AMH: Adaptive MetaHeuristics

Algorithm 4.1, together with the other MOLS implementations of this chapter, has been imple-
mented in C++ in AMH (Adaptive MetaHeuristics), a framework specifically designed during this
thesis.

This framework enables the automatic construction of algorithms, given a functional descrip-
tion of their components, adapting their structures to the parameter values given at the beginning
of their execution. For the need of the other MOLS instantiations, this C++ framework has also
been designed to enable the seamless redesign of the algorithm structures during their executions.

4.5.1 Motivation

This framework was designed according to the experimental needs of the following chapters, in
order to facilitate the automatic construction, control, and integration into automatic design tools.
Indeed, the experiments of the following chapters have strong, different, requirements, that may
be difficult to achieve using frameworks that are not dedicated to automatic algorithm design.

First, automatic configurators require an easy command line interface to provide a parameter
value to each parameter of the target algorithm. The target algorithm should be able to easily use
this description of the parameter values to construct the correct algorithm to subsequently execute
it. If automatically using numerical values from the command line may be easy, automatically
construct the flow of the algorithm with regard to design choices only available only at runtime
may not be straightforward. On the other hand, hyper-heuristics and parameter control techniques,
as well as our scheduling approach, require a flexible structure in which every parameter, every
strategy or the algorithm itself may be modified and adapted during its execution.

4.5. AMH: Adaptive MetaHeuristics 51

Initialisation

Inner MOLS

Stop?

Perturbation

Inner MOLS

Combination

no

yes

Figure 4.6 – Execution flow of an iterated MOLS algorithm

ParadisEO 1 (C++) and jMetal 2 (java) are both well-known frameworks of the literature. They
are dedicated to the design of metaheuristics and provide many tools to algorithm designers to
write static metaheuristics and algorithms. They can easily accommodate the use of automatic
algorithm configuration tools and use parameters to configure the metaheuristic at runtime. How-
ever, their have not been designed to take into account the possibility to fully modify an algorithm
during its execution, which, even if possible, remains very difficult and left as exercise to the al-
gorithm designer.

4.5.2 Philosophy

Metaheuristic can very often be viewed as a succession of individual steps, such as for example
for our MOLS algorithm the selection, exploration and archive steps. Therefore, we can associate
a metaheuristic to its specific flow of execution. This flow can be as simple as linear, can involve
Boolean branching (e.g., to create loops), and involve routines using other flows of execution. In
the case of adaptive algorithms, this flow can be temporally or definitely rewritten.

Figure 4.6 illustrates the execution flow of an the iterated MOLS algorithm of Algorithm 4.1.
Every component of the execution flow, and therefore of the algorithm, can be seen as a function
taking as input and output a set of solutions. Any coherent part of the algorithm: a single compon-
ent, a sequence of components, as well as the entire loop, or the entire algorithm, can ultimately
be seen as such a function. As example, the Inner MOLS component actually represent a similar
loop-based execution flow.

Numerical parameter usually does not interfere or influence the execution flow of the algorithm.
On the other hand, categorical parameters such as strategy ones directly determine the execution
flow. For a static metaheuristic, the construction of the execution flow is done before the run and
not modified during the execution, whereas the execution flow of an adaptive metaheuristics may
be fully modified.

AMH is designed to automatically construct the execution flow before the execution and of
control it during the execution of the metaheuristic. The graph representing the structure of the
execution flow, with all its components and branching, can easily be instantiated using paramet-
ers provided as input of the algorithm, thus facilitating algorithm configuration. This structure

1http://paradiseo.gforge.inria.fr/
2https://jmetal.github.io/jMetal/

http://paradiseo.gforge.inria.fr/
https://jmetal.github.io/jMetal/

4.6. Perspectives 52

being manually managed and traversed, rather than irredeemably compiled, it becomes possible
to modify it during its own execution, allowing a natural control over its components, and more
generally speaking, allowing its adaptation.

4.5.3 Design and Implementation

The AMH framework is implemented in C++. It handles the execution flow of a given algorithm by
encapsulating algorithmic operations into components and describing their temporal interactions.
All algorithms implemented in AMH inherit from a base function class – a single class representing
a function – i.e., a delimited part of the execution having defined input and output types, which are
specified at compile-time using templates. Moreover, AMH also provides a large range of execution
flow primitives such as conditions and loops, in order to easily connect all parts of an implemented
algorithm.

The core design of AMH is to only focus on the flow of execution, and not on the solving
methods. Indeed, the algorithm designer may provide any solution representations and solving
mechanisms, as long as they are can represent types and functions. The types of every input and
output, (i.e., usually solution representations) are used in template at compile-time, thus validating
the correction of the final execution flow using the C++ compiler. Solving mechanisms need to be
encapsulated, either as static classes inheriting from the base AMH function class, or dynamically
as native C++ functions. In particular, it means that existing C++ algorithm implementations (e.g.,
metaheuristics implemented under ParadisEO) can benefit from AMH just by defining atomic com-
ponents and encapsulating them. Finally, an expected consequence of such a functional approach
is that hybridisation of algorithms using the same solution representation is immediate.

4.5.4 Execution Flow Examples

In the following, we present three examples of execution flows, using the MOLS algorithms of the
following chapters.

First, Figure 4.7 illustrates the execution flow of the dynamic Algorithm 4.2 investigated in
Chapter 7, while focusing on the facility to create “complex” execution flows. It integrate control
and feedback components that share the information of the rewards associated to each execution
path. The path to chosen regarding the choice made during the control step.

Then, Figure 4.8 also illustrates the execution flow of the dynamic Algorithm 4.2, but highlight-
ing another feature of AMH: during the control step the execution flow is updated by detaching
one of the component (the MOLS step of the previous iteration) and replacing it by a new one,
dynamically constructed.

Finally, Figure 4.9 highlights how easily a schedule of MOLS algorithm can be constructed,
simply by chaining different components constructed using the different configurations of the
schedule.

4.6 Perspectives

In this chapter, we presented and discussed three different instantiations of MOLS algorithms: a
highly parameterised static MOLS algorithm, an adaptive MOLS algorithm that enable the integra-
tion of generic parameter control mechanisms, and finally schedules of MOLS algorithms; together
with the framework we designed to implement them.

In the following, we detail two perspectives related to these implementations.

More complete static MOLS algorithm. Many of the strategies that have been presented in
Chapter 3 have not yet been integrated in the search space of the algorithms described in Chapter 4,
and could enrich the Table 4.1 with many new original combinations of strategies.

4.6. Perspectives 53

Initialisation

Inner MOLS

Feedback

Stop?

Control

Perturbation

Path?

MOLSBMOLSA MOLSCMOLSA MOLSB MOLSC

Combination

Feedback

no

yes

Figure 4.7 – Execution flow of an adaptive algorithm using multiple paths

4.6. Perspectives 54

Initialisation

Inner MOLS

Feedback

Stop?

Control

Perturbation

Inner MOLS

Combination

Feedback

no

yes

Figure 4.8 – Execution flow of an adaptive algorithm using reconstruction

MOLS1

MOLS2

MOLS3

Figure 4.9 – MOLS schedule

4.6. Perspectives 55

In particular, all the considered strategies are based on Pareto dominance, while the
aggregation-based strategies have been set aside. The selection and bounding strategies have also
been restricted to very simple mechanisms, while other, more complex and time consuming, could
also have been included (e.g., strategies based on the distribution of the solutions in the archive).
Furthermore, fine-tuning parameters such as select-size, explor-size, and perturb-size
have been used as absolute values, while alternative parameters considering percentages of the
current size of the archive or the size of the neighbourhood have not been investigated. Finally,
complex exploration stopping criteria, such as limiting the size of the explored neighbourhood or
using hybrid conditions on neighbours also not have been investigated.

Other decisional schedules. In Chapter 4, we only considered very basic decisional schedules, in
which the decisions are decided, and the reward are updated, every iteration, or after a set number
of iterations.

More complex decisional schedules can also be considered, and involve for example multiple
learning and exploitation phases, that alternate periods specifically dedicated to update the pre-
dicted quality of every strategies, and periods that only use the resulting predicted best strategies.

Design is not just what it looks like and feels
like. Design is how it works.

Steve Jobs

Part III

Automatic Offline Design

56

Chapter 5

MO-ParamILS

Study the past if you would define the
future.

Confucius

In this chapter, we introduce MO-ParamILS, a multi-objective automatic algorithm configurator.
First, we discuss the motivations of multi-objective automatic configuration. Then, we present
ParamILS, a prominent single-objective algorithm configurator. After discussing the possible uses
of ParamILS in a multi-objective context, we present MO-ParamILS, our extension of ParamILS
specifically designed for multi-objective configuration. Finally, we validate our multi-objective
framework on multiple configuration scenarios.

This chapter contributions are closely linked to the following publication:

• Blot, A., Hoos, H. H., Jourdan, L., Kessaci-Marmion, M., and Trautmann, H. (2016). MO-
ParamILS: A multi-objective automatic algorithm configuration framework. In Festa, P.,
Sellmann, M., and Vanschoren, J., editors (2016). Learning and Intelligent Optimization – 10th
International Conference, LION 10. Revised Selected Papers, volume 10079 of Lecture Notes in Com-
puter Science, pages 32–47. Springer.

5.1 Multi-objective Automatic Configuration

5.1.1 Definition

Multi-objective automatic algorithm configuration (MO-AAC) naturally arises when the perform-
ance of an algorithm is not or can not be summed up into a single value such as running time or
solution quality.

Formally, a multi-objective configuration problem consists in a direct extension of the single-
objective configuration problem (Equation 2.2) when the original performance indicator is a vec-
tor of performance indicators. Using the notations of Chapter 2, given a parameterised target
algorithm A, the space Θ of configurations of A, a distribution of instances D, and a statist-
ical population parameter E, with Aθ denoting the association of the parameterised algorithm A

with the configuration θ, Equation 2.2 becomes Equation 5.1 when the original performance in-
dicator o : Θ × C → R becomes O : Θ × C → Rn, i.e., a vector of n performance indicators
O(A, i) = (o1(A, i),o2(A, i), . . . ,on(A, i)).

{
optimise E[O(Aθ, i), i ∈ D]

subject to θ ∈ Θ (5.1)

57

5.2. Single-objective ParamILS 58

As in Equation 2.2, the supposition is made that the limit implied by Equation 5.1 exists and is
finite. Therefore, every component of the cost vector can be optimised independently in a multi-
objective fashion as the problem becomes a standard multi-objective optimisation problem (Equa-
tion 5.2).

{
optimise (E[o1(Aθ, i), i ∈ D], . . . ,E[on(Aθ, i), i ∈ D])

subject to θ ∈ Θ (5.2)

Note that we will prefer to use the term performance indicator rather than the previously used
term cost metric as it does not strictly relate to the mathematical definition of a metric. We will
nevertheless continue to suppose that every indicator is a cost to be minimised.

As mentioned in Chapter 2, note that in practice, automatic configuration deals with a fi-
nite set of training instances rather than a distribution of instances, meaning that the quality
E[O(Aθ, i), i ∈ D] of a configuration θ over the entire distribution D will be approximated rather
than really computed. We denote by level of detail of a configuration the number of instances on
which the configuration was evaluated. It is of course supposed that the set of training instances is
sufficiently large and representative of the underlying distribution so that the approximated quality
is reliable when the level of detail is high enough.

5.1.2 Use Cases

Single-objective automatic algorithm configuration (SO-AAC) optimises the quality of a given tar-
get algorithm according to a single performance indicator. There are two main use cases: either the
end-user has a fixed budget of computation time and is interested in having the best solution qual-
ity, or a given solution quality is targeted and the running time to achieve it is optimised instead.

Use cases of MO-AAC are more diverse. The most straightforward use case is the simultaneous
optimisation of both the running time and the solution quality of the target algorithm. That is, the
end user is interested by both achieving the best solution quality and achieving it in the shortest
amount of time. Auxiliary indicators such as the memory or energy consumption can also be
considered in addition to other performance indicators. While the performance of multi-objective
algorithms may be assessed using a single multi-objective indicator, with MO-AAC several multi-
objective indicators can be used simultaneously, enabling multi-objective target algorithms to be
configured according to multiple, complementary, indicators, instead of having to rely on a single
one. Finally, any number of performance indicators may be optimised simultaneously without the
need to aggregate them.

5.2 Single-objective ParamILS

ParamILS is an automatic configurator proposed by Hutter et al. (2007, 2009). While it was presen-
ted in the primary context of optimising the running time of the target algorithm, we present it here
in the more general case of optimising an unknown performance indicator.

5.2.1 Core Algorithm

The core algorithm of ParamILS is given by Algorithm 5.1. It is based on an iterated local search
(Lourenço et al., 2003; Hoos and Stützle, 2004), in which the best solution is iteratively improved
by mean of both local search and perturbation mechanisms. Three parameters are exposed: the
number r of initial random configurations, a restart probability prestart, and the number s of random
search steps performed in each perturbation phase.

ParamILS starts by considering r random configurations, in order to compare the initial (usually
default) configuration to a few others to make sure of its relevance. Then, it applies a local search
procedure (see Procedure 5.2), which is based on the one-exchange neighbourhood, i.e., modifying a
single parameter value at a time. A tabu mechanism is also used to ensure that the configurator is

5.2. Single-objective ParamILS 59

never stuck. Between iterations, there is a prestart chance to restart the search from a new configur-
ation, chosen uniformly at random from the search space. Otherwise, a perturbation of s random
steps is performed.

Two essential elements of ParamILS are missing from Algorithm 5.1: the handling of both the
global cache of runs and the incumbent. Indeed, due to the usually very high cost of evaluating
configurations of the given target algorithm, ParamILS maintains a global cache of the results of
all target algorithms performed during the search, thus avoiding to repeat superfluous costly al-
gorithm runs.

The incumbent is the best configuration that was found by ParamILS, which is here handled
completely implicitly. Both the incumbent and its quality are updated automatically every time a
configuration is evaluated. Finally, the incumbent is not reset when the current configuration of the
iterated local search is restarted.

The auxiliary functions used in Algorithm 5.1 and Procedure 5.2 are described hereafter.

update(config, reference) enforces that the configuration config can be compared to the
configuration reference. This function is specified according the particular version of Para-
mILS used: BasicILS or FocusedILS.

compare(config, challenger) compares a current configuration config to another config-
uration challenger and returns the new current configuration, i.e., the later one if it deemed
more promising or the former one otherwise. In the current ParamILS implementation, the
challenger is accepted if its level of detail is at least equal, and if it has a better or equal quality
(Procedure 5.3).

detail(config) returns on how many instances the configuration config has been run, ac-
cording to the global cache. The instances being always considered incrementally, this number
is sufficient to know on which instances the configuration has been evaluated.

quality(config, insts) returns the mean quality resulting of the runs of the configuration
config on the instances insts.

There are two versions of ParamILS, that differ on how the procedure update is handled.
While BasicILS uses a fixed set of instances to evaluate the performance of every configuration, Fo-
cusedILS uses a variable set of instances, performing less runs on configurations of poorer quality
to focus on the most promising ones. These two versions are detailed in the following. A present-
ation of capping mechanisms, able to further improve the performance of ParamILS, immediately
follows.

5.2.2 BasicILS, FocusedILS

BasicILS is the most simple version of ParamILS. It uses a single parameter, n, which specifies how
many instances are needed to compare configuration performance. This allows for every config-
uration to have exactly the same level of detail, because the procedure update (Procedure 5.4)
always use the same set of instances. This set of instances is selected uniformly at random (without
replacement) from the given training set at the beginning of the algorithm.

However, BasicILS has major issues, mainly due to the difficulty of choosing the value of the
parameter n. Chosen too small, solution quality can be inaccurate, leading to poor generalisation
of the final configuration to unseen test instances. Chosen too large, much effort will be wasted
on evaluating poor performing configurations, compromising the efficiency of the search process.
Additionally, if after n instances the quality of two configurations seems almost identical there is
no possibility to further refine them to take an adequate decision.

To overcome these disadvantages, a more advanced version of ParamILS, FocusedILS, was sim-
ultaneously proposed. The key idea behind FocusedILS is to avoid the potential problems arising

5.2. Single-objective ParamILS 60

Algorithm 5.1: Single-objective ParamILS
Exposed parameters: r, prestart and s
Input: Initial configuration
Output: The incumbent, i.e., the overall best configuration found
Side effect: Updates the cache and the incumbent

/* Initialisation */

current_config← initial configuration;
for i← 1 . . . r do

tmp← random configuration;
update(tmp, current_config);
current_config←compare(current_config, tmp);

/* Iterated local search */

until termination criterion is met do
/* Perturbation */

if first iteration then
tmp← current_config;

else
with probability prestart then // Restart

/* incumbent is not forgotten */

current_config← random configuration;
tmp← current_config;

otherwise // Random walk

tmp← current_config;
for i← 1 . . . s do

tmp← random neighbour of tmp;

/* Local search */

tmp← local_search(tmp);
current_config← compare(current_config, tmp);

return incumbent;

Procedure 5.2: localsearch(config)
Input: Initial configuration
Output: The best configuration found
Side effect: Updates the cache and the incumbent

current_config← initial configuration;
tabu_set← {current_config};
repeat

foreach neighbour ∈ randomised neighbourhood of current_config do
if neighbour ∈ tabu_set then

next ;
else

tabu_set← tabu_set ∪ {neighbour};

update(neighbour, current);
if compare(current, neighbour) = neighbour then

current_config← neighbour;
break ;

until every neighbour of current_config is tabu;
return current_config;

5.2. Single-objective ParamILS 61

Procedure 5.3: compare(config, challenger)
Input: Configurations config and challenger
Output: A configuration

if detail(challenger) < detail(config) then
return config;

insts← the detail(config) first instances;
if quality(challenger, insts) 6 quality(config, insts) then

return challenger;
else

return config;

Procedure 5.4: update(config, reference)
Input: Configurations config and reference
Exposed parameters: n
Side effect: Updates the cache regarding conf and reference

insts← the n instances;
foreach instance i ∈ insts do

cache[reference,i]← performance of reference over i;
cache[config,i]← performance of config over i;

from the use of a fixed number of instances for evaluating configurations by starting comparis-
ons between configurations on a small initial set of instances and then increasing the number of
instances as better and better configurations are found.

Procedure 5.5 outlines the update procedure of FocusedILS. Compared to the original version
of Hutter et al. (2007), we propose to introduce two optional parameters nmin and nmax to better
control the level of detail of the configurations; values of nmin = 0 and nmin =∞ effectively disable
them. This procedure follows three steps. First, a minimum level of detail nmin is enforced. Then,
until a choice between the two configurations can be made according to the compare procedure,
effectively when one of the two configurations dominates the other, their levels of detail are in-
creasingly updated. Finally, if the two configurations have the same level of detail, the resulting
configuration go through an intensification procedure.

In Procedure 5.6, we propose an alternative, more efficient variant of the original intensification
mechanism, which performs a variable number of runs based on the time spent since intensification
was last performed. The proposed intensification takes a configuration in input and performs new
runs until its new quality dominates the previous one. To avoid spending too much time in the in-
tensification procedure, a maximum number of evaluation could be specified. Another alternative
intensification mechanism, less efficient, might also simply perform a fixed number of new runs.

5.2.3 Adaptive Capping Strategies

Adaptive capping strategies enable to stop evaluating a configuration when it becomes clear that
the configuration will be discarded, in order to avoid wasting time evaluating poor configurations.

Indeed, with sufficient knowledge of the possible performance of the target algorithm (in par-
ticular, the minimal value of the performance indicator), it is possible to compute a lower bound
of the performance approximation on a given number of instance. By comparing this lower bound
to the quality of the configuration being compared to, the update procedure (Procedure 5.4; Pro-
cedure 5.5) can then be stopped early. This improvement, denoted as trajectory-preserving capping
in Hutter et al. (2009), has the property of not modifying the result of a given local search of Para-
mILS due to its tabu mechanism. This property generalises to the full trajectory of BasicILS runs;
however not for FocusedILS as it may impact further comparison to a capped configuration.

5.2. Single-objective ParamILS 62

Procedure 5.5: update(config, reference)
Input: Configurations config and reference
Exposed parameters: nmin = 0, nmax =∞
Side effect: Updates the cache regarding conf and reference

/* Pre-comparison */

insts← the nmin first instances;
foreach instance i ∈ insts do

cache[config,i]← performance of config over i;
cache[reference,i]← performance of reference over i;

/* Comparison */

repeat
nconfig ← detail(config);
nreference ← detail(reference);
if nconfig > nreference then

inst← the (nconfig + 1)th instance;
cache[config,inst]← performance of config over inst;

else if nconfig < nreference then
inst← the (nreference + 1)th instance;
cache[reference,inst]← performance of reference over inst;

else if nconfig = nmax then
break ;

else
inst← the (nconfig + 1)th instance;
cache[config,inst]← performance of config over inst;
cache[reference,inst]← performance of reference over inst;

until compare(config, reference) = reference or compare(reference,
config) = config;

/* Post-comparison */

if detail(config) = detail(reference) then
if compare(config, reference) = reference then

intensify(reference);
else

intensify(config);

Procedure 5.6: intensify(config)
Input: Configuration conf
Side effect: Updates the cache regarding conf and reference

loop do
q← quality(conf);
inst← the (detail(config)+1)th instance;
cache[config,inst]← performance of config over inst;
if quality(conf) 6 q then

break ;

5.3. Multi-objective ParamILS 63

A second capping mechanism was also introduced, denoted as aggressive capping, in which the
incumbent is used in comparison to the lower bound instead of the current best solution of the local
search. An additional parameter is then required to allow some slack in the accepted performance
values, without which the local search would stale until a neighbour of the current best solution
actually improve the overall incumbent.

Finally, in the case of optimising the running time of the target algorithm, both capping
strategies can be further extended to enable early termination of the target algorithm, at the possible
cost of having to rerun it on an instance on which it had been capped later in the search.

5.2.4 Configuration Protocol

In order to use ParamILS, it is required to follow a machine learning protocol. This protocol com-
prises either two steps (namely: training and test) or three steps (namely: training, validation, and
test). In both cases, two sets of instances are required: a set of training instances and a set of test
instances, which should be distinct from the first set and kept unseen during training. Training in-
stances are used to build a prediction of the best configuration of the target algorithm, while test
instances are used to verify that the quality of the predicted configuration actually generalises to
other instances in order to avoid over-fitting.

Training: ParamILS is used on the training instances in order to predict the best configuration.
Generally, only a subset of instances is used because there are more training instances than
the expected level of detail for configurations. For three reasons: (i) ParamILS is a stochastic
algorithm, (ii) the sample subset of training instances might have a great impact of the final
configuration, and (iii) since the order of the instances itself may compromise the efficiency of
FocusedILS search strategy, it is recommended to perform multiple, independent, runs of Para-
mILS using different subset and ordering of the training instances. Note that these multiple
training runs can typically be conducted in parallel.

Validation: Two problems arise at the end of the training step. First, if there are sufficiently enough
training instances, the different subsets used during the training steps may be different. Fur-
thermore, in the case of FocusedILS, the quality of the final configurations may not have been
approximated using the same number of instances. For these reasons, in order to fairly com-
pare the performance of all ParamILS runs, the quality of every final configuration should be
reassessed on the same subset of training instances. The reassessment of each configuration
may again be performed independently in parallel.
This step may be skipped in two cases: if there is few enough training instances so that every
final configuration was assessed on the exact same instances, or if the level of detail of each
final configuration is high enough so that they are considered a very good approximation of
their quality over the complete distribution of instances.
At the end of this step, only the best configuration is considered.

Test: Finally, to verify that the configuration resulting from the validation step actually generalises
over previously unseen instances, its quality is reassessed once more, this time on a subset of
the test instances. Again, the reassessment of each configuration may be performed independ-
ently in parallel.

5.3 Multi-objective ParamILS

In this section, we propose MO-ParamILS, a multi-objective extension of the single-objective con-
figurator ParamILS, able to simultaneously optimise the performance of the target algorithm with
regard to multiple performance indicators.

5.3.1 Motivations

The main motivation behind MO-ParamILS is to propose an efficient inherently multi-objective
configurator that could be used without requiring any additional specific knowledge, such as for

5.3. Multi-objective ParamILS 64

example an a priori aggregation of the different performance indicators.
To obtain a multi-objective configurator, we choose to extend a very efficient and well-known

single-objective configurator, ParamILS. Indeed, ParamILS relies on a single-objective iterated local
search procedure, and literature shows a large number of examples of efficient multi-objective local
search algorithms (see Chapter 3). Other options would have included extending other well known
single-objective configurators such as for example SMAC (Hutter et al., 2011), or irace (López-
Ibáñez et al., 2016), for which works for multi-objective contexts has also recently been carried out
(see Zhang et al., 2015, 2016, 2018).

5.3.2 Core Algorithm

We now describe our multi-objective extension of the ParamILS framework, outlined in Al-
gorithm 5.7. The main difference with ParamILS (Algorithm 5.1) lies in the use of a multi-objective
iterated local search process (Procedure 5.8), in which an archive (i.e., set of non-dominated con-
figurations) is iteratively modified rather than a single configuration of the given target algorithm.
This search process is directly related to the multi-objective local search algorithms discussed in
Chapter 3. Likewise, rather than a single incumbent, an archive of incumbent is updated during
the whole configuration process. MO-ParamILS exposes the same three parameters as ParamILS:
the number r of initial random configurations, the number s of random search steps performed in
each perturbation phase and the restart probability prestart.

The initialisation of the search process does not conceptually change, except that an initial set
of default configurations can be provided and is combined, with the r randomly chosen config-
urations, into an archive. We ensure that whenever we add a new configuration to an archive,
all Pareto-dominated configurations are discarded (see Function 5.9), so that the archive always
contains only non-dominated configurations.

MO-ParamILS make use of the same auxiliary functions than ParamILS, with some minor dif-
ferences. The quality function now returns a vector of qualities. The compare function now
compares configurations using Pareto dominance: if ParamILS version accepted configurations of
better or equal quality (see Procedure 5.3), the MO-ParamILS version similarly accepts configur-
ations that are not of worse quality, i.e., configurations with either better, equal, or incomparable
quality.

The restart mechanism mostly remains unchanged: it now replaces the current archive with
one containing a single configuration chosen uniformly at random from the entire configuration
space Θ. As for the perturbation mechanism, the original perturbation of ParamILS is used on
a single configuration from the current archive, chosen uniformly at random, to obtain a single
configuration stored as a new archive and used as the starting point of the subsequent local search
phase (Geiger, 2008).

The subsidiary local search process used in MO-ParamILS is outlined in Procedure 5.8. From
the wide range of existing multi-objective local search (MOLS) procedures (see Chapter 3), it is
based on a MOLS algorithm that is conceptually simple and resembles the original subsidiary local
search procedure used in ParamILS; this MOLS algorithm in particular has also been previously
shown to be very efficient (Blot et al., 2015). At each step of the local search process, every config-
uration of the current archive is explored individually and sequentially. When exploring a given
configuration config, its neighbours are evaluated in random order (excluding any configurations
already visited earlier in the same local search phase, using ParamILS tabu mechanism), until one
is found that strictly dominates config or all neighbours have been visited. All non-dominated
neighbours encountered during this process are added to the current archive, making sure that
dominated solutions are removed; this can be seen as a generalised version of the acceptance cri-
terion used in the single-objective ParamILS framework. The local search then stops when no more
unvisited neighbour can be added to the archive. Of course, the local search also stops when the
termination criteria of MO-ParamILS is met (no more budget, or global wall clock time exceeded),
even if not explicitly handled here.

Finally, as the quality function now returns a vector of mean qualities rather than a scalar
mean quality, in the compare function (Procedure 5.3) the condition is changed so that it returns the

5.3. Multi-objective ParamILS 65

Algorithm 5.7: Multi-objective ParamILS
Exposed parameters: r, prestart and s
Input: Initial archive of configurations
Output: The archive of incumbents, i.e., the overall best configurations found
Side effect: Updates the cache and the archive of incumbents

/* Initialisation */

current_arch← initial archive;
for i← 1 . . . r do

tmp← random configuration;
update(tmp, current_arch);
current_arch← archive(current_arch, tmp);

/* Iterated local search */

until termination criterion is met do
/* Perturbation */

if first iteration then
tmp← current_arch;

else
with probability prestart then // Restart

/* incumbents are not forgotten */

current_arch← { random configuration };
tmp← current_arch;

otherwise // Random walk

config← current_config;
for i← 1 . . . s do

config← random neighbour of tmp;

tmp← { config };

/* Local search */

tmp← local_search(tmp);
foreach config ∈ tmp do

update(config, current_arch);
current_arch← archive(current_arch, config);

return the archive of incumbent;

5.3. Multi-objective ParamILS 66

Procedure 5.8: localSearch(init_arch)
Data: Initial archive of configurations
Result: Best archive of configurations found
Side effect: Change or update the incumbent if necessary

current_arch← initial archive;
tabu_set← current_arch;
repeat

/* Selection */

candidate_set← ∅;
foreach current_config ∈ current_arch do

foreach neighbour ∈ randomised neighbourhood of current_config do
/* Exploration */

if neighbour ∈ tabu_set then
next ;

else
tabu_set← tabu_set ∪ {neighbour};

update(neighbour, current_config);
if compare(neighbour, current_config) = neighbour then

candidate_set← candidate_set ∪ {neighbour};
break ;

else if compare(current_config, neighbour) = neighbour then
candidate_set← candidate_set ∪ {neighbour};

/* Archive */

foreach conf ∈ candidate_set do
current_arch← archive(current_arch, conf);

until candidate_set = ∅;
return current_arch;

Function 5.9: archive(arch, challenger)
Input: Archive arch, configuration challenger
Output: Updated archive arch

foreach config ∈ arch do
if compare(challenger, config) = challenger then

arch← arch \ { config };
else if compare(config, challenger) = config then

return arch;

arch← arch ∪ { challenger };
return arch;

5.4. Hybrid Multi-Objective Approaches 67

challenger configuration if it is either of better or equal quality, or if its quality is incomparable.

Following the existing versions of ParamILS, we also propose MO-BasicILS and MO-
FocusedILS, two versions of MO-ParamILS. Both versions are direct equivalents of BasicILS and
FocusedILS, with only very slight difference: regarding FocusedILS, the stopping criterion of the
intensify mechanism (Procedure 5.6) is changed to stop the procedure if the new quality dom-
inates the previous quality.

5.3.3 Configuration Protocol

The configuration protocol of MO-ParamILS is a direct multi-objective extension of the ParamILS
configuration protocol, presented in the last section.

Training Run MO-ParamILS, multiple times independently with different ordering and subsets of
the training instance set. Each run results in an archive of configurations.

Validation Reassess the quality of each final training configuration on the same subset of training
instances, regarding all performance indicators. Filter dominated configurations out, to focus on
the best configurations of the training set.

Test Reassess the quality of final validation configurations on the previously unseen test instances.

Again, MO-ParamILS runs of the training step are independent and can be conducted in paral-
lel, which is also the case of both reassessments of validation and test steps.

5.4 Hybrid Multi-Objective Approaches

The configuration protocol of ParamILS and MO-ParamILS enable them to tackle single-objective
and multi-objective configuration scenario, respectively. In this section, we discuss the direct use
of ParamILS on multi-objective configuration scenarios. Specifically, we will consider a bi-objective
scenario in which the performance of a target algorithm is optimised regarding two performance
indicators o1 and o2.

5.4.1 Single Performance Indicator

The most straightforward approach that can be used is to first simply use ParamILS on a single
performance indicator, i.e., either o1 or o2 independently, while completely ignoring the second
performance indicator. As multiple runs of ParamILS are recommended in any case, the training
budget time can easily be divided to train over the different performance indicators.

In the experiments of the following section, we show examples in which the training of Para-
mILS focus on solution quality (o1) while being divided for multiple values of running time (o2);
and in which the training is evenly divided between the two performance indicators (solution qual-
ity and memory usage).

This approach only modifies the training step of the MO-ParamILS configuration protocol. The
original multi-objective validation and test steps then follow, in which all performance indicators
are simultaneously assessed. While the training does not ultimately use the same objectives than
the two following steps of the protocol, this problem is alleviated by first the validation step, which
is performed in a multi-objective way on the training instances, and second by the multiple runs of
the configurator recommended, that allow the training step to return multiple configurations.

5.4.2 Aggregation of Multiple Performance Indicators

The obvious downside of the previous approach is that it can only search configuration along the
directions of the independent performance indicators in the multi-objective space.

The second approach that we propose is to use a weighted linear scalarisation of the two per-
formance indicators o1 and o2 in order to obtain a single metric oagg. With the addition of an

5.5. Framework Evaluation 68

aggregation coefficient α ∈ [0, 1] such that oagg = α · o1 + (1 − α) · o2, this approach is able to
optimise both performance indicators in a specific direction of the objective space, while enabling
the use of existing single-objective configuration tools.

However, two questions arise. First, how to choose the value of the aggregation coefficient α?
Then, how should the performance indicators o1 and o2 be normalised? Indeed, the coefficient α
directly defines the direction in which the search will be conducted, and even very small variations
of α may change the theoretical optimal configuration. If there is no clear relation or preference
between the different cost function this will result in a very hard choice for the end user. Further-
more, such an aggregation will presuppose that both performance indicators are correctly norm-
alised, otherwise the precise direction determined by the coefficient α will have no real meaning.
One way to answer both question would be to sufficiently know in advance the quality of optimal
configuration, which can only be approximated with costly preliminary experiments.

Finally, again, this approach only modifies the training step of the multi-objective configuration
protocol. The original validation and test steps then follow, with the same upsides and downsides.

5.5 Framework Evaluation

In this section, we investigate the worth of MO-AAC and the efficiency of MO-ParamILS over
several multi-objective configuration scenarios.

First, we investigate the trade-off between running time and solution quality for an anytime
optimisation algorithm on multiple configuration scenarios. Our second example involves the sim-
ultaneous optimisation running time and memory usage. While both cases involves only two per-
formance indicators, MO-ParamILS is not restricted to such bi-objective algorithm configuration
problems.

5.5.1 Experimental Protocol

The three AAC approaches compared in the experimentation are as follows. First, we consider
two MO-AAC approaches, that use MO-FocusedILS and MO-BasicILS, respectively. Regarding the
MO-BasicILS approach, its parameter n is set to 100, meaning that estimations of configuration
performance will use 100 training instances. Then, we consider a SO-AAC approaches that use the
original single-objective ParamILS configurator, that we will refer to as SO-ParamILS. This second
approach will use FocusedILS with every recommended improvement enabled (e.g., aggressive
capping). Finally, these three AAC approaches are also compared to a baseline obtained by simply
using the default configuration of the target algorithm.

The five configuration scenarios we consider are described in Table 5.1. These scenarios use
three datasets and two target algorithms, which belong to ACLib1, a comprehensive algorithm
configuration library. They are already known and have been studied as single-objective algorithm
configuration problems. Details of the two target algorithms are precised in Table 5.2. Note that as
the neighbourhood relation of ParamILS requires every parameters to be categorical, ACLib pro-
vides discretised sets of values for the integer and continuous parameters of the target algorithms.

We first investigate the trade-off between solution quality and running time for the commercial
solver CPLEX, a very well known and highly parameterised mixed integer programming (MIP)
optimiser, on two different existing MIP datasets, Regions200 and CORLAT. To achieve this, we
consider the cutoff time (i.e., the maximum running time) as an additional parameter with five
possible values: 1, 2, 3, 5 and 10 CPU seconds. In these scenarios we compare using MO-ParamILS
directly with using SO-FocusedILS independently on each running time values with proportional
configuration budget; that is, as the configuration budget given to a single MO-ParamILS run is
one day, the configuration budget given to a single run of ParamILS for a k CPU second cutoff is
k/(1+2+3+5+10)×24 hours. Solution quality for these scenarios is the MIP gap. In the event of CPLEX
not returning a MIP gap value within allocated time, the solution quality we set to 1010.Finally, we

1http://aclib.net

http://aclib.net

5.5. Framework Evaluation 69

Table 5.1 – Configuration scenarios

Dataset Target Training Performance objectives Abbrv.

Regions200 CPLEX 1 day [quality, cutoff] RCut
Regions200 CPLEX 1 day [quality, running time] RRun
CORLAT CPLEX 1 day [quality, cutoff] CCut
CORLAT CPLEX 1 day [quality, running time] CRun
QUEENS CLASP 1 day [memory usage, running time] QUEENS

Table 5.2 – Target algorithm parameters (with number of possible values)

Algorithm Categorical Integer Continuous Total configurations

CPLEX 5 (2) 65 (2–7) 2 (5–6) 2.26 · 1046

CLASP 15 (2–5) 43 (2–16) 8 (6–14) 9.96 · 1048

considered two scenarios for each problem, one using directly the value of the maximum running
time parameter value as objective, and the other using the real running time.

For the last scenario, we study the trade-off between memory usage and running time of the SAT
solver CLASP on the QUEENS dataset. In this scenario we compare using MO-ParamILS directly
with using SO-FocusedILS separately on each of the two objectives for 12 hours. In the event
of CLASP not returning any solution within the allocated 300 CPU seconds, we use the PAR10
performance metric (Hutter et al., 2009) to penalise failed runs, i.e., apparent running time of failed
runs is set to 10 times the cutting time (3000 CPU seconds).

In all scenarios, penalising configurations that lead to failure of the target algorithm with ex-
tremely bad performance values ensures that they are quickly discarded in favour of better per-
forming configurations.

As for the configuration protocol, in the training step each approach is run 25 times with a con-
figuration budget of one day each, using 25 different permutations of the training set and resulting
in 25 archives (possibly reduced to a single solution) of configurations. For the CPLEX scenarios
we filtered out configurations that resulted in some timeouts. In the validation step, we use a single
subset of 100 training instances. In the test step, we use a single subset of 1000 test instances.

5.5.2 Results

After the test step, final fronts have been compared using the hypervolume and ε indicators,
after normalisation of every objective in the interval [1, 2]. For each scenario, the reference front
have been computed by merging every front and filtering dominated points using Pareto domin-
ance. Normalisation and indicator computation have been carried out using the PISA framework
(Knowles et al., 2006). Table 5.3 shows the results of this performance assessment for both indicat-
ors, the best value for each scenario being highlighted.

Clearly, MO-FocusedILS finds considerably better Pareto fronts for the test sets of all our multi-
objective configuration scenarios than the baseline single-objective approach in terms of hyper-
volume and ε indicator. In all but one case, MO-FocusedILS also produces better results than
MO-BasicILS, which, in most cases, still produces better results than the single-objective approach,
but with less of a margin.

Empirical results for each scenario, after both validation steps and test steps, are shown in Fig-
ure 5.1, Figure 5.2, Figure 5.3, Figure 5.4, and Figure 5.5, respectively. These results are shown
considering only instances solved before the given timeout, the corresponding number of unsuc-
cessful runs being given in Table 5.4.

Figure 5.1 and Figure 5.2 show the fronts of configurations after the validation and test steps on
the Regions200 dataset. Time is showed using a logarithmic scale. First, we note that because of the

5.5. Framework Evaluation 70

Table 5.3 – Hypervolume (top) and ε indicator values (bottom) for final test fronts.

Approach RCut RRun CCut CRun Queens

MO-FocusedILS 9.02e-03 2.07e-03 2.37e-02 7.63e-04 1.57e-02
MO-BasicILS 2.46e-03 5.41e-02 5.53e-02 1.02e-01 5.49e-02
SO Approach 3.82e-02 5.82e-02 3.35e-01 1.72e-01 3.04e-02

Default 2.43e-01 3.57e-01 2.70e-01 5.30e-01 1.08e+00

MO-FocusedILS 1.44e-02 9.05e-03 9.00e-02 8.06e-04 2.64e-02
MO-BasicILS 1.80e-02 1.71e-01 1.11e-01 1.48e-01 8.35e-02
SO Approach 5.77e-02 1.38e-02 3.33e-01 1.42e-01 6.52e-02

Default 2.22e-01 2.69e-01 2.33e-01 3.90e-01 1.00e+00

1 10

0

2

4

Cutoff [CPU sec]

MIP gap

1 10

0

2

4

Cutoff [CPU sec]

MIP gap

MO-FocusedILS MO-BasicILS SO-FocusedILS Default

Figure 5.1 – Final fronts on the Regions200 – CPLEX (cutoff) scenario (left: validation; right: test)

1 1.58 2.51 3.98 6.31

0

2

4

Running time [CPU sec]

MIP gap

1 1.58 2.51 3.98 6.31

0

2

4

Running time [CPU sec]

MIP gap

MO-FocusedILS MO-BasicILS SO-FocusedILS Default

Figure 5.2 – Final fronts on the Regions200 – CPLEX (running time) scenario (left: validation; right:
test)

5.5. Framework Evaluation 71

10 100
0

0.5

1

1.5

Cutoff [CPU sec]

MIP gap

10 100

0

0.5

1

1.5

2

Cutoff [CPU sec]

MIP gap

MO-FocusedILS MO-BasicILS SO-FocusedILS Default

Figure 5.3 – Final fronts on the CORLAT – CPLEX (cutoff) scenario (left: validation; right: test)

2.51 3.98 6.31 10 15.8

0

1

2

3

Running time [CPU sec]

MIP gap

2.51 3.98 6.31 10

0

0.5

1

1.5

2

Running time [CPU sec]

MIP gap

MO-FocusedILS MO-BasicILS SO-FocusedILS Default

Figure 5.4 – Final fronts on the CORLAT – CPLEX (running time) scenario (left: validation; right:
test)

Table 5.4 – Average percentages of timeouts for final CPLEX configurations

Validation Test

Approach RCut RRun CCut CRun RCut RRun CCut CRun

MO-FocusedILS 1.3 0.7 4.2 3.6 0 0 1.06 2.89
MO-BasicILS 0.1 0.6 3.6 2.9 0.04 0 0.47 3.78
SO Approach 0.3 0.4 4.8 5.1 0.12 0 1.87 1.87

Default 0 0 2.2 2.2 0 0 0.14 0.14

5.5. Framework Evaluation 72

10 100 1,000

40

60

80

100

Running time (PAR10) [CPU sec]

RAM [MB]

10 100 1,000
40

60

80

100

Running time [CPU sec]

RAM [MB]

MO-FocusedILS MO-BasicILS SO-FocusedILS Default

Figure 5.5 – Final fronts on the QUEENS – CLASP scenario (left: validation; right: test)

anytime nature of CPLEX, even the baseline, that uses the default configuration without training,
resulted in a trade-off curve; however, it achieved much worse results. On the cutoff scenario
even if the MO-FocusedILS seems slightly better after the validation step, all three configuration
approaches achieve similar performance on unseen instances. In the other hand, on the running
time scenario, MO-FocusedILS achieve slightly better results after both steps, while MO-BasicILS
is worse for the shortest running times and SO-FocusedILS is worse on the longer ones. For both
scenarios, performance after the validation step is very similar to the performance after the test
step.

On the CORLAT scenarios (Figure 5.3 and Figure 5.4) this is no more the case, as some ap-
proaches lead to results worse than the default configuration after generalisation on unseen in-
stances. For the cutoff variant MO-FocusedILS leads to the best performance, while MO-BasicILS
fails for the shortest cutoff, and SO-FocusedILS does not improve the default configuration. Note
that MO-BasicILS finds the best configuration for 5 CPU seconds, while MO-FocusedILS has none;
however, the configuration found by MO-Focused ILS for 2 CPU seconds could be (and probably
should have been) used with the 5 CPU seconds cutoff to complete the front. For the running time
variant, MO-FocusedILS clearly outperforms the other approaches.

On the QUEENS scenario (Figure 5.5), the default configuration of CLASP resulted as expected
in a single point. All three other approaches successfully founded configuration with much bet-
ter memory consumption and diverse running time. Overall, MO-FocusedILS achieved the best
results.

When analysing these results, we also noticed that MO-FocusedILS evaluates many more
unique configurations than MO-BasicILS (4752 vs 166 on average, over all five scenarios). This
clearly indicates the efficacy of the way in which MO-FocusedILS controls the number of runs per
configuration performed and mirrors analogous findings for BasicILS vs FocusedILS in the single-
objective case (Hutter et al., 2009).

On all five scenarios, the default configurations of CPLEX and CLASP produced few unsuccess-
ful runs on training or test instances. The three other approaches lead to configurations generating
about as many timeouts as the default configuration. However, by also taking in account the con-
figurations returned that have both more timeouts and better performance on successful instances,
we were able to achieve even better results at the cost of a small loss of generality, as shown in
Table 5.3. While our CLASP scenario uses PAR10 scores to take into account instances that could
not be solved within the given cutoff time, as previously mentioned, the final Pareto fronts we pro-
duce for the CPLEX scenarios do not reflect a small number of instances for which no MIP gap was
obtained within the allocated running time. The fraction of the validation and test sets on which

5.6. Perspectives 73

this happened is shown in Table 5.4; as seen there, timeouts generally occur for a small fraction of
instances, and while that fraction tends to increase as we configure CPLEX, it remains low enough
in all cases to not raise serious concerns.

5.6 Perspectives

In this chapter, we presented ParamILS, a prominent algorithm configurator, then we introduced
MO-ParamILS, a multi-objective extension enabling to consider multiple performance criteria sim-
ultaneously, while also proposing a configuration protocol for using standard single-objective con-
figurators on multi-objective scenarios. We also validated our the performance of our framework
by comparing the multiple variants of MO-ParamILS to the best variant of ParamILS on various
configuration scenarios.

We detail in the following two perspectives related to MO-ParamILS and multi-objective auto-
matic algorithm configurators.

Other multi-objective configurators. First of all, to propose our multi-objective algorithm con-
figurator, we choose to extend the existing ParamILS configurator, based on its use of local search
techniques. It is clear that other well-known configurators from the literature, such as for example
irace (López-Ibáñez et al., 2016) or SMAC (Hutter et al., 2011), could also be similarly extended to
bring both competition and other insights on automatic multi-objective algorithm configuration.
Furthermore, while there have already been preliminary works on multi-objective racing (Zhang
et al., 2015, 2016, 2018), users could really benefit by having more available ready- and easy-to-use
configurators.

Configuration protocol. We proposed multiple configuration protocol and approaches to tackle
multi-objective configuration scenarios, for both single-objective and multi-objective configurators.
However, these are still primarily focused on ParamILS, and should be further analysed and dis-
cussed in general for all configurators. For example, we advocate parallelising the training step,
running the simultaneously configurator multiple times on multiple subsets of the training set of
instances, although other configurators (e.g., irace) advocate to run the configurator only once.
While there may definitely are strong opinions, to our present knowledge there are no consequent
results on, within other open questions, how to fairly compare the multiple configuration protocols
associated to each configurator, how many times should be run the configurator, how the training
instances should be selected and how exactly their distribution impact the configurator perform-
ance.

Chapter 6

MOLS Configuration

Knowing yourself is the beginning of all
wisdom.

Aristotle

In this chapter, we conduct three successive studies on the static multi-objective local search
(MOLS) algorithm presented in Chapter 4.

First, we investigate the configuration space of our static MOLS algorithm, to see to which extent
using different configurations can lead to different results, and to better understand the impact of
the different parameters and their relations between each others. Therefore, we consider a reduced
number of parameters and we conduct an exhaustive analyse of all the resulting possible config-
urations of two permutation problems presented in Chapter 1: the flowshop scheduling problems
(PFSP) and the travelling salesman problem (TSP).

Then, we investigate the automatic configuration of our static MOLS algorithm, by comparing
the performance of three configurations approaches: two single-objective (SO-AAC) approaches
based on a single performance indicator and on an aggregation of two performance indicators, and
a multi-objective (MO-AAC) approach using a Pareto trade-off between the two performance in-
dicators. This second study builds on the first study, by first considering the reduced configuration
space used for the exhaustive analysis, before considering a much larger configuration space. In-
deed, while the reduced configurations space enables exhaustive evaluation, global visualisation
and general discussions, the larger configurations space is more representative of algorithms for
which exhaustive analysis would be prohibitive.

Finally, we study the impact of objectives correlation of the multi-objective problem itself on the
performance of the three automatic configuration approaches. Therefore, we conduct this study
using instances for which the correlation between objectives is controlled. In this final study, in
addition to the PFSP and the TSP, we also use another classical permutation problem, the quadratic
assignment problem (QAP), also presented in Chapter 1.

This chapter contributions are closely linked to the following publications:

• Blot, A., Jourdan, L., and Kessaci-Marmion, M. (2017a). Automatic design of multi-objective
local search algorithms: case study on a bi-objective permutation flowshop scheduling
problem. In Bosman, P. A. N., editor (2017). Genetic and Evolutionary Computation Conference,
GECCO 2017. Proceedings, pages 227–234. ACM.

• Blot, A., Pernet, A., Jourdan, L., Kessaci-Marmion, M., and Hoos, H. H. (2017c). Automatically
configuring multi-objective local search using multi-objective optimisation. In Trautmann,
H., Rudolph, G., Klamroth, K., Schütze, O., Wiecek, M. M., Jin, Y., and Grimme, C., editors
(2017). Evolutionary Multi-Criterion Optimization – 9th International Conference, EMO 2017. Pro-
ceedings, volume 10173 of Lecture Notes in Computer Science, pages 61–76. Springer.

74

6.1. Exhaustive Analysis 75

Table 6.1 – Small version of the MOLS configuration space (300 configurations)

Phase Parameter Parameter values

Selection select-strat {all, rand, oldest}
Selection select-size {1, 10}
Exploration explor-strat {imp, imp-ndom, ndom}
Exploration explor-ref {sol, arch}
Exploration explor-size {1, 10}
Archive bound-strat {rand}
Archive bound-size {1000}
Perturbation perturb-strat {kick, kick-all, restart}
Perturbation perturb-size {10}
Perturbation perturb-strength {3, 10}

Selection: (1 + 2× 2) combinations ; Exploration: (3× 2× 2) ; Perturbation: (2× 2 + 1) ; Total:
5× 12× 5 = 300 configurations

• Blot, A., Hoos, H. H., Kessaci, M., and Jourdan, L. (2018a). Automatic configuration of multi-
objective optimization algorithms. impact of correlation between objectives. In 30th IEEE
International Conference on Tools with Artificial Intelligence, ICTAI 2018. IEEE Computer Society.
(To appear).

Additionally, the following paper has been submitted in the special issue on algorithm selection
and configuration of the Evolutionary Computation journal:

• Blot, A., Kessaci-Marmion, M., Jourdan, L., and Hoos H. H.. Automatic Configuration of
Multi-Objective Local Search Algorithm for Permutation Problems.

6.1 Exhaustive Analysis

In the first study, we focus on analysing the configuration space of our static MOLS algorithm.
By considering a reduced configuration space of the MOLS algorithm, we are able to conduct an
exhaustive analysis on various PFSP and TSP scenarios, and to draw general conclusions over
MOLS parameters.

6.1.1 Experimental Protocol

In this study, we ensure that the size of the configuration scenario is small enough so that an ex-
haustive assessment of all possible configurations of the target algorithm is feasible. This has one
direct consequence: we will be able to analyse the entire induced search space and the optimal
configurations, which would be otherwise unfeasible. More specifically, we restrict the configura-
tion space of our static MOLS algorithm according to Table 6.1. The full configuration space of the
MOLS algorithm have been presented in Chapter 4 (see Table 4.1). In terms of parameter values,
we removed the newest selection strategy, the all and all-imp exploration strategies, and the
replace archive strategy; we also restricted numerical parameters to only one or two parameter
values. These restrictions have been based on preliminary experiments with the two goals of first
producing known efficient combinations of parameters and second keeping a very small total num-
ber of configurations (here, only 300). Note that the chosen bound-size parameter value, 1000,
effectively disables the bounding mechanism as archives never achieve such a large size.

We consider six distinct scenarios: three PFSP scenarios with instances with 50, 100, and 200
jobs, all with 20 machines; and three TSP scenarios with 100, 300, and 500 cities. For each of the
PFSP scenarios, we considered the corresponding existing 10 Taillard instances for the test set,

6.1. Exhaustive Analysis 76

while we generated 30 new instances for the training set using Taillard’s generation procedure.
For each of the TSP scenarios, we considered the 15 pairwise independent combinations of the
existing 6 Paquete instances for the test set and generated 30 new pairs of instances for the training
set, obtained using the original DIMACS generator. Further details regarding these instances are
provided in Chapter 1.

The running time of our static MOLS algorithm depends of the scenario size. On PFSP instances,
it was set to n

2·m/1000 CPU seconds, with n the number of jobs andm = 20 the number of machines
(i.e., 50 CPU seconds, 3 minutes and 20 CPU seconds, and 13 minutes and 20 CPU seconds, respect-
ively to instances with 50, 100, and 200 jobs, all with 20 machines). On TSP instances, it was set to
n · 0.9 CPU seconds, with n the number of cities (i.e., 1 minute and 30 CPU seconds, 4 minutes and
30 CPU seconds, and 7 minutes and 30 CPU seconds, respectively to instances with 100, 300, and
500 cities).

Additionally, on PFSP instances, the search was initialised using the 2-phase local search al-
gorithm (Dubois-Lacoste et al., 2011b), which is based on the iterated greedy (IG) procedure (Ruiz
and Stützle, 2007). This method is known to produce relatively good and well-distributed solutions
sets in the objective space. We use 25% of the overall time budget for this initialisation, and 75% for
the remainder of each MOLS run. On TSP instances, as no such initialisation procedure is known to
produce quick and well-distributed solutions sets on the Paquete instances, the search is initialised
using two independent solutions, obtained using a greedy procedure on each of the two distance
matrices taken individually, to avoid starting only from solutions taken uniformly at random from
the search space.

To compare each of the 300 configurations, we assessed each of them using a single run on
each of the instance of the training set and 10 runs on each of the instance of the test set, averaging
independently the hypervolume and ∆ ′ spread values. These levels of detail of the approximations
have been taken so they are compatible with the experimental protocol of the second study.

As introduced in Chapter 1, the hypervolume and the ∆ ′ spread are two multi-objective per-
formance indicators, capturing information about the accuracy and the distribution of Pareto sets of
solutions. We recall that we transform the hypervolume (HV) into a minimisation measure (1-HV)
to simplify the analysis of our results, and thus, when speaking of good hypervolume values, we
refer to high HV (i.e., low values of 1-HV).

The experiments, for all three studies of this chapter, have been conducted on the grace cluster
of the ADA research group at the Leiden Institute of Advance Computer Science (LIACS), in the
Netherlands. Each of the 32 nodes of grace is equipped with two 16-core 2.10GHz Intel Xeon E5-
2683 v4 CPUs with 40MB L3 cache and 94GB RAM, running CentOS 7.4.1708. Computations were
conducted in parallel as much as possible.

6.1.2 Parameter Distribution Analysis

Figure 6.1 shows the parameter distribution of the 300 configurations on test instances of the PFSP
and the TSP scenarios, highlighting the parameter values of the two parameters: select-strat,
with crosses (+ × ?), polygons (�∆�), and circles (o⊕⊗); and explor-strat, with red (+�o),
green (×∆⊕), and blue (? � ⊗) colours.

PFSP. (Figure 6.1, left) None among the 300 possible configurations simultaneously achieves
good hypervolume and spread values. The Pareto front is distinctly non-convex. While for the
smallest scenario, with 50 jobs, most of all configurations achieve good hypervolume values (i.e.,
low 1-HV), such configurations get rarer as the number of jobs increases. This result was expec-
ted, since it is known that larger PFSP instance are harder for MOLS algorithms. Examining these
results in more detail, we observe that the imp exploration strategy always obtains rather bad hy-
pervolume values. For 50 jobs, this strategy leads to better spread values; however, it tends to be
no longer true for larger instances. For the three instance sizes, the imp-ndom and ndom strategies
appear to give better performance in terms of hypervolume.

6.1. Exhaustive Analysis 77

0.475 0.48 0.485 0.49

0.4

0.6

0.8

1-HV

∆ ′

PFSP 50 jobs 20 machines – Test

0.14 0.16 0.18 0.2 0.22 0.24

0.6

0.8

1.0

1.2

1.4

1.6

1-HV

∆ ′

TSP 100 cities – Test

0.43 0.435 0.44 0.445
0.2

0.4

0.6

0.8

1.0

1-HV

∆ ′

PFSP 100 jobs 20 machines – Test

0.1 0.12 0.14 0.16 0.18 0.2

0.0

0.5

1.0

1.5

2.0

1-HV

∆ ′

TSP 300 cities – Test

0.36 0.365 0.37 0.375 0.38

0.4

0.6

0.8

1.0

1.2

1-HV

∆ ′

PFSP 200 jobs 20 machines – Test

0.08 0.1 0.12 0.14 0.16 0.18

0.0

0.5

1.0

1.5

2.0

1-HV

∆ ′

TSP 500 cities – Test

Figure 6.1 – Exhaustive analysis parameter distribution on test instances (left: PFSP; right: TSP);
Selection strategy: +×?: all (crosses), �∆�: oldest (polygons), o⊕⊗: rand (circles); Exploration
strategy: +�o: imp (red), ×∆⊕: imp-ndom (green), ? � ⊗: ndom (blue)

6.1. Exhaustive Analysis 78

TSP. (Figure 6.1, right) The results on the TSP markedly differ from those on the PFSP. Firstly,
we observe that the shape of the Pareto-optimal front of configurations varies with instance size:
while it is convex for 100 cities with some degree of correlation between hypervolume and spread,
for larger instances, the correlation between the two performance indicators decreases, and the
front becomes non-convex. In contrast to the PFSP, where the two objectives are correlated, for our
TSP benchmark sets the objectives are completely independent. Therefore, the final archives are
much bigger, as there exist a larger space of trade-off solutions. The impact on spread is evident:
values above 1 correspond to two tightly clustered sets of solutions separated by a large gap that
the respective configuration of MOLS failed to cover, and spread values of 0 correspond to final
sets containing only two solutions, which are produced when the imp exploration strategy fails to
sufficiently diversify.

6.1.3 Optimal Configurations

Table 6.2 and Table 6.3 list the Pareto-optimal configurations within the exhaustively enumerated
configuration space for both PFSP and TSP scenarios. A “∗” symbol indicates that the value of the
respective parameter does not impact the performance of the configured MOLS when the other
parameter values are held fixed at the values shown. Conversely, when a specific parameter is
shown, any deviation from it will reduce performance.

PFSP. (Table 6.2) Regarding the nature of the configurations, we observe a trend across the three
instance sizes. The best hypervolume is always reached with the oldest selection strategy, the
ndom exploration strategy and the arch exploration reference set choice. Slightly worse hyper-
volume, but better spread is achieved using the imp-ndom exploration strategy. Finally, the best
spread values are obtained from configurations using the imp exploration strategy, although this
comes at the cost of rather bad hypervolume. In almost every case, the perturbation strategy did
not significantly impact the performance of the non-dominated configurations.

TSP. (Table 6.3) MOLS configurations achieving the best hypervolume values always use the
imp-ndom exploration strategy with the sol reference set. While for 300- and 500-city instances,
the oldest selection strategy is preferred, for 100 cities, the more common rand selection strategy
performs better. Similarly to the PFSP, the choice of perturbation mechanism does not significantly
impact the performance of optimal configurations.

6.1.4 Discussions

The exhaustive analysis of a small subset of the configuration space validates the worth of auto-
matically configuring our static MOLS algorithm.

First, as shown in Figure 6.1, the possible configurations are both very distinct and well
clustered in the objective space, confirming first that it is useful to search for the best possible
configuration, and second that the parameter values have specific, non-random, impact on the
performance of our MOLS algorithm. Interestingly, if for PFSP instances the three configuration
spaces are very similar, hinting that observations on small instances could be generalised on lar-
ger instances, this is not true for TSP instances for which the three configuration spaces are very
unalike.

General observations on MOLS strategies can nevertheless be made: the choice of the perturb-
ation strategy is clearly the less important, as it mostly does not impact much the performance of
the optimal configurations. Furthermore, save for the smallest TSP dataset, the imp exploration
strategy generally lead to poorer convergence but better distribution of the solutions.

In conclusion, the analysis of the optimal configuration given by Table 6.2 and Table 6.3 confirm
that there is no default configuration of the MOLS algorithm that would be optimal on all PFSP and
TSP datasets. Indeed, optimal configurations are highly dependant of the both the problem tackled

6.1. Exhaustive Analysis 79

Table 6.2 – PFSP (optimal configurations)

1-HV ∆ ′ Selection Exploration Perturbation

(PFSP 50 jobs 20 machines)
0.4747 0.7775 oldest 10 ndom arch 1 ∗ 10 ∗
0.4754 0.7640 all ndom arch 1 ∗ 10 ∗
0.4770 0.7420 all imp-ndom sol 10 ∗ 10 ∗
0.4837 0.6798 rand 1 imp arch 10 ∗ 10 ∗
0.4853 0.5856 rand 1 imp sol 10 ∗ 10 ∗
0.4855 0.5277 ∗ 10 imp arch 1 ∗ 10 ∗
0.4860 0.4433 rand 1 imp arch 1 ∗ 10 ∗
0.4862 0.4093 ∗ imp sol 1 ∗ 10 ∗
0.4877 0.3336 oldest 1 imp sol 1 kick ∗ 10

(PFSP 100 jobs 20 machines)
0.4299 0.7865 oldest 10 ndom arch 1 kick 10 3
0.4299 0.7979 oldest 10 ndom arch 1 kick-all ∗
0.4332 0.7802 oldest 1 ndom arch 1 kick 10 ∗
0.4336 0.7640 all ndom arch 1 ∗ 10 ∗
0.4344 0.7541 rand 10 imp-ndom arch 1 ∗ 10 ∗
0.4351 0.7540 all imp-ndom sol 1 ∗ 10 ∗
0.4370 0.7470 rand 10 imp-ndom arch 10 ∗ 10 ∗
0.4387 0.7338 rand 1 imp arch 10 ∗ 10 ∗
0.4397 0.5396 rand 1 imp sol 10 ∗ 10 ∗
0.4402 0.4409 ∗ 10 imp arch 1 ∗ 10 ∗
0.4407 0.3428 oldest 10 imp sol 1 ∗ 10 ∗
0.4410 0.3201 rand 1 imp sol 1 ∗ 10 ∗
0.4410 0.3371 all imp sol 1 ∗ 10 ∗
0.4454 0.2711 oldest 1 imp sol 1 kick 10 ∗

(PFSP 200 jobs 20 machines)
0.3600 0.8093 oldest 1 ndom arch 1 restart 10 ∗
0.3600 0.8093 oldest 1 ndom arch 1 kick 10 ∗
0.3618 0.8027 oldest 10 ndom arch 1 ∗ 10 ∗
0.3638 0.7628 rand 1 imp-ndom arch 1 ∗ 10 ∗
0.3645 0.7534 all imp-ndom arch 1 ∗ 10 ∗
0.3686 0.3511 rand 1 imp sol 1 ∗ 10 ∗
0.3687 0.3456 ∗ 10 imp sol 1 ∗ 10 ∗

6.1. Exhaustive Analysis 80

Table 6.3 – TSP (optimal configurations)

1-HV ∆ ′ Selection Exploration Perturbation

(TSP 100 cities)
0.1372 0.7389 rand 10 imp-ndom sol 10 ∗ 10 ∗
0.1431 0.6572 all imp-ndom sol 10 restart
0.1443 0.6544 all imp-ndom arch 10 restart
0.1902 0.6488 oldest 1 ndom sol 1 kick 10 3

(TSP 300 cities)
0.1003 1.3582 oldest 10 imp-ndom sol 1 ∗ 10 ∗
0.1006 1.3417 oldest 10 imp-ndom sol 10 ∗ 10 ∗
0.1092 1.0409 oldest 10 ndom sol 10 ∗ 10 ∗
0.1128 0.7933 rand 10 imp-ndom arch 1 ∗ 10 ∗
0.1129 0.7880 rand 1 imp-ndom arch 1 ∗ 10 ∗
0.1171 0.5003 rand 1 imp sol 10 restart
0.1183 0.2288 rand 1 imp sol 1 restart
0.1190 0.0409 rand 1 imp arch 1 restart

(TSP 500 cities)
0.0841 1.3767 oldest 10 imp-ndom sol 1 ∗ 10 ∗
0.0989 1.2983 oldest 1 imp-ndom arch 10 ∗ 10 ∗
0.1003 1.2897 oldest 10 ndom arch 10 ∗ 10 ∗
0.1015 1.1290 oldest 10 ndom sol 10 ∗ 10 ∗
0.1159 1.0080 rand ∗ imp-ndom arch 1 ∗ 10 ∗
0.1403 0.8468 oldest 10 ndom arch 1 kick 10 ∗
0.1616 0.4420 rand 1 imp sol 10 ∗ 10 ∗
0.1624 0.0000 rand 1 imp ∗ 1 ∗ 10 ∗

6.2. AAC Approaches Analysis 81

and the size of the instances. It also confirms that the MOLS configuration space is well structured
and adapted to AAC.

6.2 AAC Approaches Analysis

In the second study, we focus on analysing the performance of automatic algorithm configuration
(AAC) approaches on out static MOLS algorithm. We investigate three different AAC approaches,
using diverse PFSP and TSP scenarios of multiple size. This study enables to validate efficient
approaches to design MOLS algorithms.

6.2.1 Experimental Protocol

In this second study, as well as in the third study, we consider three AAC approaches: two single-
objective AAC (SO-AAC) approaches and one multi-objective AAC (MO-AAC) approach, using
ParamILS and MO-ParamILS, respectively. We recall the distinction made in Chapter 2: SO-AAC
deals with the optimisation of a single scalar performance indicator, while MO-AAC simultan-
eously deals with the optimisation of a vector of performance indicators.

More specifically, we will compare:

HV, a SO-AAC approach that optimises the hypervolume indicator only;
HV+∆′, a SO-AAC approach that optimises a weighted sum of hypervolume (with a 0.75 coeffi-

cient) and ∆ ′ spread (with a 0.25 coefficient); and
HV||∆′, a MO-AAC approach that simultaneously considers hypervolume and ∆ ′ spread.

The latter two approaches are motivated by the previously mentioned belief that the performance
assessment of multi-objective algorithms benefits from the use of multiple performance indicators
(Zitzler et al., 2003). By comparingHV to the two other configuration approaches, we aim to assess
this belief in the context of automatic configuration of MOLS algorithms. Furthermore, by compar-
ing HV+∆ ′ and HV ||∆ ′, we intend to assess the benefits of MO-AAC compared to SO-AAC with
aggregated performance metrics. The aggregation coefficient, 0.75, results from the ∆ ′ indicator
being seen as a complementary measure to the hypervolume, in order to focus on convergence first
and diversity second.

Note that all three AAC approaches are nevertheless used in a MO-AAC protocol, detailed
hereafter, in which the training step is either performed in a single- or multi-objective way, while
both validation and test steps are performed in a multi-objective, Pareto, way.

The three approaches use the FocusedILS variants of both ParamILS and MO-ParamILS config-
urators, since these usually give the best performance; regarding the HV and HV+∆ ′ approaches,
they both follow the recommendation of using adaptive and aggressive capping (Hutter et al.,
2009). Details on both configurators and their respective variants are given in Chapter 5.

We analyse the performance of all three approaches on two different configuration spaces.
First, we use the small space of 300 configurations described in the first study of this chapter (see
Table 6.1), to analyse the performance of the three approaches in an exhaustively enumerated con-
text. Then, we consider a much richer space of 10 920 configurations, detailed in Table 6.4, on which
the previous study would require a computational budget several orders of magnitude higher due
to the relatively high running times for each configuration and the stochastic nature of the target
algorithm.

We use the AAC protocol presented in Chapter 5, whose specific details are summarised in
Table 6.5. The main protocol differences for the two configuration spaces concern the training
step. For the small (large) configuration space, ParamILS starts by evaluating a single (10) random
configuration, and can execute 100 (1000) MOLS runs before stopping, where each selected config-
uration cannot be run more than 10 (100) times. Due to the reduced size of the small configuration

6.2. AAC Approaches Analysis 82

Table 6.4 – Large version of the MOLS configuration space (10 920 configurations)

Phase Parameter Parameter values

Selection select-strat {all, rand, newest, oldest}
Selection select-size {1, 3, 10}
Exploration explor-strat {all, all-imp, imp, imp-ndom, ndom}
Exploration explor-ref {sol, arch}
Exploration explor-size {1, 3, 10}
Archive bound-strat {rand}
Archive bound-size {20, 50, 100, 1000}
Perturbation perturb-strat {kick, kick-all, restart}
Perturbation perturb-size {1, 5, 10}
Perturbation perturb-strength {3, 5, 10}

Selection: (1 + 3× 3) combinations ; Exploration: (1 + 2 + 3× 2× 3) ; Perturbation: (3× 3 + 3 + 1) ;
Total: 10× 21× 13× 4 = 10 920 configurations

Table 6.5 – AAC Experimental Protocol

Step Small configuration space Large configuration space

Training No default configuration No default configuration
1 random configuration 10 random configurations
10 ParamILS runs 20 ParamILS runs
100 MOLS runs budget 1000 MOLS runs budget
max 10 MOLS run per config. max 100 MOLS run per config.

Validation 1 run per instance 1 run per instance
Test 10 runs per instance 10 runs per instance

space, only 10 independent runs of ParamILS are performed, compared to 20 runs for the large
space. In the validation step, the configurations resulting from the training step are evaluated on
all training instances, running every configuration once on each instance. In the test step, each
of the configurations in the Pareto set obtained from the validation step is run 10 times on every
test instance. For both validation and test steps, the performance of each configuration is assessed
based on the average hypervolume and ∆ ′ spread values over the runs. Obviously, for the small
configuration space, our exhaustive analysis ensures that the performance of all configurations are
known for all training and test instances, and we directly use these results in the validation and test
steps to avoid recomputing the performance of configurations selected in the training step.

Lastly, Table 6.6 reports the bounds used for each scenario to compute the aggregation in the
case of theHV+∆ ′ approach. These bounds have been determined using preliminary data from the
exhaustive analysis on the training sets of instances.

Table 6.6 – Indicator bounds used in the HV+∆ ′ approach

Scenario (1-HV) lower (1-HV) upper ∆ lower ∆ upper

PFSP 50 0.48 0.5 0.2 1
PFSP 100 0.44 0.46 0.1 1.1
PFSP 100 0.355 0.375 0.3 1.3
TSP 100 0.13 0.24 0.6 1.7
TSP 300 0.09 0.2 0 2
TSP 500 0.08 0.18 0 2

6.2. AAC Approaches Analysis 83

6.2.2 Small Configuration Space Results

Figure 6.2 and Figure 6.3 show the results of the configuration process using the small configuration
space on PFSP and TSP scenarios, respectively. The configurations in consideration by the three
approaches are shown after the validation step on training instances, and after the test step on test
instances. Every configuration not in consideration by any of the three approaches is also indicated,
as already exhaustively enumerated during the first study.

PFSP. (Figure 6.2) All three approaches find very good, even near-optimal configurations – in
particular, HV ||∆ ′, which results in configurations spreading over the entire Pareto-front. The 10
configurator runs ofHV andHV+∆ ′ produce close to 10 unique configurations each and all of these
show good hypervolume values. However, after validation and testing, for both AAC approaches
few configurations remain and those tend to have good hypervolume but average spread. On the
other hand, the MO-AAC approach HV ||∆ ′ produces many more configurations after the training,
validation and test steps. Compared to the two other approaches, HV ||∆ ′ clearly achieves better
coverage of the optimal Pareto set of configurations. Note that all three approaches use the same
time budget for configuration, the number of final solutions being strongly dependant of the kind
(single-objective or multi-objective) of AAC used for training.

TSP. (Figure 6.3) The HV configuration approach produces few configurations, achieving near-
optimal hypervolume. HV+∆ ′ produces weak training results on the 100-city instances, but works
well on the 300-city instances, because of the shape of the Pareto-optimal front. As for the PFSP,
HV ||∆ ′ finds many more configurations and achieves far better coverage of the Pareto front. In the
test instances from the literature, all three AAC approaches produces optimal configurations for
100-city instances, HV+∆ ′ and HV ||∆ ′ also do on 300-city instances, but only HV ||∆ ′ manages to
find most of the optimal configurations on the 500-city instance.

For both problems, within the small configuration space, all three AAC approaches are able to
find configurations very close to the true Pareto-front. As expected, the two SO-AAC approaches
strongly favours the hypervolume indicator. However, for similar training time, the MO-AAC
approach is able to accurately cover the full range of Pareto-optimal configurations.

6.2.3 Large Configuration Space Results

Figure 6.4 shows the final configurations produced by all three AAC approaches for both PFSP and
TSP scenarios, considering the larger configuration space of 10920 configurations. In contrary to
the results on the small configuration space of 300 configurations only, the configurations in con-
sideration by the three approaches are only shown on the test instances. We also show the 300
configurations of the smaller set of configurations that we previously exhaustively evaluated, in
order to highlight that these final configurations map very closely those found within the small
space, which suggests that the small space indeed captures the high-performance configurations
from the much larger space and, more importantly, demonstrates that our AAC approaches effect-
ively finds such configurations. In the following, we focus on the performance of the three AAC
approaches.

SO-AAC. Both SO-AAC approaches, HV and HV+∆ ′, produce very few non-dominated config-
urations in their final testing step – typically between 2 and 4 on each instance set. As one might
expect, HV always finds a final configuration with near-optimal hypervolume. The results for
HV+∆ ′ are similar to those for HV for the PFSP, but markedly different on the TSP scenarios. For
100-city bTSP instances,HV+∆ ′ covers the Pareto front, while for 300 cities, it finds the two extreme
configurations, due to accidentally well-adapted weights used for aggregating hypervolume and
spread. However, due to the non-convex shape of the front, no trade-off configurations are found
between these extremes. For 500-city instances,HV+∆ ′ only finds configurations with near-optimal
hypervolume, similar to what we observed for the PFSP.

6.2. AAC Approaches Analysis 84

0.48 0.485 0.49 0.495
0.2

0.4

0.6

0.8

1.0

1-HV

∆ ′

PFSP 50 jobs – Validation

0.475 0.48 0.485 0.49

0.4

0.6

0.8

1-HV

∆ ′

PFSP 50 jobs – Test

0.44 0.445 0.45 0.455 0.46

0.2

0.4

0.6

0.8

1.0

1-HV

∆ ′

PFSP 100 jobs – Validation

0.43 0.435 0.44 0.445
0.2

0.4

0.6

0.8

1.0

1-HV

∆ ′

PFSP 100 jobs – Test

0.36 0.365 0.37 0.375

0.4

0.6

0.8

1.0

1.2

1-HV

∆ ′

PFSP 200 jobs – Validation

0.36 0.365 0.37 0.375 0.38

0.4

0.6

0.8

1.0

1.2

1-HV

∆ ′

PFSP 200 jobs – Test

Figure 6.2 – Experiments on the small configuration space – PFSP scenarios
x: HV approach, o: HV+∆ ′ approach, ∆: HV ||∆ ′ approach, +: exhaustive analysis

6.2. AAC Approaches Analysis 85

0.14 0.16 0.18 0.2 0.22 0.24

0.6

0.8

1.0

1.2

1.4

1.6

1-HV

∆ ′

TSP 100 cities – Validation

0.14 0.16 0.18 0.2 0.22 0.24

0.6

0.8

1.0

1.2

1.4

1.6

1-HV

∆ ′

TSP 100 cities – Test

0.1 0.12 0.14 0.16 0.18 0.2

0.0

0.5

1.0

1.5

2.0

1-HV

∆ ′

TSP 300 cities – Validation

0.1 0.12 0.14 0.16 0.18 0.2

0.0

0.5

1.0

1.5

2.0

1-HV

∆ ′

TSP 300 cities – Test

0.08 0.1 0.12 0.14 0.16 0.18

0.0

0.5

1.0

1.5

2.0

1-HV

∆ ′

TSP 500 cities – Validation

0.08 0.1 0.12 0.14 0.16 0.18

0.0

0.5

1.0

1.5

2.0

1-HV

∆ ′

TSP 500 cities – Test

Figure 6.3 – Experiments on the small configuration space – TSP scenarios
x: HV approach, o: HV+∆ ′ approach, ∆: HV ||∆ ′ approach, +: exhaustive analysis

6.2. AAC Approaches Analysis 86

0.475 0.48 0.485 0.49

0.4

0.6

0.8

1-HV

∆ ′

PFSP 50 jobs 20 machines – Test

0.14 0.16 0.18 0.2 0.22 0.24

0.6

0.8

1.0

1.2

1.4

1.6

1-HV

∆ ′

TSP 100 cities – Test

0.43 0.435 0.44 0.445
0.2

0.4

0.6

0.8

1.0

1-HV

∆ ′

PFSP 100 jobs 20 machines – Test

0.1 0.12 0.14 0.16 0.18 0.2

0.0

0.5

1.0

1.5

2.0

1-HV

∆ ′

TSP 300 cities – Test

0.36 0.365 0.37 0.375 0.38
0.2

0.4

0.6

0.8

1.0

1.2

1-HV

∆ ′

PFSP 200 jobs 20 machines – Test

0.08 0.1 0.12 0.14 0.16 0.18

0.0

0.5

1.0

1.5

2.0

1-HV

∆ ′

TSP 500 cities – Test

Figure 6.4 – Experiments on the large configuration space
x: HV approach, o: HV+∆ ′ approach, ∆: HV ||∆ ′ approach, +: exhaustive analysis

6.2. AAC Approaches Analysis 87

Table 6.7 – Number of configurations after training, validation and testing

Scenario Approach Small space Large space
Configs Pareto Final Configs Pareto Final

PFSP 50 HV 10 2 2 20 2 2
HV+∆ ′ 10 4 2 10 2 2
HV ||∆ ′ 32 (38) 9 7 145 14 11

PFSP 100 HV 10 4 3 19 (20) 1 1
HV+∆ ′ 8 (10) 3 3 20 4 2
HV ||∆ ′ 36 (42) 12 6 171 (172) 27 19

PFSP 200 HV 10 3 3 20 4 3
HV+∆ ′ 9 (10) 5 3 16 (20) 2 2
HV ||∆ ′ 29 (39) 11 8 111 (117) 14 9

TSP 100 HV 6 (10) 1 1 15 (20) 2 1
HV+∆ ′ 6 (10) 2 2 15 (20) 6 4
HV ||∆ ′ 16 (26) 3 3 62 (73) 11 5

TSP 300 HV 9 (10) 2 2 13 (20) 4 2
HV+∆ ′ 9 (10) 5 5 12 (20) 5 2
HV ||∆ ′ 33 (41) 8 6 107 (130) 18 12

TSP 500 HV 6 (10) 5 4 16 (20) 4 4
HV+∆ ′ 8 (10) 5 4 14 (20) 3 2
HV ||∆ ′ 36 (40) 12 11 135 (145) 25 22

MO-AAC. In the other hand, the MO-AAC approach, HV ||∆ ′, consistently provides many more
non-dominated configurations, except for the small 100-city bTSP instance set, where the Pareto
front is completely covered by all three approaches. In all cases, the sets of configurations found by
HV ||∆ ′ are very well distributed over the entire front of optimal configurations. Although HV+∆ ′

sometimes finds better configurations (e.g., on the 100- and 200-jobs PFSP scenarios),HV ||∆ ′ always
produces configurations with similar performance.

6.2.4 Discussions

In addition to the quality of the final configurations, the analysis of the sizes of the sets of config-
urations returned by each AAC approach at each step of the configuration protocol provides more
insight on each approach performance.

Table 6.7 details the number of configurations resulting after each of the three steps of the con-
figuration protocol, for each of the three configuration approaches, the six scenarios, and the two
configuration spaces. The first column, “Configs”, gives the number of unique configurations after
the training step, the total number being given with parenthesis when a unique configuration res-
ults from multiple ParamILS runs. The second column, “Pareto”, gives the number of configura-
tions that are not dominated on the training instances, after the validation step. Finally, the third
column, “Final”, gives the number of configurations that, non-dominated on the training instances,
also are non-dominated on the test instances.

First, the numbers of final training configurations of the SO-AAC approaches are obviously
limited by the number of ParamILS runs, as a maximum of one configuration is returned each
run. Fewer configurations results when multiple runs returns the same configuration. On the other
hand, each run of the MO-AAC approach returns a set of configuration, resulting on far more train-
ing configurations. After the validation many of the training configurations are discarded, while
most of the non-dominated configurations on the training instance sets are also non-dominated on
the associated testing instance sets, indicating that they generalise well on the unseen instances.

Overall, Figure 6.2, Figure 6.3, and Figure 6.4 show that the MO-AAC approach, HV ||∆ ′, pro-
duces substantially better results than the two SO-AAC approaches, HV and HV+∆ ′. HV finds ex-
cellent sets of configurations with respect to hypervolume, but only provides very few of those and

6.3. Analysis of Objective Correlation 88

consequently fails to achieve good spread. HV+∆ ′ sometimes provides better results and, under
favourable circumstances, can cover the entire set of Pareto-optimal configurations; however, espe-
cially for more challenging scenarios, its performance is similar to that of HV . The main drawback
of this approach is the requirement of a costly preliminary step for calibrating the weights used
for aggregating the two optimisation objectives. Finally, HV ||∆ ′, the MO-AAC approach, always
efficiently covers the entire Pareto-front of configurations, while still finding sets of configurations
with excellent hypervolume, as produced by the two SO-AAC approaches.

In conclusion,HV ||∆ ′, the MO-AAC approach should clearly be preferred on all of our datasets.
Despite using the same configuration budget (1000 target algorithm runs), it is able to efficiently
cover the entire Pareto front of configurations while simultaneously matching the performance of
both SO-AAC approaches HV and HV+∆ ′.

6.3 Analysis of Objective Correlation

Finally, in the third study we focus on comparing the performance our AAC approaches on diverse
scenarios on which the correlation between objectives is manually controlled. This study enables
to control for the impact of objective correlation on our multi-objective scenarios.

6.3.1 Experimental Protocol

The classical instances of PFSP and TSP used in the previous sections greatly differ in terms of
objective correlation. Indeed, in the PFSP Taillard instances, makespan and total flow time, the two
objective under optimisation, are positively very correlated. This is no surprise as they coincide to
the maximum and the average, respectively, of the due dates of the flowshop schedule. In contrary,
in our TSP instances we optimise the distance of a tour over two independent sets of cities, making
the two objectives completely uncorrelated.

To study the specific impact of correlation between objectives on our AAC approaches, we tackle
a new set of scenarios for which the correlation is manually controlled. We consider three problems,
with the quadratic assignment problem (QAP), two sizes of instances per problem, and three de-
grees of correlation, following previous a work of Kessaci-Marmion et al. (2017). Specifically, for the
sizes of instances, for each of the three problems we consider instances with n = 50 and n = 100,
with n being the number of PFSP jobs, TSP cities, and QAP facilities, respectively.

On PFSP instances, we consider the simultaneous optimisation of two makespan measures com-
puted from two independent matrices of processing times. These processing times are generated
following the uniform distribution U([1; 99]). To manually correlate the two objectives, a percent-
age ρ of the processing times of the first matrix is carried over the second matrix, using the cover-
age method. No correlated instances were obtained using the two independent matrices directly,
while medium correlation instances used the value ρ = 0.6 and high correlation instances the value
ρ = 0.9.

On TSP instances, we consider the simultaneous optimisation of the distances of two tours
computed from two sets of cities in the Euclidean plane. The position of each city on the plane
is determined following the distribution U([1; 3163]) × U([1; 3163]). To manually correlate the two
objectives, the second set of cities is obtained by moving each city according to a normal distribu-
tion N(0, ρ). Medium correlation and high correlation instances were generated using the values
ρ = 600 and ρ = 150, respectively.

On QAP instances, we consider the simultaneous optimisation of two costs associated with two
flow matrices, the position of the facilities being shared. For both matrices the flow between any
two facilities is generated following the uniform distribution U([0; 99]). As for the PFSP instances,
we use the coverage method to carry over a percentage ρ of the first flow matrix to the second one.
Again, no correlated instances were obtained using the two independent matrices directly, while
medium correlation and high correlation instances were obtained using the values ρ = 0.6 and
ρ = 0.9, respectively.

6.3. Analysis of Objective Correlation 89

As for the configuration space of the MOLS algorithm, we use the same large configuration
space as in the second study (Table 6.4), at the slight difference of the bound-strat parameter,
which now takes the value replace instead of the value rand, meaning that after reaching the
maximum archive capacity non-dominated solutions are accepted if and only if they replace a solu-
tion from the archive, rather than discarding non-dominated solutions uniformly at random.

Lastly, we use the same three approaches as in the second study (i.e., HV , HV+∆ ′, and HV ||∆ ′),
following the experimental protocol of the large configuration space (see Table 6.5 and Table 6.6).

6.3.2 Optimised Configurations

Table 6.8 to Table 6.13 show the final non-dominated configurations found by the three AAC ap-
proaches HV , HV+∆ ′, and HV ||∆ ′, on all eighteen scenarios (three problems, two size of instances,
three degrees of correlation).

PFSP. (Table 6.8 and Table 6.9) The configurations found across all six scenarios are very similar.
The combination of the ndom exploration with either the oldest or the rand selection strategy
seems to lead to the best performance in terms of hypervolume, while the combination of the
imp exploration strategy with the rand selection strategy leads to solution sets with worse hy-
pervolume but better ∆ ′ spread. While both the sol and arch exploration reference choices are
found within the final configurations for all scenarios, arch is slightly more favoured on larger in-
stances, indicating that referencing more stringently against the current archive during exploration
is beneficial for larger instance sizes.

TSP. (Table 6.10 and Table 6.11) Compared to the PFSP scenarios, the number of distinct non-
dominated configurations is much smaller. The configurations we found vary strongly with both
correlation level and problem size. Overall, the ndom exploration strategy is preferred, together
with either the rand or the oldest strategy. However, for instance with medium or no correl-
ation, the arch exploration reference leads to better HV performance, and may be used together
with the imp-ndom exploration strategy when the number of cities increases. Furthermore, on the
smallest high correlated instances the MOLS algorithm may benefit from using a bounded archive
and restart between iterations, while a large archive of size 1000 is chosen (i.e., basically unboun-
ded), along with a kick-based perturbation strategy, for all other instances. This is consistent with
the idea that larger TSP instances benefit from a less aggressive perturbation mechanism in com-
bination with a more diverse archive of candidate tours. Finally, correlation between objective has
an impact similar to the problem size, making low (and no) correlated small instances significantly
harder and requiring more aggressive mechanisms than equally sized high correlated instances.

QAP. (Table 6.12 and Table 6.13) Again, much fewer configurations were obtained than for the
PFSP scenarios. These configurations are much more varied than for the PFSP and TSP, and vary
with instance size as well as correlation between the objectives. The restart perturbation strategy
is favoured for small, 50-facility instances, while kick-based perturbation strategies appear to work
better for the larger 100-facility instances. Interestingly, the larger instances seem to be amenable
to a wider range of exploration strategies. However, the degree of objective correlation affects the
choice of exploration strategy; e.g., for the larger instances, the imp-ndom exploration strategy is
only chosen when the objectives are uncorrelated. Similarly, we found that bounding the archive
size appears to work only well for sufficiently correlated objectives, while the same observation
holds for the oldest selection strategy.

6.3.3 Discussions

Table 6.14 summarises the performance of our three AAC approaches HV , HV+∆ ′, and HV ||∆ ′ on
all eighteen scenarios, and details the number of final configurations and the range of hypervolume
and ∆ ′ indicator values.

6.3. Analysis of Objective Correlation 90

Table 6.8 – PFSP 50 jobs 20 machines (optimised configurations)

1-HV ∆ ′ Selection Exploration Archive Perturbation

(high correlation)
0.4942 1.3851 oldest 1 ndom arch 1 1000 kick 1 10
0.4945 1.3550 oldest 1 ndom arch 1 50 kick 1 5
0.4951 1.2305 oldest 1 ndom sol 1 20 kick 1 3
0.5052 1.1126 rand 10 ndom arch 10 1000 restart
0.5083 1.0840 rand 10 all 50 kick-all 3
0.5118 1.0449 rand 10 ndom arch 1 1000 kick-all 3
0.5133 1.0367 all ndom arch 3 20 restart
0.5140 0.7539 rand 1 all-imp arch 100 restart
0.5150 0.6622 rand 1 imp arch 3 100 restart
0.5150 0.6622 rand 1 imp arch 3 50 restart
0.5176 0.3286 rand 1 imp sol 1 100 restart
0.5195 0.1154 rand 1 imp arch 1 20 kick 10 10
0.5198 0.0900 oldest 1 imp arch 1 20 kick 1 3

(medium correlation)
0.5032 1.2096 oldest 1 ndom sol 3 1000 kick 5 3
0.5035 1.1864 oldest 1 ndom sol 3 100 kick 5 10
0.5055 1.1257 oldest 1 ndom arch 1 50 kick 10 10
0.5088 1.0564 rand 10 all 50 restart
0.5168 0.8827 all ndom arch 3 20 kick 1 5
0.5202 0.8554 rand 1 imp arch 3 1000 restart
0.5217 0.7230 rand 1 imp arch 3 100 kick-all 5
0.5217 0.7230 rand 1 imp arch 3 1000 kick-all 5
0.5217 0.7230 rand 1 imp arch 3 20 kick-all 10
0.5222 0.4934 rand 1 imp sol 1 100 restart
0.5222 0.4934 rand 1 imp sol 1 50 restart
0.5223 0.4787 rand 1 imp arch 1 1000 restart
0.5223 0.4787 rand 1 imp arch 1 20 restart
0.5258 0.1951 rand 1 imp arch 1 20 kick-all 10
0.5272 0.1160 oldest 1 imp arch 1 20 kick 10 10
0.5277 0.0283 rand 1 imp arch 1 100 kick 1 5
0.5277 0.0283 rand 1 imp sol 1 20 kick 1 10
0.5277 0.0283 rand 1 imp sol 1 50 kick 1 10
0.5278 0.0254 oldest 1 imp arch 1 20 kick 1 3

(no correlation)
0.5214 0.9715 rand 10 ndom arch 3 1000 kick 5 10
0.5214 0.9709 rand 10 ndom arch 3 1000 kick 10 3
0.5246 0.8414 rand 3 imp-ndom sol 10 50 kick-all 10
0.5317 0.8065 newest 1 ndom arch 3 50 kick 5 10
0.5337 0.8064 rand 10 all 20 kick 5 10
0.5405 0.7626 rand 1 imp sol 3 100 kick 10 3
0.5415 0.5862 all imp arch 1 100 restart
0.5415 0.5862 all imp arch 1 1000 restart
0.5415 0.5862 all imp arch 1 50 restart
0.5415 0.5862 newest 10 imp arch 1 100 restart
0.5416 0.5792 oldest 3 imp sol 1 20 restart
0.5416 0.5792 rand 10 imp sol 1 1000 restart
0.5416 0.5792 rand 10 imp sol 1 50 restart
0.5416 0.5792 rand 3 imp sol 1 1000 restart
0.5455 0.3180 rand 1 imp arch 1 20 kick 10 10
0.5455 0.3173 rand 1 imp sol 1 1000 kick 10 10
0.5485 0.2275 oldest 1 imp sol 1 1000 kick 10 5
0.5503 0.1294 rand 1 imp sol 1 50 kick 1 10

6.3. Analysis of Objective Correlation 91

Table 6.9 – PFSP 100 jobs 20 machines (optimised configurations)

1-HV ∆ ′ Selection Exploration Archive Perturbation

(high correlation)
0.3543 1.8848 oldest 1 ndom arch 1 1000 kick 1 10
0.3559 1.7607 oldest 1 ndom arch 1 100 kick 1 3
0.3650 1.5112 oldest 1 ndom sol 1 20 kick 10 5
0.3748 1.4685 oldest 1 ndom arch 1 20 kick 1 3
0.3753 1.4292 oldest 1 ndom sol 1 20 restart
0.3769 1.3065 rand 10 all 20 restart
0.3798 1.2688 newest 10 ndom arch 3 20 restart
0.3800 1.2406 newest 10 ndom arch 10 20 restart
0.3802 0.9826 rand 1 all-imp arch 1000 restart
0.3825 0.7963 rand 1 imp arch 3 1000 restart
0.3825 0.7963 rand 1 imp arch 3 20 restart
0.3838 0.7796 rand 3 all-imp sol 50 kick 5 3
0.3841 0.1203 rand 1 imp arch 1 20 restart
0.3845 0.0713 rand 1 imp arch 1 50 kick-all 5

(medium correlation)
0.3698 1.7468 oldest 1 ndom arch 1 1000 kick 1 10
0.3699 1.5941 oldest 1 ndom arch 1 100 kick 5 3
0.3707 1.5485 oldest 1 ndom arch 1 100 kick 1 5
0.3722 1.4407 oldest 1 ndom arch 1 50 kick 10 3
0.3787 1.4315 rand 1 ndom arch 10 1000 restart
0.3790 1.3252 oldest 1 ndom arch 1 20 kick 10 10
0.3792 1.2412 rand 3 ndom arch 10 100 kick-all 3
0.3813 1.0833 rand 3 imp-ndom arch 10 100 kick 5 10
0.3817 1.0583 rand 1 imp-ndom sol 10 100 kick 5 5
0.3818 1.0502 rand 10 imp-ndom arch 10 100 kick-all 10
0.3820 1.0159 rand 3 imp-ndom arch 10 50 restart
0.3824 1.0077 rand 10 imp-ndom sol 10 50 kick-all 10
0.3846 0.9621 rand 10 all 50 kick 1 10
0.3855 0.9461 all ndom arch 3 20 kick 1 3
0.3875 0.8628 rand 10 all 20 kick-all 10
0.3908 0.1667 rand 1 imp arch 1 1000 restart
0.3929 0.0578 rand 1 imp sol 1 50 kick 10 10
0.3931 0.0062 rand 1 imp sol 1 20 kick 1 10
0.3931 0.0062 rand 1 imp sol 1 50 kick 1 10

6.4. Perspectives 92

Table 6.9 – PFSP 100 jobs 20 machines (optimised configurations, continued)

1-HV ∆ ′ Selection Exploration Archive Perturbation

(no correlation)
0.3869 1.2148 rand 1 ndom arch 1 1000 restart
0.3873 1.1696 rand 3 ndom arch 3 1000 kick-all 3
0.3873 1.1677 rand 3 ndom arch 3 1000 kick 5 5
0.3873 1.1657 rand 3 ndom arch 3 1000 kick-all 10
0.3883 0.9964 rand 10 ndom arch 10 1000 restart
0.3883 0.9892 rand 10 ndom arch 10 1000 kick 1 10
0.3893 0.9579 rand 1 ndom arch 10 100 kick 5 3
0.3894 0.9481 rand 10 ndom arch 10 100 kick-all 3
0.3894 0.9424 rand 10 ndom arch 10 100 kick 1 10
0.3906 0.9232 rand 1 imp-ndom arch 3 100 kick-all 3
0.3906 0.9222 rand 1 imp-ndom arch 3 100 restart
0.3935 0.8042 all ndom arch 3 50 kick 10 5
0.4035 0.1481 rand 1 imp sol 1 50 restart
0.4035 0.1508 rand 1 imp arch 1 1000 restart
0.4035 0.1506 rand 1 imp arch 1 50 restart
0.4085 0.1480 rand 1 imp sol 1 50 kick 10 10
0.4087 0.1304 rand 1 imp arch 1 1000 kick-all 3
0.4117 0.0744 all imp arch 1 100 kick 1 5
0.4117 0.0744 all imp arch 1 50 kick 1 5
0.4117 0.0744 all imp sol 1 1000 kick 1 3
0.4117 0.0744 all imp sol 1 20 kick 1 10
0.4117 0.0744 newest 10 imp arch 1 100 kick 1 3

Clearly, HV ||∆ ′ produces much larger sets of configurations than HV and HV+∆ ′, in particular
for the PFSP. While HV+∆ ′ and HV ||∆ ′ achieve overall similar hypervolume values to the ded-
icated HV approach, on some scenarios (highly correlated PFSP and uncorrelated 100-city TSP),
HV achieves the best hypervolume, as could be expected. Surprisingly, on the uncorrelated 100-
job PFSP scenario, the HV ||∆ ′ approach performs best in terms of hypervolume. Regarding the
complementary ∆ ′ spread indicator, HV ||∆ ′ generally achieves much better results, which are only
occasionally matched by the HV+∆ ′ approach, when the direction of aggregation is compatible
with the shape of the optimised front of solutions; but to ensure this is the case, a costly prelimin-
ary analysis is required to permit appropriate normalisation of hypervolume and ∆ ′ spread. These
observations are consistent with the previous study. As for correlation between objectives, there is
no clear overall impact on the three AAC approaches. We note, however, that the single-objective
HV approach clearly achieves the best hypervolume for the highly correlated PFSP scenarios.

In conclusion, we showed that the observations of the second study of this chapter generalised
on other datasets, in which the correlation between objectives was controlled.
HV ||∆ ′, the MO-AAC approach, should generally be preferred on all of the datasets we con-

sidered. Using similar configuration budgets, it is able to match the performance of both SO-AAC
approaches HV and HV+∆ ′ on their dedicated search direction, while simultaneously efficiently
cover the entire Pareto front.

6.4 Perspectives

In this chapter, we conducted three successive studies to analyse the automatic configuration of a
static MOLS algorithm on different permutation problems. We first focused on a restricted set of
parameters values to perform an exhaustive evaluation of the resulting configuration space, then

6.4. Perspectives 93

Table 6.10 – TSP 50 cities (optimised configurations)

1-HV ∆ ′ Selection Exploration Archive Perturbation

(high correlation)
0.1575 0.8045 oldest 1 ndom sol 3 1000 restart
0.1575 0.8040 oldest 1 ndom sol 3 100 restart
0.1575 0.7320 rand 1 ndom sol 1 50 restart
0.1582 0.6705 rand 1 ndom sol 3 1000 restart
0.1582 0.6697 rand 1 ndom sol 3 100 restart
0.1582 0.6462 rand 1 ndom sol 3 50 restart
0.1591 0.6126 rand 1 ndom sol 10 50 restart
0.1599 0.6066 all ndom arch 10 50 restart
0.1600 0.5911 oldest 1 ndom sol 3 1000 kick 10 3
0.1632 0.5621 oldest 1 imp sol 10 50 restart
0.1642 0.4527 oldest 1 imp arch 1 100 restart

(medium correlation)
0.1673 0.6627 rand 1 ndom arch 1 1000 kick-all 3
0.1675 0.6581 rand 1 ndom arch 10 1000 kick 10 3
0.1675 0.6581 rand 1 ndom arch 10 1000 kick 10 10
0.1675 0.6578 rand 1 ndom arch 10 1000 restart

(no correlation)
0.1850 0.6769 rand 1 ndom arch 1 1000 kick-all 5
0.1850 0.6767 rand 1 ndom arch 1 1000 kick-all 10
0.1850 0.6763 rand 1 ndom arch 1 1000 kick-all 3
0.1904 0.6555 rand 1 ndom arch 1 1000 restart
0.1957 0.6553 rand 1 ndom sol 1 1000 kick-all 10
0.1968 0.6250 rand 3 ndom sol 3 1000 restart
0.2070 0.6170 rand 1 ndom sol 1 1000 restart

6.4. Perspectives 94

Table 6.11 – TSP 100 cities (optimised configurations)

1-HV ∆ ′ Selection Exploration Archive Perturbation

(high correlation)
0.1153 0.6292 rand 1 ndom sol 3 1000 kick 10 3
0.1157 0.6232 rand 3 ndom sol 10 1000 kick-all 3

(medium correlation)
0.1237 0.8163 rand 10 imp-ndom arch 1 1000 kick 10 10
0.1237 0.6623 rand 3 ndom sol 10 1000 kick-all 10
0.1237 0.6620 rand 3 ndom sol 10 1000 restart
0.1237 0.6615 rand 3 ndom sol 10 1000 kick 1 3
0.1237 0.6614 rand 3 ndom sol 10 1000 kick-all 3
0.1237 0.6608 rand 3 ndom sol 10 1000 kick-all 5
0.1251 0.6546 rand 1 ndom sol 3 1000 restart
0.1258 0.6536 rand 1 ndom sol 1 1000 kick-all 5
0.1268 0.6447 rand 1 ndom sol 1 1000 restart

(no correlation)
0.1395 0.9566 oldest 1 imp-ndom arch 1 1000 kick 5 3
0.1395 0.9560 oldest 1 imp-ndom arch 1 1000 kick 10 3
0.1395 0.9558 oldest 1 imp-ndom arch 1 1000 kick 5 5
0.1398 0.9020 oldest 3 ndom sol 10 1000 kick 10 10
0.1398 0.9012 oldest 3 ndom sol 10 1000 kick 10 5
0.1403 0.8855 oldest 1 ndom sol 10 1000 kick-all 5
0.1405 0.8574 oldest 10 ndom sol 10 1000 kick 10 10
0.1416 0.6544 rand 10 ndom sol 10 1000 kick 10 3
0.1416 0.6530 rand 10 ndom sol 10 1000 kick 10 5
0.1450 0.6457 rand 1 ndom sol 3 1000 kick 10 3
0.1451 0.6432 rand 3 ndom sol 3 1000 kick 10 5
0.1456 0.6361 rand 10 ndom sol 3 1000 kick-all 3

6.4. Perspectives 95

Table 6.12 – QAP 50 facilities (optimised configurations)

1-HV ∆ ′ Selection Exploration Archive Perturbation

(high correlation)
0.3194 0.8931 oldest 1 ndom sol 1 1000 restart
0.3194 0.8824 oldest 1 ndom sol 1 100 restart
0.3195 0.8724 oldest 1 ndom sol 1 20 restart
0.3208 0.4438 oldest 1 imp arch 3 50 restart
0.3209 0.3434 rand 1 imp arch 1 50 restart
0.3210 0.3090 oldest 1 imp arch 1 100 restart
0.3210 0.3011 rand 1 imp sol 1 50 restart
0.3210 0.2663 oldest 1 imp sol 1 20 restart
0.3213 0.1694 oldest 1 imp arch 1 20 kick-all 10

(medium correlation)
0.3211 0.8846 oldest 1 ndom arch 1 1000 restart
0.3211 0.8767 oldest 1 ndom arch 1 100 restart
0.3212 0.8614 oldest 1 ndom sol 1 100 kick 1 3
0.3212 0.8498 oldest 1 ndom sol 1 1000 kick 1 3
0.3212 0.8480 oldest 1 ndom sol 1 100 kick 1 5
0.3224 0.4980 oldest 1 imp arch 3 100 kick 5 3
0.3224 0.1728 oldest 1 imp arch 1 100 kick 5 3

(no correlation)
0.3221 0.7973 rand 10 ndom arch 3 1000 restart
0.3221 0.7870 rand 1 ndom arch 3 1000 restart
0.3221 0.7849 rand 1 ndom arch 3 1000 kick 10 3
0.3221 0.7829 rand 1 ndom arch 3 1000 kick-all 10
0.3223 0.7702 rand 1 ndom sol 10 1000 kick-all 10
0.3225 0.7168 rand 1 imp sol 1 100 restart
0.3226 0.7106 oldest 1 imp sol 1 50 restart

6.4. Perspectives 96

Table 6.13 – QAP 100 facilities (optimised configurations)

1-HV ∆ ′ Selection Exploration Archive Perturbation

(high correlation)
0.3199 0.8395 oldest 1 ndom sol 1 50 restart
0.3200 0.8158 oldest 1 ndom sol 1 20 restart
0.3208 0.5251 rand 1 imp arch 3 1000 kick 10 3
0.3209 0.2974 rand 1 imp sol 3 50 kick 5 3
0.3209 0.1000 rand 1 imp sol 1 100 kick-all 10
0.3210 0.0900 newest 10 imp arch 1 1000 kick-all 10
0.3210 0.0800 all imp sol 1 50 kick 10 3

(medium correlation)
0.3209 0.9070 oldest 1 ndom arch 1 1000 restart
0.3209 0.8865 oldest 1 ndom arch 1 1000 kick 10 3
0.3209 0.8784 oldest 1 ndom sol 1 1000 kick 10 5
0.3209 0.8688 oldest 1 ndom sol 1 1000 kick 1 5
0.3209 0.8389 oldest 1 ndom arch 1 1000 kick 1 3
0.3211 0.8088 rand 1 imp-ndom arch 1 1000 kick-all 3
0.3211 0.7974 rand 3 imp-ndom arch 1 1000 kick-all 3
0.3213 0.4084 rand 1 all-imp sol 1000 kick-all 5
0.3213 0.3026 rand 1 all-imp sol 100 kick 5 5
0.3213 0.2727 rand 1 all-imp sol 100 kick 10 10
0.3213 0.1575 rand 1 imp sol 3 50 kick-all 5
0.3213 0.0000 rand 1 imp arch 1 50 kick 1 10

(no correlation)
0.3210 0.7131 rand 3 imp-ndom arch 1 1000 restart
0.3210 0.7107 rand 3 imp-ndom arch 1 1000 kick 1 3
0.3210 0.7081 rand 1 imp-ndom arch 1 1000 kick-all 3
0.3210 0.7024 rand 3 imp-ndom arch 1 1000 restart
0.3210 0.7023 rand 10 imp-ndom arch 1 1000 kick-all 10
0.3212 0.2618 rand 1 imp sol 3 50 kick 5 3
0.3212 0.0000 rand 1 imp arch 1 1000 kick-all 5

6.4. Perspectives 97

Table 6.14 – AAC performance: number of final configurations and objective ranges

1-HV values ∆ ′ values # 1-HV values ∆ ′ values

PFSP 50 jobs 20 machines PFSP 100 jobs 20 machines
(high correlation)

HV 3 0.4942–0.4951 1.2305–1.3851 3 0.3543–0.3753 1.4995–1.8848
HV+∆′ 5 0.4954–0.5191 0.4021–1.5234 3 0.3551–0.3755 1.4856–1.9303
HV||∆′ 13 0.4951–0.5198 0.0900–1.4546 15 0.3551–0.3845 0.0713–1.9302

(medium correlation)
HV 1 0.5035 1.1864 3 0.3698–0.3707 1.5517–1.7486

HV+∆′ 4 0.5032–0.5088 1.0564–1.2096 8 0.3698–0.3820 1.0159–1.7468
HV||∆′ 19 0.5035–0.5278 0.0254–1.1879 14 0.3707–0.3931 0.0062–1.5485

(no correlation)
HV 1 0.5214 0.9709 1 0.3873 1.1677

HV+∆′ 1 0.5214 0.9715 5 0.3873–0.3906 0.8222–1.1702
HV||∆′ 17 0.5215–0.5503 0.1294–0.9754 20 0.3869–0.4117 0.0744–1.2148

TSP 50 cities TSP 100 cities
(high correlation)

HV 3 0.1575–0.1582 0.6692–0.8045 2 0.1153–0.1157 0.6232–0.6292
HV+∆′ 4 0.1582–0.1600 0.5911–0.6705 2 0.1154 0.6275–0.6297
HV||∆′ 6 0.1575–0.1642 0.4527–0.7320 2 0.1154–0.1157 0.6233–0.6303

(medium correlation)
HV 1 0.1675 0.6578 2 0.1237 0.6620–0.8163

HV+∆′ 2 0.1673–0.1675 0.6581–0.6627 3 0.1237 0.6608–0.6623
HV||∆′ 2 0.1673–0.1675 0.6581–0.6632 5 0.1237–0.1268 0.6447–0.8156

(no correlation)
HV 1 0.1850 0.6767 4 0.1395–0.1403 0.8841–0.9560

HV+∆′ 1 0.1850 0.6763 5 0.1395–0.1416 0.6544–0.9566
HV||∆′ 5 0.1850–0.2070 0.6170–0.6769 8 0.1395–0.1456 0.6361–0.9559

QAP 50 facilities QAP 100 facilities
(high correlation)

HV 2 0.3194–0.3195 0.8810–0.8824 1 0.3199 0.8395
HV+∆′ 2 0.3194–0.3195 0.8724–0.8931 1 0.3199 0.8217
HV||∆′ 8 0.3194–0.3213 0.1694–0.8914 6 0.3200–0.3210 0.0800–0.8158

(medium correlation)
HV 3 0.3211–0.3212 0.8498–0.8846 1 0.3209 0.8688

HV+∆′ 3 0.3211–0.3212 0.8480–0.8788 5 0.3209–0.3213 0.0000–0.8865
HV||∆′ 3 0.3212–0.3224 0.1728–0.8614 8 0.3209–0.3214 0.0000–0.9070

(no correlation)
HV 2 0.3221 0.7870–0.7949 4 0.3210 0.7023–1.2196

HV+∆′ 2 0.3221 0.7814–0.7960 3 0.3210 0.7107–1.2491
HV||∆′ 5 0.3221–0.3226 0.7106–0.7973 4 0.3210–0.3212 0.0000–0.7081

6.4. Perspectives 98

compared the performance of three AAC approaches, with both the restricted and a larger set of
parameter values, before finally specifically investigating the impact of objective correlation on the
configuration process.

We detail in the following three perspectives related to multi-objective automatic algorithm
configuration in general.

Artificial configuration spaces. The main difficulty while designing a configurator and in general
while tackling configuration problems is the sheer amount of time required in order to complete
a optimisation pass of the target algorithm parameters. Indeed, it is no surprise that the config-
uration process is orders of magnitude longer than the time spent by the target algorithm over a
single instance. It follows that in-depth analysis of the performance of the configurator itself is
again orders of magnitude longer, therefore generally prohibitively expensive. In particular, auto-
matically configuring the configurator itself is mostly inefficient (e.g., see Hutter et al., 2009), even
if surrogate models can be used to speed-up the process to a reasonable length (e.g., see Dang et al.,
2017).

In order to considerably reduce the time spent by the configuration process, it would be really
useful to have access to exhaustively pre-computed target algorithm runs, which would enable to
avoid the overhead of effectively running the target algorithm. The obvious problem is that this
pre-computation is of course far more expensive than the configuration process itself, even if it
can be used multiple times. Another problem would be that the configuration spaces of all target
algorithms are not similar, so many of such highly expensive pre-computations would be necessary.

One possible solution would be to have instead a dummy target algorithm, able to instantly
produce outputs similar to existing target algorithms. This dummy algorithm should be quick,
highly parameterisable so it can generate various configuration spaces, and able to emulates com-
plex parameter interactions. To obtain such an algorithm, it would be necessary to analyse samples
of existing configuration spaces (e.g., such as Figure 6.1), to propose a cohesive model (possibly
several models) that would enable exploration of configuration space at reasonable cost, thus trans-
forming otherwise prohibitively expensive configuration problem into much faster to solve optim-
isation problems.

Search space analysis tool. Configuration spaces are hard to visualise. Most importantly, they
are very expensive to sample, and the relation between parameters values may be complex and
not always clearly discernible. In Figure 6.1, we showed how few parameters could explain how
configuration are clustered, while some other produce essentially localised noise, as show Table 6.2
and Table 6.3 in which the setting of perturbation parameters had essentially no effect on the per-
formance of optimal configurations. These analyses were performed by hand, and only possible
because first we already knew what would be the most impactful parameters, and then because
they were very few parameters overall. A tool able to automatically produce insights on the full
parameter space, as opposed to configurators, that only focuses on optimal configurations, could
be very useful and crucial in the obtainment of artificial configuration spaces. In some sense, it
would be related to parameter ablation (e.g., see Hutter et al., 2013; Biedenkapp et al., 2017), which
aims to identify and focus on impactful parameters.

Other multi-objective applications. MO-ParamILS, our multi-objective extension of ParamILS,
is a fully fledged multi-objective configurator, able to accommodate other multi-objective scenario
than the solution quality versus running time trade-offs of Chapter 5 and the optimisation of mul-
tiple multi-objective performance indicators of Chapter 6. Within the possible applications not
tackled in this thesis, three are detailed hereafter.

First, regarding multi-objective algorithms, we only considered in this thesis optimising both
hypervolume and ∆ ′ spread, resulting in a trade-off between accuracy and distribution. It would
be interesting to investigate other kind of trade-offs, using for example the objectives of the target
algorithm directly. For a bi-objective algorithm optimising objectives o1 and o2, this could mean
for example simultaneously optimising the n + 1 aggregations (k·o1+(n−k)·o2)/n (for k ∈ 0, . . . ,n

6.4. Perspectives 99

with n > 0) to find complementing variants of the target algorithms efficient regarding distinct
directions of the objective space.

It would also be interesting to use multi-objective configuration to optimise the parameters
of binary classification algorithms. While the configuration of such algorithms have already been
tackled before (AutoWeka, Thornton et al., 2013), the configuration process only considered the loss
(misclassification rate) of the underlying learning algorithm. With MO-ParamILS, or any future
multi-objective configurator, it would be possible to consider independently multiple performance
measures, such as the sensitivity, the specificity, the precision, or the recall.

Then, a frequent performance measure in single-objective configuration is the penalised average
runtime PAR measure (e.g., Hutter et al., 2009), where failures by the target algorithm are penalised
by a given factor; usually a factor of 10 (“PAR10”), but sometimes also as low as 2 or as high
as 100. The use of a multi-objective configurator could first enable to analyse more precisely the
performance of penalised algorithms (e.g., considering the failure ratio as an independent measure
to minimise), while also analysing the PAR measure itself postmortem.

Finally, regarding the trade-off between solution quality and running time, we proposed ap-
proaches in which the running time is taken as algorithm parameter, while optimising either the
true running time or directly the running time parameter value. Other approaches could be invest-
igated, in particular to focus on optimising the anytime properties of the target algorithm, using
for example an area under the curve -based indicator, or simply using multiple objectives being the
performance at given key time points.

To succeed, planning alone is insufficient.
One must improvise as well.

Foundation
Isaac Asimov

Part IV

Automatic Online Design

100

Chapter 7

MOLS Control

Intelligence is the ability to adapt to change.

Stephen Hawking

Previously, in Chapter 6, we used automatic configuration approaches in order to optimise the
performance of static MOLS algorithms. Conversely, in this chapter, we focus on using simple
control mechanisms that are able to modify the current configuration of a MOLS algorithm during
its execution, rather than predicting a single best configuration that is used for the entire run.

The motivation of this chapter is to provide complementary tools to the automatic algorithm
configuration (AAC) procedure studied in Chapter 6. One of the major drawback of AAC is that
it ultimately provides a single configuration of the target algorithm, that will be used on future
instances: in addition to being very computationally expensive, only the final prediction matters
while slightly less optimal alternatives are ultimately discarded. Furthermore, AAC restricts to the
use of the same configuration of the target algorithm for the entire search, leaving no space for
combining the strengths and potentials of multiple high-performing configurations. This chapter
aims to investigate parameter control as a possible solution to overcome these problems.

In this chapter, We use the adaptive MOLS algorithm presented in Chapter 4, that can incorpor-
ate mechanisms to control the exploration of the MOLS algorithm. We focus on only three different
exploration strategies (ndom, imp-ndom, and imp) that were analysed in Chapter 6, and two very
simple control mechanisms: a uniform control mechanism and an ε-greedy mechanism. Other,
more complex, alternatives to the generic control mechanisms are also discussed.

We conduct three successive experiments, using first the three possible strategies, then using
only the better two strategies, before finally studying how a long-term learning mechanism could
allow to further improve performance by delaying the prediction of the best strategies. The experi-
ments are conducted on the permutation flowshop scheduling problem (PFSP) instances presented
in Chapter 1.

The results presented in this chapter are linked to the following publication:

• Blot, A., Kessaci, M., Jourdan, L., and Causmaecker, P. D. (2018c). Adaptive multi-objective
local search algorithms for the permutation flowshop scheduling problem. In Pardalos, P.
and Kotsireas, I., editors, Learning and Intelligent Optimization – 12th International Conference,
LION 12. Revised Selected Papers, Lecture Notes in Computer Science. Springer. (To appear).

7.1 Adaptive MOLS Algorithm

We first introduce the adaptive MOLS algorithm used in the experiments, and review the possible
control mechanisms that can be integrated into it.

101

7.1. Adaptive MOLS Algorithm 102

7.1.1 Adaptive Algorithm

We use Algorithm 4.2, an adaptive variant of Algorithm 4.1 that use a control mechanism to select
an exploration strategy every time the local search is restarted.

We focus on three exploration strategies, using the imp, imp-ndom, and ndom parameter
values introduced in Chapter 4. All three explorations use the current archive as reference,
and stops after the first accepted neighbour (explor-size = 1). These three strategies have
been considered to investigate a specific scenario in which there a very good strategy is known
(ndom), an effective alternative is considered (imp-ndom), together with a less effective one
(imp). As for the other parameters, for the selection phase a single neighbour is selected uni-
formly at random (select-strat = rand and select-size = 1), the archive is unbounded
(bound-strat = unbounded), and for the perturbation step a single configuration is selected
uniformly at random and then replaced three times by one neighbour selected uniformly at ran-
dom (perturb-strat = kick, perturb-size = 1, and perturb-strength = 3). These
choices are motivated by preliminary expert knowledge that includes observations resulting from
Chapter 6

As for the initialisation of the MOLS algorithm, we use a simple single-objective greedy al-
gorithm on the two objectives independently. Indeed, using smarter initialisation procedures, the
starting solutions would be too close to the optimal Pareto front, which is undoubtedly detrimental
to the current study since we aim to emphasise the impact of the control mechanisms over the al-
gorithm itself. To obtain two solutions of reasonable quality, we choose the NEH procedure (Nawaz
et al., 1983) for the two objectives independently. NEH is often used to seed state-of-the-art PFSP
initialisation procedures as for example the 2-phase local search algorithm (Dubois-Lacoste et al.,
2011b), which is the initialisation procedure used on the PFSP instances in Chapter 6.

The termination criterion of both the static algorithms and the adaptive algorithms is a total
running time fixed to n

2m/500 CPU seconds. While being twice as long as the running time used in
Chapter 6, we are here less constrained as we run the target MOLS algorithm orders of magnitude
lower than in the previous configuration scenarios. The termination criterion of the inner MOLS
algorithm (Algorithm 4.3) is a combination of either n2 solution evaluations or n iterations without
improvement. These criteria are well adapted to the PFSP since they enable a sufficient number of
iterations of both the inner algorithm and the control mechanism.

In the following experiments, these termination criteria resulted in about 1600 executions of the
inner MOLS algorithm for instances with 20 jobs, then about 750, 400, 250 and 100 iterations for in-
stances with 50, 100, 200 and 500 jobs, respectively. This decrease of the number of executions when
the number of jobs increases is explained by the exploration step that becomes more and more long
and challenging as the size of the neighbourhood quickly grows (typical PFSP neighbourhoods are
quadratic in the number of jobs of the instance).

7.1.2 Generic Online Mechanisms

Parameter control mechanisms are generally classified between deterministic, adaptive and self-
adaptive approaches, following the taxonomy of Eiben et al. (1999) (see Chapter 2). In the follow-
ing, we focus on adaptive approaches that are parameter and algorithm-independent. More in-
depth surveys on parameter control, focused on evolutionary algorithms, can be found in (Eiben
et al., 2007; Karafotias et al., 2015; di Tollo et al., 2015; Aleti and Moser, 2016).

To facilitate comparisons between the approaches that we present in the following, we use the
following notations. Arms designate the different variants of the algorithm being controlled. More
precisely, an arm can be related to either a single or a combination of specific parameter values,
operators, or specific strategies of the algorithm. For approaches using probabilities, the arm i is
chosen at time t with probability pi(t), returning a reward ri(t). In addition, two scalars qi(t) and
ni(t) can also be defined at time t to estimate the reward of the arm i and indicate how many times
the arm i was chosen, respectively. Finally, we will suppose that there is a finite, positive, number
of arms N.

7.1. Adaptive MOLS Algorithm 103

Uniform Random Control

The most simple random control mechanism is based on uniform distribution of arms (see Equa-
tion 7.1).

pi(t+ 1) =
1
N

, for all arms i (7.1)

Probability Matching

Other random approaches exist, that use a specific distribution to select the next arm: arms with
better results on average in the past are assigned a higher probability to be selected. The second
most simple random algorithm is then perhaps the probability matching algorithm (Thierens, 2005),
that simply assigns probabilities linearly to their expected reward (see Equation 7.2).

pi(t+ 1) =
qi(t)∑

arm j
qj(t)

, for all arms i (7.2)

Additionally, to avoid situations when an arm is never selected again because its expected re-
ward is too low, a minimum probability pmin (with 0 < pmin <

1/n) and maximum probability pmax

(with pmax = 1 − n · pmin) can be introduced to ensure minimal exploration (e.g., see Equation 7.3;
Thierens, 2005).

pi(t+ 1) = pmin + pmax ·
qi(t)∑

arm j
qj(t)

, for all arms i (7.3)

For all control mechanisms in general, considering the average reward at time t (see Equa-
tion 7.4, with ni(t) the number of times the arm i was selected at time t) only works well for
stationary systems.

qi(t+ 1) =

{
ni(t)·qi(t)+ri(t)

ni(t)+1 , if the arm iwas selected

qi(t), otherwise
(7.4)

For non-stationary systems, when the estimate of the reward of an arm is only reliable when the
rewards received are not too old, a solution is to use a recency-weighted average that updates the
current estimate with a fraction of the difference of the target value and the current estimate (see
Equation 7.5; Thierens, 2005). This solution use an adaptation rate α (with 0 < α 6 1), where
the value α = 1 means that only the last reward is used, and values of α close to 0 mean that the
estimate is only slightly steered with recent reward values.

qi(t+ 1) =

{
ri(t) + (1 − α) · qi(t), if the arm iwas selected
qi(t), otherwise

(7.5)

Softmax algorithms

Another possibility is to use a Boltzman distribution with the probability to select arm i at time
t+ 1 is given in terms of the average rewards at time t (Sutton and Barto (1998); see Equation 7.6).

pi(t+ 1) =
eqi(t)/τ∑

arm j
eqj(t)/τ

, for all arms i (7.6)

In Equation 7.6, τ is a temperature parameter that can be taken constant or decreasing (Cesa-Bianchi
and Fischer, 1998; Vermorel and Mohri, 2005).

7.1. Adaptive MOLS Algorithm 104

Adaptive Pursuit

Pursuit algorithms relate to classical techniques from machine learning in that the probability to
select any arm is adjusted after each selection of a specific arm. Given a learning rate β, the prob-
abilities at t + 1 are adapted after t (Thathachar and Sastry (1985); Rajaraman and Sastry (1996);
Sutton and Barto (1998); see Equation 7.7).

pi(t+ 1) =

{
pi(t) + β · (1 − pi(t)), if i = arg maxj qj(t)
pi(t) + β · (0 − pi(t)), otherwise

(7.7)

In order to deal with non-stationary contexts, adaptive pursuit was conceived (Thierens, 2005).
In adaptive pursuit, again, a minimum and a maximum (pmin and pmax, with 0 < pmin <

1/n
and pmax = 1 − n · pmin) for the probabilities pi are introduced to leave room for exploration (see
Equation 7.8).

pi(t+ 1) =

{
pi(t) + β · (pmax − pi(t)), if i = arg maxj qj(t)
pi(t) + β · (pmin − pi(t)), otherwise

(7.8)

Multi Armed Bandits

Multi armed bandits (MAB) algorithms, metaphorically referring to the infamous gambling ma-
chines, model a decision problem where the only (or main in some versions) source of information
is history of previous selections (Lai and Robbins, 1985; Sutton and Barto, 1998; Auer et al., 2002).
The only decision to be taken is which arm to pull next. The aim is to maximise the expected out-
come of a finite series of decisions. In an adaptive local search setting, MAB algorithms can be used
to model the decisions to be taken on which sub-algorithm or neighbourhood to select in the next
step given the history of the current search. MAB algorithms have been applied in evolutionary
algorithms (Costa et al., 2008; Maturana et al., 2009; Fialho et al., 2010; Belluz et al., 2015) as well as
in evolution based hyperheuristic settings (Sabar et al., 2015). An early example of an application
to combinatorial optimisation in networks is Gai et al. (2012). The design of algorithms using MAB
was studied in Drugan and Nowé (2013); Yahyaa et al. (2014).

To cope with dynamic situations, MAB-based control approaches can for example be augmen-
ted with restart mechanisms, e.g., the dynamic MAB of (Costa et al., 2008; Maturana et al., 2009)
coupled with a Page-Hinkley test, as well with sliding mechanisms to only focus on the newest
rewards (Fialho et al., 2010).

Upper Confidence Bound

The upper confidence bound 1 (UCB1) algorithm is a MAB algorithm based on the principle of
optimism in the face of uncertainty (Auer et al., 2002). Every decision, it selects the arm that optimises
the expected reward while simultaneously minimises the associated regret (see Equation 7.9).

pi(t+ 1) =

1, if i = arg maxj
(
qj(t) +

√
2·log(t)
nj(t)

)
0, otherwise

(7.9)

While the left part of the equation, qj(t) is simply the expected reward associated to the arm j

(Equation 7.4), the right part ensures that every arm will eventually being selected an infinite num-
ber of times. In the context of algorithm control, a scaling of the right part of the equation by a
given constant is necessary to accommodate non-Boolean rewards (Costa et al., 2008).

ε-Greedy

MAB algorithms, having only history to learn from, need to make decisions that both optimise
the immediate result and optimise the lessons learned for better future results. Handling this ex-
ploitation versus exploration dilemma is what makes a strategy for a MAB. A simple strategy is

7.2. Experimental Protocol 105

to pick the decision that has delivered the best result on average in the past. The MAB can then
eventually start with an exploration phase where every arm is tried once or a predetermined num-
ber of times, after which the greedy strategy is used, adjusting the averages after every decision.
In dynamical situations, the average may be weighted to introduce a bias towards recent history.
These approaches are termed “greedy”. In a slightly more explorative approach, a probability is
introduced to allow for random selection of an arm, independently of its average success rate. This
kind of approaches are called ε-greedy (e.g., see Aleti and Moser, 2016). One possibility is to select
at time t + 1 the best performing arm with a probability of (1 − ε), leaving a probability of ε to
uniformly select an arm at random (see Equation 7.10).

pi(t+ 1) =

{
(1 − ε) + ε/N, if i = arg maxj qj(t)
ε/N, otherwise

(7.10)

Reinforcement Learning

In addition to, as in MAB algorithms, simply learning the optimal arm to select, reinforcement
learning algorithms (Sutton and Barto, 1998) also focus on describing the possible states the system
can be in, to then learn the optimal arm to select in each possible state. Examples of RL algorithms
used for parameter control include Eiben et al. (2006); Whiteson and Stone (2006); Sakurai et al.
(2010); Karafotias et al. (2014).

Other Approaches

Other simple approaches can also be devised. An hybrid mechanism between uniform random
control and probability matching would be one in which the different probabilities for each arm are
statistically defined before the execution. These probabilities could be set using expert knowledge,
with regard to the expected reward for each arm, or also optimised using an offline automatic
configurator.

It would also be possible to use a deterministic approach, in which each arm is used following
a sequence defined before the execution. Again, this sequence could be hand crafted using expert
knowledge but also automatically worked out using an offline automatic configurator.

Finally, other more complex or less general control approaches include the probabilistic rule-
driven adaptive model (PRAM, Wong et al., 2003), predictive parameter control (Aleti and Moser,
2011; Aleti et al., 2014), or adaptive range parameter control (Aleti et al., 2012; Aleti and Moser,
2013).

7.2 Experimental Protocol

In the experiments, we first compare the three deterministic instantiations of Algorithm 4.1, each
using a single exploration strategy (denoted simply by imp, imp-ndom, and ndom, respectively),
to adaptive algorithms (Algorithm 4.2), using a basic random control mechanism or a ε-greedy
control mechanism. While many of the other more sophisticated mechanisms could have also been
compared, as well as other existing adaptive MOLS algorithms (Veerapen and Saubion, 2011; Gret-
sista and Burke, 2017), they would likely be very similar as only three arms were considered, which
considerably limits the number of dissimilar decision strategies.

In the random control mechanism decisions are uniformly taken at random, without any feed-
back from the search, in contrary to the ε-greedy control mechanism that uses feedback to take
decisions. This feedback is computed every iteration using the hypervolume difference between
the hypervolume of the new archive and the one of the previous iteration. It is then used to up-
date the reward associated to the current strategy using a learning rate α = 0.8 (Equation 7.5).
In this study, we set ε = 0.1 (Equation 7.10), meaning that the best performing strategy (i.e., the
arm arg maxi qi(t)) is chosen with 93.3% probability, either strategy being selected uniformly at
random otherwise (3.33% probability each).

7.3. Experimental Results 106

Table 7.1 – Experiments summary

Type Approach 3 arms 2 arms LTL

Deterministic imp X
Deterministic imp-ndom X X
Deterministic ndom X X
Random rand_3 X X
Random rand_2 X X
Random rand_ltl_50 X
Random rand_ltl_20 X
ε-greedy greedy_3 X X
ε-greedy greedy_2 X X
ε-greedy greedy_ltl_50 X
ε-greedy greedy_ltl_20 X

For both control strategies, we consider four different variants, that differ by the subset of ex-
ploration strategies that are available. First, the three exploration strategies are available for both
adaptive algorithms (rand_3, greedy_3). Note that it is already known that the imp strategy
leads to poorer results on the PFSP. But, we still decide to make available this bad strategy in or-
der to evaluate the control mechanism without any a priori knowledge. Secondly, we use this
expertise and only make available the two strategies imp-ndom and ndom for both adaptive al-
gorithms (rand_2, greedy_2). Finally, the last two variants introduce a long-term learning scheme,
beginning with the three strategies but switching to only use the two best strategies during the
search. Two possibilities are evaluated: either after half the total running time of both adaptive
algorithms (rand_ltl_50, greedy_ltl_50), or after twenty percent of the total running time
(rand_ltl_20, greedy_ltl_20).

The experimental protocol is reduced to the simple exhaustive comparison of all approaches on
all benchmark instances. Experiments are conducted across all classical PFSP Taillard instances,
separated in twelve benchmarks of 10 instances sharing the same number of jobs and machines.
Because of the stochasticity of both the algorithm and the control mechanisms, all approaches are
run 20 times on each instance, using a given set of 20 random seeds.

In total, the eleven approaches (three deterministic, eight adaptive) are compared in 4 success-
ive steps as detailed in Table 7.1. First, we compare the three deterministic approaches with the
two adaptive approaches that use all three explorations strategies. Then, we focus on the two best
strategies, and compare the respective two deterministic approaches with the two adaptive ap-
proaches that use them only. Finally, we investigate the potential of a long-term learning scheme for
the two control mechanisms independently, first by switching from three arms to two arms after
half of the runtime has passed (rand_ltl_50, greedy_ltl_50), then after only twenty percent
of the runtime (rand_ltl_20, greedy_ltl_20).

7.3 Experimental Results

The experiments have been conducted on part of the cluster of the ORKAD research group,
CRIStAL laboratory, at the University of Lille, France. The two nodes used are equipped with
two 12-core 3.00GHz Intel Xeon E5-2687W v4 CPUs with 8MB L3 cache and 64GB RAM, running
Archlinux. Computations were conducted in parallel as much as possible.

Table 7.2, Table 7.3, and Table 7.4 present the rankings resulting of the experiments for the
twelve instance sizes, together with the resulting average ranks. For each instance size, the ranking
is computed using pairwise Wilcoxon signed rank tests; a Friedman test post hoc analysis is used to
check the statistical equivalence between algorithms ranked 1 and their difference with the others.

7.3. Experimental Results 107

Table 7.2 – 3-arm ranking

Approach Instance (N,M) Avg.

20 50 100 200 500

5 10 20 5 10 20 5 10 20 10 20 20

imp 5 5 5 5 5 5 5 5 5 5 5 5 5
imp-ndom 4 4 3 4 4 4 4 1 2 1 2 1 2.8
ndom 1 1 3 1 1 1 1 1 1 1 1 1 1.2
rand_3 1 1 1 1 1 1 1 1 2 3 3 3 1.6
greedy_3 1 1 1 1 1 1 1 1 2 3 3 3 1.6

Table 7.3 – 2-arm ranking

Approach Instance (N,M) Avg.

20 50 100 200 500

5 10 20 5 10 20 5 10 20 10 20 20

imp-ndom 4 4 3 4 4 4 4 4 4 4 4 1 3.7
ndom 1 1 3 1 1 1 1 1 1 1 1 1 1.2
rand_2 1 1 1 1 1 1 1 1 2 1 1 1 1.1
greedy_2 1 1 1 1 1 1 1 1 2 1 1 1 1.1

7.3.1 3-arm Results

First, we focus on the 3-arm adaptive approaches, rand_3 and greedy_3, comparing them to the
three respective deterministic approaches imp, imp-ndom and ndom. As detailed on Table 7.2, the
imp and ndom approaches always perform very poorly and very well, respectively. Meanwhile, the
imp-ndom approach performs rather poorly in small instances, but achieves very good results on
the largest ones. Surprisingly, the two adaptive approaches (rand_3 and greedy_3) equivalently
perform. More precisely, they perform very well on the first eight instances (rank 1), but their
performance are more debatable on the four largest ones. Indeed, for instances with 100 jobs and
20 machines, they are outperformed by the deterministic approach ndom and equivalently perform
with the imp-ndom approach. But, for instances with 200 and 500 jobs, they are also outperformed
by this latter approach. In these cases, they are still better than the imp approach. This results show
that the imp approach affects more the adaptive algorithms when the problem gets harder.

7.3.2 2-arm Results

Then, in the second step, as shown on Table 7.3, the imp approach is discarded and we focus on
the 2-arm adaptive approaches (rand_2 and greedy_2) that have only the choice between the
imp-ndom and ndom exploration strategies. Once again, the two adaptive approaches equival-
ently perform. However, they are rank 1 for all the instances except for the 100-jobs 20-machines
instances (rank 2). Considering only the well performing exploration strategies largely improves
the adaptive approaches for the largest instances.

7.3.3 Long Term Learning Results

Having validated that the imp arm should not be used on larger machines instances, we finally
investigate a long-term learning scheme where arms can be discarded during the execution of the
algorithm if they are worse than the others. Two approaches have been tested: the discard of
the worst strategy is done after either fifty percent (rand_ltl_50, greedy_ltl_50) or twenty
percent (rand_ltl_20, greedy_ltl_20) of the total running time. In order to effectively ana-

7.4. Discussions 108

Table 7.4 – Long-time learning ranking

Approach Instance (N,M) Avg.

20 50 100 200 500

5 10 20 5 10 20 5 10 20 10 20 20

rand_3 4 4 2 4 4 4 4 4 4 4 4 3 3.8
rand_ltl_50 3 1 2 1 1 1 3 3 3 2 3 3 2.2
rand_ltl_20 1 1 2 1 1 1 1 1 1 2 2 2 1.3
rand_2 1 1 1 1 1 1 1 1 1 1 1 1 1

greedy_3 1 1 1 1 4 4 4 4 4 4 4 3 2.9
greedy_ltl_50 1 1 1 1 1 1 3 3 3 3 2 3 1.9
greedy_ltl_20 1 1 1 1 3 1 1 1 1 1 2 2 1.3
greedy_2 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 7.5 – Complete ranking

Approach Instance (N,M) Avg.

20 50 100 200 500

5 10 20 5 10 20 5 10 20 10 20 20

imp 11 11 11 11 11 11 11 11 11 11 11 11 11
imp-ndom 10 10 9 10 10 10 9 7 6 4 4 1 7.5
ndom 1 1 9 1 1 1 1 1 1 1 1 1 1.7
rand_3 9 9 6 9 9 7 10 10 9 9 9 9 8.8
rand_ltl_50 8 1 6 1 5 1 7 7 6 6 7 7 5.2
rand_ltl_20 1 1 6 1 5 1 5 1 2 6 5 5 3.2
rand_2 1 1 1 1 1 1 1 1 2 1 1 1 1.1
greedy_3 1 1 1 1 8 9 8 9 9 9 10 9 6.2
greedy_ltl_50 1 1 1 1 1 7 5 6 8 6 7 7 4.2
greedy_ltl_20 1 1 1 1 5 1 1 1 2 4 6 5 2.4
greedy_2 1 1 1 1 1 1 1 1 2 1 1 1 1.1

lyse this long-term learning scheme, the two adaptive approaches are investigated and ranked
separately. Results are shown on Table 7.4. Unsurprisingly, the 2-arm versions of both adaptive
approaches always statistically outperform their respective 3-arm versions and so for the versions
using the long-term learning. Introducing long-term learning to only keep well-performing arms
is efficient. The ranking between the two control mechanisms rand and greedy are not the same
size by size, but the average ranks show that it is more efficient to discard an arm sooner since
rand_ltl_20 and greedy_ltl_20 are better ranked than rand_ltl_50 and greedy_ltl_50
respectively. These results demonstrate how control mechanisms can effectively identify and eval-
uate the performance of strategies during the search.

7.4 Discussions

Table 7.5 summarises all experiments and shows the overall ranking of the eleven approaches on
each instance size and shows the final average ranks.

Regarding the three deterministic approaches, while the imp approach is always ranked last,
the ndom approach is almost always ranked first, only beaten on the 20-job 20-machine instance
where it is outperformed by all adaptive approaches. Regarding the adaptive approaches, both the
2-arm approaches rand_2 and greedy_2 are the best performing, then are ranked the ltl_20
ones and the ltl_50 ones. The approaches using the random control mechanism generally per-

7.5. Perspectives 109

form worse than the ones using the ε-greedy mechanism, especially for the 3-arm variants and
the long-term learning variants. Interestingly, even the random adaptive approach performs really
well when considering the two imp-ndom and ndom arms, potentially meaning that the adapt-
ive algorithms will achieve very good results as long as there is no critically bad performing arm
available. However, the long-term learning variants show that it is possible to identify, remove and
recover in such event.

In conclusion, our experiments showed that is was possible, and beneficial, to combine multiple
MOLS configurations during the search. While the adaptive algorithm did not in the end outper-
formed the best static MOLS variant, it was able to statistically match its performance. Note that the
configuration provided by a AAC procedure is relative to a given distribution of training instances,
and aims to optimise the performance on all instances; being able to use multiple configurations
means a better probability of using the best configurations of the particular instance being solved.

Finally, we also showed that if a bad configuration was initially provided to the adaptive MOLS
algorithm, it was possible to identify and remove it during the search while still achieving good
results.

7.5 Perspectives

In this chapter we focused on one of the feature and drawback of offline algorithm design (Part III):
it predicts a single configuration whose parameters values stay fixed during the execution.

More specifically, we focused on integrating generic control mechanisms in multi-objective local
search (MOLS) algorithms, to enable the use of multiple strategies during the execution of the
MOLS algorithm. We showed that even very simple control mechanisms were able to efficiently
combine multiple exploration strategies without noticeable performance loss, given that the least
effective strategies are correctly and rapidly identified.

In the following, we detail four perspective that are related to this chapter.

Controlling a larger number of arms. We focused on using only three arms, which individual
performance were already well known due to previous experiments, in order to be able to better
understand and explain our results.

Having demonstrated that it was possible to identify and focus on the best-performing
strategies during the run, the natural next step is to consider more alternative strategies, possibly
on other problems (e.g., the travelling salesman problem or the quadratic assignment problem de-
scribed in Chapter 1), to study scenarios in which the best arms are less clear.

Multi-parameters control mechanisms. Our adaptive MOLS algorithm focused on a single para-
meter of the static MOLS algorithm: the exploration strategy, while every other parameter was
fixed. However, offline mechanisms (also, configuration scheduling) are able to optimise many
more individual independent parameters. Another perspective would be to focus on simultan-
eously controlling multiple parameters of the static MOLS algorithm, for example either two para-
meters from the exploration step (e.g., the exploration strategy and the number of neighbours
sought as an additional numerical parameter), or two different categorical parameters (e.g., the
selection and explorations strategies).

Using more complex control mechanisms. Naturally, more alternative strategies means that it
would be required to use the more advanced control mechanisms that were until now not con-
sidered. After the very simple mechanisms that we used, the most relevant mechanisms would be
those directly based on multi-armed bandits algorithms and reinforcement learning.

7.5. Perspectives 110

Offline design of adaptive algorithms. Finally, control mechanisms themselves often expose new
parameters that need to be set, in addition to the parameters of the underlying algorithm. There
may also be alternatives in use of the feedback that is used to compute performance predictions.
Another natural perspective would then be to use an offline configurator (e.g., (MO-)ParamILS,
presented in Chapter 5) to automatically select the best performing control mechanisms, together
with its set of parameter and the most suitable feedback source.

Chapter 8

MOLS Configuration Scheduling

Weak emperors mean strong viceroys.

Foundation
Isaac Asimov

In Chapter 6, we analysed the offline automatic design of a static multi-objective local search
(MOLS) algorithm, using automatic algorithm configuration (AAC) and more specially the MO-
ParamILS, the multi-objective automatic configurator presented in Chapter 5. Then, in Chapter 7,
we investigated the online automatic design of an adaptive MOLS algorithm, through the use of
generic control mechanisms, to complement and overcome some of the drawbacks of AAC.

In this chapter, we investigate the use of schedules of MOLS configurations, and their automatic
offline configuration. That is, instead of either predicting the best single MOLS configuration (al-
gorithm configuration), or dynamically trying to find the best parameters values during the search
(parameter control), we propose to predict the best sequence of configurations, in order to en-
able more modularity and increase potential performance. This approach is described in detail in
Chapter 4.

We more specifically aim to overcome one specific drawback of AAC: that different configura-
tions may be optimal at different parts of the search. Indeed, it may for example be beneficial to
use some strategies at the start of the search to start from good solutions, then switch to another
strategy to efficiently converge close to the optimal solutions, then finally use yet another strategy
once improving solutions becomes very hard.

After having presented the subset of the static MOLS configuration space that we use in the
experiments, we investigate the automatic configuration of MOLS schedules in three successive
steps. First, we perform an exhaustive analysis of the subset of the MOLS configuration space, thus
constructing the baseline that can be obtained by using schedules containing a single configura-
tions. Then, we successively analyse the automatic design of schedules accommodating two, and
then three configurations, while the possible time budget splits are set in advance.

The experiments are conducted on the permutation flowshop scheduling problem (PFSP) in-
stances presented in Chapter 1.

8.1 MOLS Configurations

We use the static MOLS algorithm presented in Chapter 6, using the configuration space described
in Table 8.1. This configuration space Θ only comprises 60 possible configurations.

Three configurable dynamic algorithm frameworks are considered, in which multiple types of
schedules are allowed. We denote by K the maximal length k allowed for the schedules. First, as a
baseline, we consider frameworks with K = 1, meaning that the schedule is constituted by a single
configuration for the entire run. Then, we investigate frameworks with K = 2 and K = 3, i.e., en-
abling the use of schedules of size 2 and 3, respectively. For the frameworks withK = 2, we consider

111

8.2. Experimental Protocol 112

Table 8.1 – Investigated MOLS configuration space (60 configurations)

Phase Parameter Parameter values

Selection select-strat {all, rand, newest, oldest}
Selection select-size 1
Exploration explor-strat {all, all-imp, imp, imp-ndom, ndom}
Exploration explor-ref arch
Exploration explor-size 5
Archive bound-strat unbounded
Perturbation perturb-strat {kick, kick-all, restart}
Perturbation perturb-size 1
Perturbation perturb-strength 3

t = 0 t = T
time

(T)

(T/2, T/2)

(T/4, 3T/4)

(3T/4, T/4)

(T/3, T/3, T/3)

(T/4, T/4, T/2)

(T/2, T/4, T/4)

k = 1

k = 2

k = 3

Figure 8.1 – The seven types of schedules used in the experiments

possible time budgets of (T), (T/2, T/2), (T/4, 3T/4), and (3T/4, T/4). For the frameworks with K = 3,
we consider in addition possible time budgets of (T/3, T/3, T/3), (T/4, T/4, T/2), and (T/2, T/4, T/4).
These seven types of schedules are pictured in Figure 8.1. As every sub-configuration of a sched-
ule has 60 possible values, for K = 2 (i.e., k ∈ 1, 2), this results in a final configuration space of
60 + 3 · 602 = 10 860 possible schedules. For K = 3, (i.e., k ∈ 1, 2, 3), this results in a final configur-
ation space of 60 + 3 · 602 + 3 · 603 = 658 860 possible schedules, a much bigger space that the large
space of Chapter 6. This exponential growth explain why only schedules of size k ∈ 1, 2, 3 have
been considered, why we restricted the initial Θ configuration space to only 60 configurations, and
why the possible time budget were statistically fixed.

As for the algorithm itself, its entire time budget is devoted to the configuration schedule and
an instantaneous initialisation of 10 solutions uniformly taken at random from the search space
was preferred to more efficient but longer initialisation procedures. The total running time is fixed
to T = n2m/1 000 CPU seconds as in Chapter 6.

8.2 Experimental Protocol

Three experiments are conducted successively, to consider the different sizes of frameworks inde-
pendently. First, we consider the K = 1 frameworks. As there are only 60 possible schedules using

8.3. Experimental Results 113

Table 8.2 – Training computational time

Jobs Machines 1 MOLS run K = 1 K = 2 K = 3

20 20 8 seconds 8 minutes 2.22 hours 22.22 hours
50 20 50 seconds 50 minutes 13.89 hours 5.79 days

100 20 3.33 minutes 3.33 hours 2.31 days 23.15 days
200 20 13.33 minutes 13.33 hours 9.26 days 92.59 days

a single configuration, we investigate them exhaustively by aggregating their performance over
15 runs on each of the 10 Taillard instances. Similarly as in previous chapters, we use both the
hypervolume (HV) and the ∆ ′ spread.

Then, for both K = 2 and K = 3 frameworks, as the number of possible schedules grows expo-
nentially we use MO-ParamILS to automatically configure the sequences of configurations. We use
the configuration protocol of Chapter 5. For training, we generated 100 new Taillard-like instances,
using the original instance generator process. MO-ParamILS was run 20 times for both frame-
works, with a configuration budget of 1 000 MOLS runs for K = 2 (for 10 860 possible schedules)
and 10 000 runs for K = 3 (for 658 860 possible schedules).

Table 8.2 describes, for different PFSP instance sizes, the running time of a single MOLS runs,
the time required to exhaustively evaluate K = 1 frameworks (i.e., 60 MOLS runs), and the training
time of a single MO-ParamILS runs for K = 2 (i.e., 1 000 MOLS runs), and K = 3 (i.e., 10 000 MOLS
runs). Note that to obtain the total computation time, theses training times (for K = 2 and K = 3)
should be multiplied by the number of MO-ParamILS runs (here, 20), and that the time required
for the validation and test steps are not included.

In the following, we choose to conduct the experiments on two smallest classes of small PFSP
instances of Table 8.2. We focus on the classical Taillard instances with 50 jobs and 20 machines, as
they are already much harder to solve than smaller instances, while keeping the running time quick
enough (50 CPU seconds). They are also the smallest PFSP instances considered in Chapter 6. In
addition to them, we also consider smaller instances, with only 20 jobs and 20 machines, as they are
much faster to solve. Due to the considerable amount of time required by the experiments, larger
size of instances (e.g., 100 or 200 jobs) have not been considered.

8.3 Experimental Results

The experiments have been conducted on part of the cluster of the ORKAD research group,
CRIStAL laboratory, at the University of Lille, France. The two nodes used are equipped with
two 12-core 3.00GHz Intel Xeon E5-2687W v4 CPUs with 8MB L3 cache and 64GB RAM, running
Archlinux. Computations were conducted in parallel as much as possible.

8.3.1 Exhaustive Enumeration

Figure 8.2 shows the average performance of all 60 possible schedules using exactly one config-
uration (K = 1) over the 10 Taillard instances (left: instances with 20 jobs and 20 machines; right:
instances with 50 jobs and 20 machines). Pareto optimal configurations are circled in red, while
also described in Table 8.3 and Table 8.4.

On the 50-job instances, 10 of the 60 configurations are non-dominated. Results are coherent
with the exhaustive study of Chapter 6, with a cluster of configurations having a good hyper-
volume (low 1 −HV) but a poor ∆ ′ spread, and configurations with a much better distribution but

8.3. Experimental Results 114

0.53 0.54 0.55 0.56 0.57

0.5

0.6

0.7

0.8

1-HV

∆ ′

PFSP 20 jobs 20 machines – Test

Pareto
dominated

0.49 0.5 0.51 0.52

0.5

0.6

0.7

0.8

0.9

1

1-HV

∆ ′

PFSP 50 jobs 20 machines – Test

Pareto
dominated

Figure 8.2 – Initial search space and optimal configurations (K = 1; left: 20 jobs; right: 50 jobs)

Table 8.3 – Optimal configurations (K = 1; PFSP 20 jobs)

1 −HV ∆ ′ Selection Exploration Perturbation

0.5322 0.8464 random imp-ndom restart
0.5324 0.8450 random ndom restart
0.5338 0.8486 random ndom kick
0.5340 0.8414 older ndom kick
0.5346 0.8297 random ndom kick-all
0.5368 0.8253 older all restart
0.5373 0.8172 older all kick
0.5390 0.8161 older all kick-all
0.5403 0.7983 newest ndom kick
0.5409 0.7076 all all-imp restart
0.5414 0.6759 all imp restart
0.5422 0.6515 random all-imp restart
0.5430 0.6164 random imp restart
0.5495 0.6056 all all-imp kick-all
0.5514 0.5495 all imp kick-all
0.5519 0.5429 all imp kick
0.5588 0.5376 older imp kick
0.5592 0.5291 older imp kick-all
0.5598 0.4931 random all-imp kick-all
0.5613 0.4743 random all-imp kick

8.3. Experimental Results 115

Table 8.4 – Optimal configurations (K = 1; PFSP 50 jobs)

1 −HV ∆ ′ Selection Exploration Perturbation

0.4848 0.9706 random ndom kick-all
0.4850 0.9608 random ndom kick
0.4853 0.9568 all ndom restart
0.4854 0.9345 older ndom kick
0.4856 0.9060 older ndom kick-all
0.4889 0.5719 all imp restart
0.5023 0.5151 all imp kick
0.5024 0.5063 all imp kick-all
0.5036 0.4975 random imp restart
0.5114 0.4862 random imp kick-all

a much poorer hypervolume. The Pareto front is well separated between the two types of config-
urations, the first using the ndom exploration strategy, while the second uses the imp exploration
strategy.

Very interestingly, a single of the 60 configurations achieves both a very good hypervolume
and a very good spread, using a combination of the all selection strategy, the imp exploration
strategy, and the restart perturbation strategy. This is surprising first because first it has no
close neighbour in the objective space, hinting that the performance of the configuration is more
due to the particular combination of parameters, rather than only its strategy components, and
second because this particular region of the objective space was not reached by any of the final
configurations of Chapter 6.

On the 20-job instances, 20 of the 60 configurations are non-dominated. The configurations
seem less clustered, and the configurations better distributed along the Pareto front. The optimal
configurations are much more diverse than on the 50-job instances, and include strategies such as
the newest selection strategy, the all, all-imp, and imp-ndom exploration strategies. For both
sizes of instances, there is no clear consensus on the perturbation strategy.

8.3.2 K = 2 Configuration Schedules

Figure 8.3 shows the average performance of the configuration schedules resulting from the test
step of MO-ParamILS, on the 10 Taillard instances, when schedules using two configurations (K =

2) are available (left: instances with 20 jobs; right: instances with 50 jobs). These configurations are
separated according to the length k of their schedule, and are described in Table 8.5. To facilitate
the analysis, the 60 configurations of the exhaustive enumeration are also shown for both sizes of
instances.

On 50-job instances, the AAC approaches only resulted in schedules using two successive con-
figurations. Conversely, on 20-job instances, half of the Pareto front, corresponding to the schedules
that achieves better hypervolume, use a single configuration, while the other half use two success-
ive configurations. The schedules that use two successive configurations are slightly more efficient
than the schedules using a single configuration on the 20-job instances. On the 50-job instances,
save from the singular configuration that achieves both a very good hypervolume and a very good
spread, the 59 other schedules composed by a single configuration are all dominated by the final
schedules. Unfortunately, no general trend arises from the time budget decomposition used.

On 50-job instances, a large number of the configuration schedules are able to achieve very
good compromises between hypervolume and ∆ ′ spread, that were not achieved by any of the
configurations of Chapter 6.

Regarding the strategies selected in the final schedules, the only sensible observation is that
the restart perturbation strategy seems slightly favoured on 20-job instances, while kick-all

8.3. Experimental Results 116

0.53 0.54 0.55 0.56 0.57

0.5

0.6

0.7

0.8

1-HV

∆ ′

PFSP 20 jobs 20 machines – Test

k = 1
k = 2

0.48 0.49 0.5 0.51 0.52

0.6

0.8

1

1-HV

∆ ′

PFSP 50 jobs 20 machines – Test

k = 1
k = 2

Figure 8.3 – Final optimised configuration schedules (K = 2; left: 20 jobs; right: 50 jobs)

Table 8.5 – Final optimised configuration schedules (K = 2; PFSP 20 jobs)

1 −HV ∆ ′ k Ti Selection Exploration Perturbation

0.5322 0.8424 1 − random imp-ndom restart

0.5345 0.8398 1 − older imp-ndom restart

0.542 0.8233 1 − newest imp-ndom restart

0.542 0.8211 1 − newest ndom restart

0.5422 0.6515 1 − random all-imp restart

0.5429 0.6489 2 1/4 newest imp kick
3/4 random imp restart

0.543 0.6164 1 − random imp restart

0.5485 0.5739 2 1/4 newest all-imp restart
3/4 all all-imp kick

0.549 0.5311 2 1/4 older all-imp restart
3/4 random all-imp kick

0.5561 0.4939 2 3/4 all imp kick-all
1/4 older imp kick-all

8.3. Experimental Results 117

Table 8.6 – Final optimised configuration schedules (K = 2; PFSP 50 jobs)

1 −HV ∆ ′ k Ti Selection Exploration Perturbation

0.4809 0.9523 2 1/2 older ndom restart
1/2 random all kick-all

0.4819 0.9428 2 3/4 older imp-ndom restart
1/4 all ndom restart

0.4850 0.7776 2 3/4 older ndom restart
1/4 all all-imp restart

0.4865 0.7582 2 1/2 older ndom restart
1/2 all imp kick

0.4912 0.7415 2 3/4 all ndom kick-all
1/4 random all-imp restart

0.4914 0.7371 2 3/4 all ndom kick-all
1/4 random all-imp kick-all

0.4930 0.6729 2 3/4 newest ndom restart
1/4 random all-imp kick

0.4959 0.6473 2 3/4 newest ndom kick
1/4 random all-imp kick

0.4967 0.6374 2 1/4 newest ndom kick-all
3/4 all imp kick

0.4974 0.5900 2 1/2 all all kick-all
1/2 all imp kick-all

0.5009 0.5614 2 1/2 newest ndom kick-all
1/2 random all-imp kick-all

0.5012 0.4649 2 3/4 all imp restart
1/4 random all-imp kick-all

8.4. Discussions 118

0.53 0.54 0.55 0.56 0.57

0.5

0.6

0.7

0.8

1-HV

∆ ′

PFSP 20 jobs 20 machines – Test

k = 1
k = 2
k = 3

0.48 0.49 0.5 0.51 0.52

0.5

0.6

0.7

0.8

0.9

1

1-HV

∆ ′

PFSP 50 jobs 20 machines – Test

k = 1
k = 2
k = 3

Figure 8.4 – Final optimised configuration schedules (K = 3; left: 20 jobs; right: 50 jobs)

is slightly favoured on 50-job instances. An explanation would be that 20-job instances are easy
enough so that few lucky individual MOLS runs can reach optimal solutions, implying that always
restarting is a viable strategy. This does not hold for larger instances.

8.3.3 K = 3 Configuration Schedules

Similarly, Figure 8.4 shows the average performance of the configuration schedules resulting from
the test step of MO-ParamILS, on the 10 Taillard instances, when schedules using three successive
configurations (K = 3) are available (left: instances with 20 jobs; right: instances with 50 jobs).
These configurations are separated according to the length k of their schedule, and are described
in Table 8.7 and Table 8.8. Again, to facilitate the analysis, the 60 configurations of the exhaustive
enumeration are also shown for both sizes of instances.

On the 20-job instances, a single of the seventeen final schedules uses a single configuration. The
other schedules, together with the schedules of the 50-job instances, use two or three configurations
while very slightly favouring using three configurations. In comparison to Figure 8.4, this time
every of the 60 schedules composed by a single configuration are dominated by at least one of
the final schedules. Unfortunately, as previously, no general trend arises from the time budget
decomposition used.

Again, on 50-job instances, a large number of the configuration schedules are able to achieve
very good compromises between hypervolume and ∆ ′ spread, that were not achieved by the con-
figurations of Chapter 6.

Finally, the perturbations strategies of the final schedules are coherent to the previous ones:
the restart strategies is clearly favoured on 20-job instances, while the schedules on the 50-jobs
instances often use a combination of both the restart and the kick-all perturbation strategies.

8.4 Discussions

Figure 8.5 compares the three sets of non-dominated configurations from the exhaustively enumer-
ated search space (K = 1) and optimised (K = 2 and K = 3) configuration schedules.

On 20-job instances, while the enumeration of the 60 configurations resulted in a very well-
distributed Pareto front, the search of K = 2 configuration schedules was only very slightly bene-
ficial, giving very similar performing configurations schedules. On the contrary, with K = 3 many
new configuration schedules out-perform the previously found ones.

8.4. Discussions 119

Table 8.7 – Final optimised configuration schedules (K = 3; PFSP 20 jobs)

1 −HV ∆ ′ k Ti Selection Exploration Perturbation

0.5312 0.8417 2 3/4 random all restart
1/4 random ndom restart

0.5315 0.8298 3 1/2 random all restart
1/4 all ndom kick
1/4 random all restart

0.5338 0.8035 2 3/4 older ndom restart
1/4 random all-imp restart

0.5359 0.8029 3 1/2 older imp-ndom restart
1/4 random imp restart
1/4 all all-imp restart

0.5364 0.7751 3 1/3 newest ndom kick-all
1/3 older ndom restart
1/3 all imp restart

0.5371 0.7739 2 1/4 older ndom restart
3/4 all imp restart

0.5374 0.7723 3 1/2 random imp-ndom kick-all
1/4 older all restart
1/4 all imp restart

0.5376 0.7223 2 3/4 newest imp-ndom restart
1/4 random all-imp restart

0.5397 0.6979 2 3/4 all imp restart
1/4 random all-imp restart

0.5405 0.6751 3 1/2 older imp restart
1/4 newest imp restart
1/4 random all-imp restart

0.5406 0.6637 3 1/2 newest imp restart
1/4 random all-imp kick-all
1/4 random imp restart

0.5419 0.6527 3 1/2 older imp kick-all
1/4 newest imp restart
1/4 random all-imp restart

0.543 0.6164 1 − random imp restart

0.5446 0.5971 2 3/4 newest imp restart
1/4 random imp kick-all

0.5458 0.5926 3 1/2 older all-imp restart
1/4 newest imp kick
1/4 random imp kick

0.5489 0.5359 3 1/2 random imp kick
1/4 newest imp restart
1/4 all imp kick

0.5494 0.5282 2 1/4 newest all-imp restart
3/4 random imp kick-all

8.4. Discussions 120

Table 8.8 – Final optimised configuration schedules (K = 3; PFSP 50 jobs)

1 −HV ∆ ′ k Ti Selection Exploration Perturbation

0.4803 0.9527 2 3/4 older ndom restart
1/4 all ndom kick-all

0.4806 0.9366 3 1/2 older ndom restart
1/4 random imp-ndom kick
1/4 random ndom kick

0.4835 0.8326 3 1/2 older ndom restart
1/4 all ndom kick-all
1/4 all all-imp restart

0.4851 0.7796 2 3/4 older ndom restart
1/4 all imp kick-all

0.4875 0.7623 3 1/2 older ndom restart
1/4 random all-imp kick
1/4 all all-imp restart

0.4896 0.7403 3 1/2 older imp-ndom restart
1/4 random imp kick-all
1/4 random all-imp restart

0.4941 0.63 3 1/2 newest imp-ndom restart
1/4 older all-imp kick-all
1/4 random all-imp restart

0.495 0.621 3 1/2 newest imp-ndom restart
1/4 random imp kick
1/4 random all-imp kick-all

0.4987 0.5266 3 1/2 all imp restart
1/4 all all-imp kick
1/4 random imp restart

0.5013 0.5177 2 1/4 newest all-imp restart
3/4 random all-imp restart

0.5063 0.4992 3 1/2 newest all-imp restart
1/4 random imp kick-all
1/4 random imp kick

8.5. Perspectives 121

0.53 0.54 0.55 0.56

0.5

0.6

0.7

0.8

1-HV

∆ ′

PFSP 20 jobs 20 machines – Test

K = 1
K = 2
K = 3

0.48 0.49 0.5 0.51

0.6

0.8

1

1-HV

∆ ′

PFSP 50 jobs 20 machines – Test

K = 1
K = 2
K = 3

Figure 8.5 – Final comparison

On 50-jobs instances, the enumeration of the 60 considered configurations resulted in the two
clusters of configurations is coherent with the observations of Chapter 6, and a single, very surpris-
ing, configuration achieving a very good compromise between hypervolume and ∆ ′ spread, that
previously investigated configurations were unable to achieve. Both K = 2 and K = 3 configuration
schedules achieve similar looking Pareto fronts, with numerous schedules with good compromises
between hypervolume and ∆ ′ spread.

In conclusion, on both datasets, the use of configuration schedules led to many new algorithms
that outperformed most if not all of the initial configurations they are constituted from. However,
the major drawback of this approach is the combinatorial explosion of the number of possible
configuration schedules.

Nonetheless, this chapter only presented preliminary results, that did not took this drawback
into account but yet sufficed to show the potential of this approach. Future works on this topic
should, within other perspectives, focus on alleviate this combinatorial explosion by, for example,
better consider the structure of the search space by iteratively constructing the schedules and prun-
ing the search space of uninteresting strategies.

8.5 Perspectives

In this chapter we continued to focus on one of the drawback of offline algorithm design (Part III),
which is that it predicts a single configuration whose parameters values stay fixed during the exe-
cution.

More specifically, we investigated using offline algorithm design techniques on schedules of
configurations. We showed that even statically determined schedules of configurations were able
to easily reach better performance and compromises between convergence and distribution that
were not found in the experiments of Chapter 6.

In the following, we detail two perspectives that are related to this chapter.

Schedule-independent parameters. The size of the configuration space of the schedule grows
exponentially with the number of sub-configurations considered. As such, only very few parameter
were considered to be controlled by the schedule, while all the other were manually fixed. A
continuation of our work would be to include these parameters, independently, in addition to the
schedule parameters, so they can also be automatically optimised by the configuration process.

8.5. Perspectives 122

Dynamic time budgets. Furthermore, during the experiments of Chapter 8 we used a very small
number of possible time schedules, that were manually fixed. These schedule, along with the
number of configurations composing the schedule, can also be automatically determined. While a
too precise description of the time budget would induce far too many possible schedules, it would
nevertheless be very interesting to allow more diversity in how the budget is divided.

General Conclusion

Not all those who wander are lost.

The Fellowship of the Ring
J.R.R. Tolkien

Automatic algorithm design (AAD) is a recent but thriving research field. It has reached a
point where efficient tools became easily usable and actually used in practice. Multi-objective op-
timisation is one of the most recent direction toward which AAD is developing, with renewed
interest from both communities. We strongly believe that this direction of work will highly bene-
fit designers of single-objective algorithms, multi-objective algorithms, and automatic design tools
altogether, by further enabling even better raw performance and understanding of algorithmic
components.

Contribution Summary

In this thesis, we investigated the multi-objective automatic design of a particular class of multi-
objective metaheuristics, the multi-objective local search (MOLS) algorithms. In the following, we
summarise our main contributions.

Automatic algorithm design (AAD). Within many others, algorithm selection, algorithm config-
uration, parameter tuning, parameter control, hyper-heuristics, reactive and autonomous search,
are research fields that focus on systematically optimising the search process, as opposed to solely
optimising the search results.

We proposed a new taxonomy to unify these research fields under the larger field of automatic
algorithm design. Our taxonomy is based on two general viewpoints. First, a temporal viewpoint,
according to which approaches are already divided between offline approaches that are optimised
prior to their execution and online approaches that are adapted during their execution Then, a struc-
tural viewpoints, according to which approaches are classified based on the algorithmic structure of
the elements being optimised. We also discussed a complementary complexity viewpoint, related
to the available available knowledge sources.

Multi-objective local search (MOLS) algorithms. Local search algorithms are first and foremost
known for being very effective on single objective problems. Often being introduced either as direct
multi-objective extensions of known single-objective local search algorithms, as part of bigger evol-
utionary algorithms, or as independent original multi-objective algorithms, many multi-objective
approaches use local search techniques. However, these approaches are less well-known and stud-
ied than their single-objective counterparts.

We first conducted a chronological survey of the use of local search techniques on multi-
objective problems, and discussed their characteristics, detailing for each local search component
the existing strategies found in the literature. From this analysis followed a new unification pro-
position, building on existing unifications but further generalising to other single-trajectory multi-
objective local search algorithms.

123

Contribution Summary 124

MO-ParamILS. ParamILS is an efficient and very well known algorithm configuration frame-
work. However, similarly to the other available configuration tools of the literature (e.g., irace,
SMAC, GGA, GGA++), it is only able to consider a single performance metric.

In order to overcome this limitation, we formally defined multi-objective automatic algorithm
configuration, discussed its use cases, and more importantly we presented MO-ParamILS, our
extension of ParamILS for multiple performance indicators. We validated the efficiency of MO-
ParamILS by comparing its two variants MO-BasicILS and MO-FocusedILS against a baseline us-
ing ParamILS, on various classical optimisation scenarios extended to two performance indicators.
In particular, we used MO-ParamILS to configure both the final solution quality and the running
time of CPLEX, a well known commercial mixed integer programming optimiser, and to configure
both the memory usage and running time of SAT-solver CLASP. In all five scenarios we considered,
similarly as for ParamILS for which FocusedILS generally outperforms BasicILS, MO-FocusedILS
outperformed MO-BasicILS as well as the baseline.

MOLS automatic configuration. Performance assessment of multi-objective algorithms is tradi-
tionally conducted using multiple complementary multi-objective performance indicators. While
multi-objective algorithms can be optimised by classical single-objective configurators according
to a single metric, one of the main goal of introducing multi-objective algorithm configuration and
proposing MO-ParamILS was specifically to take advantage of multiple performance indicators
during the optimisation process.

We investigated this use case in depth by considering the automatic configuration of a MOLS
algorithm with regard to two complementary performance traits: convergence and distribution of
the final solutions. We considered three classical bi-objective permutation-based problems: the
permutation flowshop scheduling problem (PFSP), the travelling salesman problem (TSP), and
the quadratic assignment problem (QAP). The MOLS algorithm considered is a classical, static,
and highly parameterised MOLS algorithm that exposes many possible combinations of strategies
found in the literature. We first exhaustively investigated a subset of the design space of the MOLS
algorithm to analyse it directly, then automatically configured it first on literature instances, then
on specially crafted instance on which correlation between objectives is hand-tuned.

Regarding MOLS algorithms in particular, we highlighted the impact of individual strategies
on convergence and distribution and computed optimised combinations of strategies of the vari-
ous considered scenarios. Regarding configuration of multi-objective algorithms in general, we
showed that multi-objective approaches (such as MO-ParamILS) were more suitable than hybrid
approaches using classical single-objective configurators (such as ParamILS). These observations
have been validated across the various scenarios involving different sizes of instances as well as
different degree of correlation between objectives.

One of key point of classical automatic algorithm configuration is that the configurator tool
predict parameter values that stay fixed during the execution of the algorithm. We investigated
two extensions of algorithm configuration, for which preliminaries are presented in the last two
chapters of this thesis, that focus on algorithms that are able to combine multiple strategies along
the execution: first parameter control, then configuration scheduling.

MOLS parameter control. The first extension was to consider control mechanisms that are able
to repeatedly switch between several alternative strategies during the execution of the algorithm.

We discussed the integration of generic control mechanisms inside our static MOLS algorithm,
proposed an adaptive MOLS algorithm in which the exploration strategy is adapted between each
iteration of an iterated local search scheme according to its performance. After reviewing the
simplest control mechanisms that we could easily integrate in our adaptive algorithm, we selected
and investigated the impact of two of them: a uniform random control mechanism and a ε-greedy
mechanism. We conducted three successive studies: first using a set of three possible exploration
strategies, then a set of the two most efficient exploration strategies, and finally an hybrid approach
of long-term learning in which the third and least effective strategy is identified and removed during
the search process.

Future Research 125

As result, we showed that it was possible to take advantage of several strategies without loss of
performance. Even using the very simplest control mechanisms, we were able to effectively match
the performances of a static approach solely using the best exploration strategy, even if sub-optimal
strategies were considered at the start of the search process.

MOLS configuration scheduling. Finally, the second extension was to consider multiple MOLS
configurations, that are sequentially used with regard to a static schedule. This approach enables
modifications of the strategies and parameter values during the execution of the algorithm, which is
classically not possible. Configurations schedules can also be optimised using standard automatic
algorithm configuration tools, thus conserving one of the main advantages of static algorithms.

We formally defined configuration scheduling, and investigated schedules of MOLS config-
urations on the PFSP. Specifically, we analysed the automatic configuration of schedules of two
and three configurations, using MO-ParamILS as the automatic configurator. We showed very
promising results, with many schedules easily outperforming static MOLS variants while simul-
taneously achieving much better and diverse compromises between convergence and distribution.

Future Research

Many perspectives arose from the different contributions of this thesis, were detailed at the end of
their respective chapters. In the following, we focus on the two perspectives that we consider to be
the most natural and believe to have the most potential.

Anytime behaviour of algorithms. The key feature of multi-objective automatic algorithm con-
figuration is to be able to investigate trade-offs between multiple performance indicators. One of
the most interesting use case is the anytime behaviour of algorithms: the trade-off between solu-
tion quality and running time, i.e., the questions of how long should the algorithm run with regard
to the expected final quality, and whether the algorithm can or not provide good intermediary
solutions before the end of the execution and the final output.

There are many ways in which this problematic can be encoded in terms of a multi-objective
scenario, that can lead to many different ways to analyse the anytime behaviour of algorithms.
Some have been proposed in this thesis (see Chapter 5), some were only outlined as perspectives
(e.g., using the area under the curve), and others are yet to be devised. We strongly believe that MO-
ParamILS and other multi-objective configurators will in the future bring valuable insight to many
algorithms.

Artificial configuration spaces. The biggest disadvantage of automatic configurators is the very
large amount of computation they can require in order to optimise their prediction of the best
configuration. Indeed, if many configurations are available, many runs are necessary to have a
reliable estimation of their performance, and the total configuration time is directly function of the
running time of the target algorithm.

It follows that optimising the design of automatic configurators, such as for example ParamILS
and MO-ParamILS, is a very slow and manual procedure, at least orders of magnitude longer than
the base configuration process. A problem can also arise that the configurator may have been over
tuned for a particular class of configuration scenario. In general, it is very difficult to analyse the
performance of configurators.

To enable quick and fruitful comparisons of configuration processes and configuration proto-
cols, it is essential that the time taken by the configuration process becomes reasonably small. We
believe that the most promising solution would be to create a specific target algorithm that would
be able to run instantaneously and accurately model distinct configuration scenarios. It would be
obtained by thoroughly analysing existing target algorithms with the goal of obtaining stand-alone
reusable models.

Publications

The following papers have been, in chronological order, submitted, accepted, and have or will be
presented in international conferences during this thesis:

• Blot, A., Hoos, H. H., Jourdan, L., Kessaci-Marmion, M., and Trautmann, H. (2016). MO-
ParamILS: A multi-objective automatic algorithm configuration framework. In Festa, P.,
Sellmann, M., and Vanschoren, J., editors (2016). Learning and Intelligent Optimization – 10th
International Conference, LION 10. Revised Selected Papers, volume 10079 of Lecture Notes in Com-
puter Science, pages 32–47. Springer.

• Blot, A., Pernet, A., Jourdan, L., Kessaci-Marmion, M., and Hoos, H. H. (2017c). Automatically
configuring multi-objective local search using multi-objective optimisation. In Trautmann,
H., Rudolph, G., Klamroth, K., Schütze, O., Wiecek, M. M., Jin, Y., and Grimme, C., editors
(2017). Evolutionary Multi-Criterion Optimization – 9th International Conference, EMO 2017. Pro-
ceedings, volume 10173 of Lecture Notes in Computer Science, pages 61–76. Springer.

• Blot, A., Kessaci-Marmion, M., and Jourdan, L. (2017b). AMH: a new framework to design
adaptive metaheuristics. In 12th Metaheuristics International Conference, MIC 2017. Proceedings,
pages 586–588.

• Blot, A., Jourdan, L., and Kessaci-Marmion, M. (2017a). Automatic design of multi-objective
local search algorithms: case study on a bi-objective permutation flowshop scheduling
problem. In Bosman, P. A. N., editor (2017). Genetic and Evolutionary Computation Conference,
GECCO 2017. Proceedings, pages 227–234. ACM.

• Blot, A., Kessaci, M., and Jourdan, L. (2018b). Survey and unification of local search tech-
niques in metaheuristics for multi-objective combinatorial optimisation. Journal of Heurist-
ics.

• Blot, A., Kessaci, M., Jourdan, L., and Causmaecker, P. D. (2018c). Adaptive multi-objective
local search algorithms for the permutation flowshop scheduling problem. In Pardalos, P.
and Kotsireas, I., editors, Learning and Intelligent Optimization – 12th International Conference,
LION 12. Revised Selected Papers, Lecture Notes in Computer Science. Springer. (To appear).

• Blot, A., López-Ibáñez, M. Kessaci, M., and Jourdan, L. (2018d). New initialisation techniques
for multi-objective local search application on the bi-objective permutation flowshop. In
Auger, A., Fonseca, C. M., Lourenço, N., Machado, P., Paquete, L., and Whitley, D., editors,
Parallel Problem Solving from Nature – 15th International Conference, PPSN XV. Proceedings, Part I,
volume 11101 of Lecture Notes in Computer Science. Springer. (To appear).

• Blot, A., Hoos, H. H., Kessaci, M., and Jourdan, L. (2018a). Automatic configuration of multi-
objective optimization algorithms. impact of correlation between objectives. In 30th IEEE
International Conference on Tools with Artificial Intelligence, ICTAI 2018. IEEE Computer Society.
(To appear).

Additionally, the following papers also have been submitted to international journals and con-
ferences, and are either currently under review or revision:

• Pageau, C., Blot, A., Kessaci-Marmion, M., Jourdan, L., and Hoos H. H.. Automatic design of
a dynamic multi-objective local search algorithm.

• Blot, A., Kessaci-Marmion, M., Jourdan, L., and Hoos H. H.. Automatic configuration of
multi-objective local search algorithms for permutation problems.

126

Bibliography

This book was written using 100% recycled
words.

Wyrd Sisters
Terry Pratchet

Abbasi, M., Paquete, L., and Pereira, F. B. (2015). Local search for multiobjective multiple sequence
alignment. In Guzman, F. M. O. and Rojas, I., editors, Bioinformatics and Biomedical Engineering –
Third International Conference, IWBBIO 2015. Proceedings, Part II, volume 9044 of Lecture Notes in
Computer Science, pages 175–182. Springer. (citation on page 27)

Adenso-Díaz, B. and Laguna, M. (2006). Fine-tuning of algorithms using fractional experimental
designs and local search. Operations Research, 54(1):99–114. (citation on page 19)

Aguirre, H. E. and Tanaka, K. (2005). Random bit climbers on multiobjective mnk-landscapes:
Effects of memory and population climbing. IEICE Transactions, 88-A(1):334–345.

(citations on pages 30, 32, 39, and 40)

Aleti, A. and Moser, I. (2011). Predictive parameter control. In Krasnogor and Lanzi (2011), pages
561–568. (citations on pages 20 and 105)

Aleti, A. and Moser, I. (2013). Entropy-based adaptive range parameter control for evolutionary
algorithms. In Blum, C. and Alba, E., editors, Genetic and Evolutionary Computation Conference,
GECCO 2013. Proceedings, pages 1501–1508. ACM. (citation on page 105)

Aleti, A. and Moser, I. (2016). A systematic literature review of adaptive parameter control methods
for evolutionary algorithms. ACM Computing Surveys, 49(3):56:1–56:35.

(citations on pages 19, 102, and 105)

Aleti, A., Moser, I., Meedeniya, I., and Grunske, L. (2014). Choosing the appropriate forecasting
model for predictive parameter control. Evolutionary Computation, 22(2):319–349.

(citation on page 105)

Aleti, A., Moser, I., and Mostaghim, S. (2012). Adaptive range parameter control. In IEEE Congress
on Evolutionary Computation, CEC 2012. Proceedings, pages 1–8. IEEE. (citation on page 105)

Amadini, R., Gabbrielli, M., and Mauro, J. (2014). SUNNY: a lazy portfolio approach for constraint
solving. Theory and Practice of Logic Programming, 14(4-5):509–524. (citations on pages 18 and 50)

Angel, E., Bampis, E., and Gourvès, L. (2004). Approximating the Pareto curve with local search
for the bicriteria TSP(1, 2) problem. Theoretical Computer Science, 310(1-3):135–146.

(citations on pages 30, 32, 39, and 40)

Ansótegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., and Tierney, K. (2015). Model-based
genetic algorithms for algorithm configuration. In Yang, Q. and Wooldridge, M., editors, Twenty-
Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015. Proceedings, pages 733–739.
AAAI Press. (citation on page 19)

127

Bibliography 128

Ansótegui, C., Sellmann, M., and Tierney, K. (2009). A gender-based genetic algorithm for the
automatic configuration of algorithms. In Gent, I. P., editor, Principles and Practice of Constraint
Programming – 15th International Conference, CP 2009. Proceedings, volume 5732 of Lecture Notes in
Computer Science, pages 142–157. Springer. (citation on page 19)

Arroyo, J. E. C., dos Santos Ottoni, R., and de Paiva Oliveira, A. (2011). Multi-objective variable
neighborhood search algorithms for a single machine scheduling problem with distinct due win-
dows. Electronic Notes in Theoretical Computer Science, 281:5–19. (citation on page 28)

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47(2-3):235–256. (citation on page 104)

Balaprakash, P., Birattari, M., and Stützle, T. (2007). Improvement strategies for the F-Race al-
gorithm: Sampling design and iterative refinement. In Bartz-Beielstein, T., Aguilera, M. J. B.,
Blum, C., Naujoks, B., Roli, A., Rudolph, G., and Sampels, M., editors, Hybrid Metaheuristics – 4th
International Workshop, HM 2007. Proceedings, volume 4771 of Lecture Notes in Computer Science,
pages 108–122. Springer. (citation on page 19)

Bandyopadhyay, S., Saha, S., Maulik, U., and Deb, K. (2008). A simulated annealing-based mul-
tiobjective optimization algorithm: AMOSA. IEEE Transactions on Evolutionary Computation,
12(3):269–283. (citation on page 28)

Bartz-Beielstein, T., Branke, J., Filipic, B., and Smith, J., editors (2014). Parallel Problem Solving from
Nature – 13th International Conference, PPSN XIII. Proceedings, volume 8672 of Lecture Notes in
Computer Science. Springer. (citations on pages 128 and 133)

Bartz-Beielstein, T., Lasarczyk, C., and Preuss, M. (2005). Sequential parameter optimization. In
IEEE Congress on Evolutionary Computation, CEC 2005. Proceedings, pages 773–780. IEEE.

(citation on page 19)

Bartz-Beielstein, T. and Markon, S. (2004). Tuning search algorithms for real-world applications: a
regression tree based approach. In IEEE Congress on Evolutionary Computation, CEC 2004. Proceed-
ings, pages 1111–1118. IEEE. (citation on page 19)

Basseur, M. and Burke, E. K. (2007). Indicator-based multi-objective local search. In IEEE Congress
on Evolutionary Computation, CEC 2007. Proceedings, pages 3100–3107. IEEE.

(citations on pages 7, 27, 30, 32, 39, and 40)

Basseur, M., Zeng, R., and Hao, J. (2012). Hypervolume-based multi-objective local search. Neural
Computing and Applications, 21(8):1917–1929. (citation on page 30)

Battiti, R., Brunato, M., and Mascia, F. (2008). Reactive Search and Intelligent Optimization. Springer
Publishing Company, Incorporated, 1st edition. (citation on page 20)

Baykasoglu, A., Owen, S., and Gindy, N. (1999). A taboo search based approach to find the Pareto
optimal set in multiple objective optimization. Engineering Optimization, 31(6):731–748.

(citation on page 28)

Beausoleil, R. P. (2001). Multiple criteria scatter search. In 4th Metaheuristics International Conference,
pages 534–539. (citation on page 28)

Belluz, J., Gaudesi, M., Squillero, G., and Tonda, A. P. (2015). Operator selection using improved
dynamic multi-armed bandit. In Silva and Esparcia-Alcázar (2015), pages 1311–1317.

(citation on page 104)

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13:281–305. (citation on page 18)

Bezerra, L. C. T., López-Ibáñez, M., and Stützle, T. (2014). Automatic design of evolutionary al-
gorithms for multi-objective combinatorial optimization. In Bartz-Beielstein et al. (2014), pages
508–517. (citation on page 11)

Bibliography 129

Biedenkapp, A., Lindauer, M. T., Eggensperger, K., Hutter, F., Fawcett, C., and Hoos, H. H.
(2017). Efficient parameter importance analysis via ablation with surrogates. In Singh, S. P. and
Markovitch, S., editors, Thirty-First AAAI Conference on Artificial Intelligence. Proceedings, pages
773–779. AAAI Press. (citation on page 98)

Birattari, M., Stützle, T., Paquete, L., and Varrentrapp, K. (2002). A racing algorithm for configuring
metaheuristics. In Langdon, W. B., Cantú-Paz, E., Mathias, K. E., Roy, R., Davis, D., Poli, R.,
Balakrishnan, K., Honavar, V. G., Rudolph, G., Wegener, J., Bull, L., Potter, M. A., Schultz, A. C.,
Miller, J. F., Burke, E. K., and Jonoska, N., editors, Genetic and Evolutionary Computation Conference,
GECCO 2002. Proceedings, pages 11–18. Morgan Kaufmann. (citation on page 19)

Blot, A., Aguirre, H. E., Dhaenens, C., Jourdan, L., Marmion, M., and Tanaka, K. (2015). Neutral
but a winner! How neutrality helps multiobjective local search algorithms. In Gaspar-Cunha,
A., Antunes, C. H., and Coello, C. A. C., editors, Evolutionary Multi-Criterion Optimization – 8th
International Conference, EMO 2015. Proceedings, Part I, volume 9018 of Lecture Notes in Computer
Science, pages 34–47. Springer. (citations on pages 33, 35, and 64)

Blot, A., Hoos, H. H., Jourdan, L., Kessaci-Marmion, M., and Trautmann, H. (2016). MO-ParamILS:
A multi-objective automatic algorithm configuration framework. In Festa et al. (2016), pages
32–47. (citations on pages 21, 57, and 126)

Blot, A., Hoos, H. H., Kessaci, M., and Jourdan, L. (2018a). Automatic configuration of multi-
objective optimization algorithms. impact of correlation between objectives. In 30th IEEE Inter-
national Conference on Tools with Artificial Intelligence, ICTAI 2018. IEEE Computer Society. (To
appear). (citations on pages 75 and 126)

Blot, A., Jourdan, L., and Kessaci-Marmion, M. (2017a). Automatic design of multi-objective local
search algorithms: case study on a bi-objective permutation flowshop scheduling problem. In
Bosman (2017), pages 227–234. (citations on pages 35, 38, 74, and 126)

Blot, A., Kessaci, M., and Jourdan, L. (2018b). Survey and unification of local search techniques in
metaheuristics for multi-objective combinatorial optimisation. Journal of Heuristics. (To appear).

(citations on pages 26 and 126)

Blot, A., Kessaci, M., Jourdan, L., and Causmaecker, P. D. (2018c). Adaptive multi-objective local
search algorithms for the permutation flowshop scheduling problem. In Pardalos, P. and Kot-
sireas, I., editors, Learning and Intelligent Optimization – 12th International Conference, LION 12.
Revised Selected Papers, volume to appear of Lecture Notes in Computer Science. Springer. (To ap-
pear). (citations on pages 101 and 126)

Blot, A., Kessaci-Marmion, M., and Jourdan, L. (2017b). AMH: a new framework to design adaptive
metaheuristics. In 12th Metaheuristics International Conference, MIC 2017. Proceedings.

(citations on pages 41 and 126)

Blot, A., López-Ibáñez, M., Kessaci, M., and Jourdan, L. (2018d). Archive-aware scalarisation-
based multi-objective local search for a bi-objective permutation flowshop problem. In Auger,
A., Fonseca, C. M., Lourenço, N., Machado, P., Paquete, L., and Whitley, D., editors, Parallel
Problem Solving from Nature – 15th International Conference, PPSN XV. Proceedings, Part I, volume
11101 of Lecture Notes in Computer Science. Springer. (citation on page 126)

Blot, A., Pernet, A., Jourdan, L., Kessaci-Marmion, M., and Hoos, H. H. (2017c). Automatically
configuring multi-objective local search using multi-objective optimisation. In Trautmann et al.
(2017), pages 61–76. (citations on pages 38, 74, and 126)

Bosman, P. A. N., editor (2017). Genetic and Evolutionary Computation Conference, GECCO 2017.
Proceedings. ACM. (citations on pages 129 and 130)

Burke, E. K., Gendreau, M., Hyde, M. R., Kendall, G., Ochoa, G., Özcan, E., and Qu, R. (2013).
Hyper-heuristics: a survey of the state of the art. Journal of the Operational Research Society,
64(12):1695–1724. (citation on page 20)

Bibliography 130

Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., and Woodward, J. R. (2010). A classifica-
tion of hyper-heuristic approaches. In Gendreau and Potvin (2010), pages 449–468.

(citations on pages 20 and 24)

Cesa-Bianchi, N. and Fischer, P. (1998). Finite-time regret bounds for the multiarmed bandit prob-
lem. In Shavlik, J. W., editor, Fifteenth International Conference on Machine Learning, ICML 1998.
Proceedings, pages 100–108. Morgan Kaufmann. (citation on page 103)

Coello, C. A. C., editor (2011). Learning and Intelligent Optimization – 5th International Conference,
LION 5. Selected Papers, volume 6683 of Lecture Notes in Computer Science. Springer.

(citations on pages 133 and 138)

Coello, C. A. C. and Cortés, N. C. (2005). Solving multiobjective optimization problems using an
artificial immune system. Genetic Programming and Evolvable Machines, 6(2):163–190.

(citation on page 8)

Coello, C. A. C., Lamont, G. B., Van Veldhuizen, D. A., et al. (2007). Evolutionary algorithms for
solving multi-objective problems. Springer, 2nd edition. (citation on page 7)

Costa, L. D., Fialho, Á., Schoenauer, M., and Sebag, M. (2008). Adaptive operator selection with
dynamic multi-armed bandits. In Ryan, C. and Keijzer, M., editors, Genetic and Evolutionary
Computation Conference, GECCO 2008. Proceedings, pages 913–920. ACM.

(citations on pages 20 and 104)

Cowling, P. I., Kendall, G., and Soubeiga, E. (2000). A hyperheuristic approach to scheduling a
sales summit. In Burke, E. K. and Erben, W., editors, Practice and Theory of Automated Timetabling
III – Third International Conference, PATAT 2000. Selected Papers, volume 2079 of Lecture Notes in
Computer Science, pages 176–190. Springer. (citation on page 20)

Czyzak, P. and Jaszkiewicz, A. (1996). A multiobjective metaheuristic approach to the location of
petrol stations by the capital budgeting model. Control and Cybernetics, 25:177–187.

(citations on pages 8, 27, 28, 32, 35, 36, 39, and 40)

Czyzak, P. and Jaszkiewicz, A. (1998). Pareto simulated annealing – a metaheuristic technique for
multiple-objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis, 7(1):34–
47. (citations on pages 28 and 34)

Dang, N., Cáceres, L. P., Causmaecker, P. D., and Stützle, T. (2017). Configuring irace using surrog-
ate configuration benchmarks. In Bosman (2017), pages 243–250. (citation on page 98)

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. John Wiley & Sons.
(citations on pages 7 and 35)

Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. (2000). A fast elitist non-dominated sorting ge-
netic algorithm for multi-objective optimisation: NSGA-II. In Schoenauer, M., Deb, K., Rudolph,
G., Yao, X., Lutton, E., Guervós, J. J. M., and Schwefel, H., editors, Parallel Problem Solving from
Nature – 6th International Conference, PPSN VI. Proceedings, volume 1917 of Lecture Notes in Com-
puter Science, pages 849–858. Springer. (citation on page 7)

Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. (2002). A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197.

(citations on pages 7, 8, and 10)

di Tollo, G., Lardeux, F., Maturana, J., and Saubion, F. (2015). An experimental study of adaptive
control for evolutionary algorithms. Applied Soft Computing, 35:359–372.

(citations on pages 19, 44, and 102)

Doerr, B. and Doerr, C. (2015). Optimal parameter choices through self-adjustment: Applying the
1/5-th rule in discrete settings. In Silva and Esparcia-Alcázar (2015), pages 1335–1342.

(citation on page 19)

Bibliography 131

Dorigo, M., Maniezzo, V., and Colorni, A. (1996). Ant system: optimization by a colony of cooper-
ating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1):29–41.

(citation on page 7)

Drugan, M. M. and Nowé, A. (2013). Designing multi-objective multi-armed bandits algorithms:
A study. In International Joint Conference on Neural Networks, IJCNN 2013, pages 1–8. IEEE.

(citation on page 104)

Drugan, M. M. and Thierens, D. (2010). Path-guided mutation for stochastic Pareto local search
algorithms. In Schaefer, R., Cotta, C., Kolodziej, J., and Rudolph, G., editors, Parallel Problem
Solving from Nature – 11th International Conference, PPSN XI. Proceedings, Part I, volume 6238 of
Lecture Notes in Computer Science, pages 485–495. Springer. (citation on page 37)

Drugan, M. M. and Thierens, D. (2012). Stochastic Pareto local search: Pareto neighbourhood ex-
ploration and perturbation strategies. Journal of Heuristics, 18(5):727–766.

(citations on pages 30, 32, 36, 37, 39, and 40)

Dubois-Lacoste, J., López-Ibáñez, M., and Stützle, T. (2011a). Automatic configuration of state-of-
the-art multi-objective optimizers using the TP+PLS framework. In Krasnogor and Lanzi (2011),
pages 2019–2026. (citation on page 21)

Dubois-Lacoste, J., López-Ibáñez, M., and Stützle, T. (2011b). A hybrid TP+PLS algorithm for bi-
objective flow-shop scheduling problems. Computers & Operations Research, 38(8):1219–1236.

(citations on pages 11, 30, 76, and 102)

Dubois-Lacoste, J., López-Ibáñez, M., and Stützle, T. (2011c). Improving the anytime behavior of
two-phase local search. Annals of Mathematics and Artificial Intelligence, 61(2):125–154.

(citation on page 11)

Dubois-Lacoste, J., López-Ibáñez, M., and Stützle, T. (2012). Pareto local search algorithms for any-
time bi-objective optimization. In Hao, J. and Middendorf, M., editors, Evolutionary Computation
in Combinatorial Optimization – 12th European Conference, EvoCOP 2012. Proceedings, volume 7245
of Lecture Notes in Computer Science, pages 206–217. Springer. (citations on pages 31 and 35)

Dubois-Lacoste, J., López-Ibáñez, M., and Stützle, T. (2015). Anytime Pareto local search. European
Journal of Operational Research, 243(2):369–385. (citations on pages 12, 27, 31, and 33)

Eiben, A. E., Hinterding, R., and Michalewicz, Z. (1999). Parameter control in evolutionary al-
gorithms. IEEE Transactions on Evolutionary Computation, 3(2):124–141.

(citations on pages 16, 17, 19, 20, 21, 24, and 102)

Eiben, A. E., Horváth, M., Kowalczyk, W., and Schut, M. C. (2006). Reinforcement learning for
online control of evolutionary algorithms. In Brueckner, S., Hassas, S., Jelasity, M., and Yamins,
D., editors, Engineering Self-Organising Systems – 4th International Workshop, ESOA 2006. Revised
and Invited Papers, volume 4335 of Lecture Notes in Computer Science, pages 151–160. Springer.

(citations on pages 20 and 105)

Eiben, A. E., Michalewicz, Z., Schoenauer, M., and Smith, J. E. (2007). Parameter control in evolu-
tionary algorithms. In Lobo, F. G., Lima, C. F., and Michalewicz, Z., editors, Parameter Setting in
Evolutionary Algorithms, volume 54 of Studies in Computational Intelligence, pages 19–46. Springer.

(citations on pages 19 and 102)

Eiben, A. E. and Smit, S. K. (2012). Evolutionary algorithm parameters and methods to tune them.
In Hamadi et al. (2012), pages 15–36. (citation on page 16)

Engrand, P. (1998). A multi-objective optimization approach based on simulated annealing and its
application to nuclear fuel management. Technical report, Électricité de France.

(citation on page 28)

Bibliography 132

Feo, T. A., Resende, M. G. C., and Smith, S. H. (1994). A greedy randomized adaptive search
procedure for maximum independent set. Operations Research, 42(5):860–878.

(citation on page 28)

Festa, P., Sellmann, M., and Vanschoren, J., editors (2016). Learning and Intelligent Optimization –
10th International Conference, LION 10. Revised Selected Papers, volume 10079 of Lecture Notes in
Computer Science. Springer. (citations on pages 129 and 135)

Fialho, Á., Costa, L. D., Schoenauer, M., and Sebag, M. (2010). Analyzing bandit-based adaptive
operator selection mechanisms. Annals of Mathematics and Artificial Intelligence, 60(1-2):25–64.

(citation on page 104)

Fonseca, C. M., Fleming, P. J., Zitzler, E., Deb, K., and Thiele, L., editors (2003). Evolutionary Multi-
Criterion Optimization – Second International Conference, EMO 2003. Proceedings, volume 2632 of
Lecture Notes in Computer Science. Springer. (citations on pages 134 and 136)

Gai, Y., Krishnamachari, B., and Jain, R. (2012). Combinatorial network optimization with unknown
variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM
Transactions on Networking, 20(5):1466–1478. (citation on page 104)

Geiger, M. J. (2008). Randomised variable neighbourhood search for multi objective optimisation.
In Design and Evaluation of Advanced Hybrid Meta-Heuristics – 4th EU/ME Workshop. Proceedings,
pages 34–42. (citations on pages 28, 32, 39, 40, and 64)

Gendreau, M. and Potvin, J.-Y., editors (2010). Handbook of Metaheuristics, volume 146 of International
Series in Operations Research & Management Science. Springer, 2nd edition.

(citations on pages 130 and 135)

Glover, F. (1989). Tabu search – part I. ORSA Journal on computing, 1(3):190–206.
(citations on pages 27 and 28)

Glover, F. W. and Laguna, M. (1997). Tabu Search. Springer US. (citations on pages 8, 27, and 28)

Gretsista, A. and Burke, E. K. (2017). An iterated local search framework with adaptive operator
selection for nurse rostering. In Battiti, R., Kvasov, D. E., and Sergeyev, Y. D., editors, Learning
and Intelligent Optimization – 11th International Conference, LION 11. Revised Selected Papers, volume
10556 of Lecture Notes in Computer Science, pages 93–108. Springer. (citation on page 105)

Hamadi, Y., Monfroy, E., and Saubion, F., editors (2012). Autonomous Search. Springer.
(citations on pages 16, 20, 21, 22, and 131)

Hansen, M. P. (1997). Tabu search for multiobjective optimization: MOTS. In Stewart, T., ed-
itor, Multiple Criteria Decision Making – 13th International Conference. Proceedings, pages 574–586.
Springer. (citations on pages 8, 27, 28, 32, 34, 35, 36, 39, and 40)

Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applica-
tions to biology, control, and artificial intelligence. MIT press. (citation on page 7)

Hoos, H., Lindauer, M. T., and Schaub, T. (2014). claspfolio 2: Advances in algorithm selection for
answer set programming. Theory and Practice of Logic Programming, 14(4-5):569–585.

(citations on pages 18 and 23)

Hoos, H. H. (2012). Programming by optimization. Communications of the ACM, 55(2):70–80.
(citation on page 16)

Hoos, H. H., Kaminski, R., Lindauer, M. T., and Schaub, T. (2015). aspeed: Solver scheduling via
answer set programming. Theory and Practice of Logic Programming, 15(1):117–142.

(citations on pages 18 and 50)

Hoos, H. H. and Stützle, T. (2004). Stochastic Local Search: Foundations & Applications. Elsevier /
Morgan Kaufmann. (citations on pages 8, 20, 27, and 58)

Bibliography 133

Horn, D., Schork, K., and Wagner, T. (2016). Multi-objective selection of algorithm portfolios: Ex-
perimental validation. In Handl, J., Hart, E., Lewis, P. R., López-Ibáñez, M., Ochoa, G., and
Paechter, B., editors, Parallel Problem Solving from Nature – 14th International Conference, PPSN
XIV. Proceedings, volume 9921 of Lecture Notes in Computer Science, pages 421–430. Springer.

(citation on page 21)

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011). Sequential model-based optimization for
general algorithm configuration. In Coello (2011), pages 507–523.

(citations on pages 19, 23, 64, and 73)

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2013). Identifying key algorithm parameters and
instance features using forward selection. In Nicosia and Pardalos (2013), pages 364–381.

(citation on page 98)

Hutter, F., Hoos, H. H., Leyton-Brown, K., and Stützle, T. (2009). Paramils: An automatic algorithm
configuration framework. Journal of Artificial Intelligence Research, 36:267–306.

(citations on pages 19, 58, 61, 69, 72, 81, 98, and 99)

Hutter, F., Hoos, H. H., and Stützle, T. (2007). Automatic algorithm configuration based on local
search. In Twenty-Second AAAI Conference on Artificial Intelligence. Proceedings, pages 1152–1157.
AAAI Press. (citations on pages 19, 58, and 61)

Inja, M., Kooijman, C., de Waard, M., Roijers, D. M., and Whiteson, S. (2014). Queued Pareto local
search for multi-objective optimization. In Bartz-Beielstein et al. (2014), pages 589–599.

(citation on page 31)

Ishibuchi, H. and Murata, T. (1996). Multi-objective genetic local search algorithm. In Evolutionary
Computation, IEEE International Conference. Proceedings, pages 119–124. IEEE.

(citations on pages 8, 27, 29, 32, 39, and 40)

Ishibuchi, H. and Murata, T. (1998). A multi-objective genetic local search algorithm and its ap-
plication to flowshop scheduling. IEEE Transactions on Systems, Man, and Cybernetics, Part C,
28(3):392–403. (citation on page 29)

Ishibuchi, H., Tsukamoto, N., and Nojima, Y. (2008). Evolutionary many-objective optimization: A
short review. In IEEE Congress on Evolutionary Computation, CEC 2008. Proceedings, pages 2419–
2426. IEEE. (citation on page 27)

Jaeggi, D., Asselin-Miller, C., Parks, G., Kipouros, T., Bell, T., and Clarkson, J. (2004). Multi-objective
parallel tabu search. In Yao et al. (2004), pages 732–741. (citation on page 28)

Jaeggi, D., Parks, G. T., Kipouros, T., and Clarkson, P. J. (2008). The development of a multi-objective
tabu search algorithm for continuous optimisation problems. European Journal of Operational Re-
search, 185(3):1192–1212. (citation on page 28)

Jaszkiewicz, A. (2002). Genetic local search for multi-objective combinatorial optimization.
European Journal of Operational Research, 137(1):50–71. (citations on pages 27 and 29)

Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., and Sellmann, M. (2011). Algorithm
selection and scheduling. In Lee, J. H., editor, Principles and Practice of Constraint Programming
– 17th International Conference, CP 2011. Proceedings, volume 6876 of Lecture Notes in Computer
Science, pages 454–469. Springer. (citations on pages 17 and 18)

Kadioglu, S., Malitsky, Y., Sellmann, M., and Tierney, K. (2010). ISAC – instance-specific algorithm
configuration. In Coelho, H., Studer, R., and Wooldridge, M., editors, 19th European Conference
on Artificial Intelligence, ECAI 2010. Proceedings, volume 215 of Frontiers in Artificial Intelligence and
Applications, pages 751–756. IOS Press. (citations on pages 17 and 18)

Karafotias, G., Eiben, Á. E., and Hoogendoorn, M. (2014). Generic parameter control with reinforce-
ment learning. In Arnold, D. V., editor, Genetic and Evolutionary Computation Conference, GECCO
2014. Proceedings, pages 1319–1326. ACM. (citations on pages 45 and 105)

Bibliography 134

Karafotias, G., Hoogendoorn, M., and Eiben, Á. E. (2015). Parameter control in evolutionary al-
gorithms: Trends and challenges. IEEE Transactions on Evolutionary Computation, 19(2):167–187.

(citations on pages 17, 19, and 102)

Karafotias, G., Smit, S. K., and Eiben, A. E. (2012). A generic approach to parameter control. In Chio,
C. D., Agapitos, A., Cagnoni, S., Cotta, C., de Vega, F. F., Caro, G. A. D., Drechsler, R., Ekárt,
A., Esparcia-Alcázar, A. I., Farooq, M., Langdon, W. B., Guervós, J. J. M., Preuss, M., Richter,
H., Silva, S., Simões, A., Squillero, G., Tarantino, E., Tettamanzi, A., Togelius, J., Urquhart, N.,
Uyar, S., and Yannakakis, G. N., editors, Applications of Evolutionary Computation - EvoApplications
2012: EvoCOMNET, EvoCOMPLEX, EvoFIN, EvoGAMES, EvoHOT, EvoIASP, EvoNUM, EvoPAR,
EvoRISK, EvoSTIM, and EvoSTOC. Proceedings, volume 7248 of Lecture Notes in Computer Science,
pages 366–375. Springer. (citation on page 44)

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In IEEE International Conference
on Neural Networks. Proceedings, volume 4, pages 1941–1948. (citation on page 7)

Kernighan, B. W. and Lin, S. (1970). An efficient heuristic procedure for partitioning graphs. The
Bell system technical journal, 49(2):291–307. (citation on page 13)

Kessaci-Marmion, M., Dhaenens, C., and Humeau, J. (2017). Neutral neighbors in bi-objective
optimization: Distribution of the most promising for permutation problems. In Trautmann et al.
(2017), pages 344–358. (citations on pages 11, 13, and 88)

Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., et al. (1983). Optimization by simulated annealing.
science, 220(4598):671–680. (citation on page 27)

Knowles, J., Thiele, L., and Zitzler, E. (2006). A tutorial on the performance assessment of stochastic
multiobjective optimizers. 214, Computer Engineering and Networks Laboratory (TIK), ETH
Zurich, Switzerland. revised version. (citation on page 69)

Knowles, J. D. and Corne, D. (2003). Instance generators and test suites for the multiobjective
quadratic assignment problem. In Fonseca et al. (2003), pages 295–310. (citation on page 13)

Knowles, J. D. and Corne, D. W. (1999). The Pareto archived evolution strategy: A new baseline
algorithm for Pareto multiobjective optimisation. In IEEE Congress on Evolutionary Computation,
CEC 99. Proceedings, pages 98–105. IEEE. (citations on pages 8, 27, 29, 32, 34, 39, and 40)

Knowles, J. D. and Corne, D. W. (2000a). Approximating the nondominated front using the Pareto
archived evolution strategy. Evolutionary Computation, 8(2):149–172.

(citations on pages 29, 32, 39, and 40)

Knowles, J. D. and Corne, D. W. (2000b). M-PAES: A memetic algorithm for multiobjective optim-
ization. In IEEE Congress on Evolutionary Computation, CEC 00. Proceedings, pages 325–332. IEEE.

(citation on page 29)

Knowles, J. D. and Corne, D. W. (2002). On metrics for comparing nondominated sets. In IEEE
Congress on Evolutionary Computation, CEC 2002. Proceedings, volume 1, pages 711–716. IEEE.

(citation on page 8)

Kotthoff, L. (2016). Algorithm selection for combinatorial search problems: A survey. In Bessiere,
C., Raedt, L. D., Kotthoff, L., Nijssen, S., O’Sullivan, B., and Pedreschi, D., editors, Data Mining
and Constraint Programming: Foundations of a Cross-Disciplinary Approach, volume 10101 of Lecture
Notes in Computer Science, pages 149–190. Springer. (citation on page 17)

Kotthoff, L., Thornton, C., Hoos, H. H., Hutter, F., and Leyton-Brown, K. (2017). Auto-weka 2.0:
Automatic model selection and hyperparameter optimization in WEKA. Journal of Machine Learn-
ing Research, 18:25:1–25:5. (citation on page 23)

Krasnogor, N. and Lanzi, P. L., editors (2011). Genetic and Evolutionary Computation Conference,
GECCO 2011. Proceedings. ACM. (citations on pages 127 and 131)

Bibliography 135

Lai, T. L. and Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Advances in
applied mathematics, 6(1):4–22. (citation on page 104)

Langdon, W. B. (2015). Genetically improved software. In Gandomi, A. H., Alavi, A. H., and Ryan,
C., editors, Handbook of Genetic Programming Applications, pages 181–220. Springer.

(citation on page 21)

Lawler, E. L., Lenstra, J. K., Kan, A. H. R., and Shmoys, D. B. (1993). Sequencing and scheduling:
Algorithms and complexity. Handbooks in operations research and management science, 4:445–522.

(citation on page 11)

Liefooghe, A., Humeau, J., Mesmoudi, S., Jourdan, L., and Talbi, E. (2012). On dominance-based
multiobjective local search: design, implementation and experimental analysis on scheduling
and traveling salesman problems. Journal of Heuristics, 18(2):317–352.

(citations on pages 27, 30, 32, 33, 34, 38, 39, 40, and 42)

Lin, S. and Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling-salesman
problem. Operations research, 21(2):498–516. (citation on page 13)

Lindauer, M., Bergdoll, R., and Hutter, F. (2016). An empirical study of per-instance algorithm
scheduling. In Festa et al. (2016), pages 253–259. (citations on pages 18 and 50)

Lindauer, M. T., Hoos, H. H., Hutter, F., and Schaub, T. (2015). AutoFolio: An automatically con-
figured algorithm selector. Journal of Artificial Intelligence Research, 53:745–778.

(citation on page 23)

López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L. P., Birattari, M., and Stützle, T. (2016). The irace
package: Iterated racing for automatic algorithm configuration. Operations Research Perspectives,
3:43–58. (citations on pages 19, 64, and 73)

López-Ibáñez, M. and Stützle, T. (2010a). Automatic configuration of multi-objective ACO al-
gorithms. In Dorigo, M., Birattari, M., Caro, G. A. D., Doursat, R., Engelbrecht, A. P., Floreano,
D., Gambardella, L. M., Groß, R., Sahin, E., Sayama, H., and Stützle, T., editors, Swarm Intelligence
– 7th International Conference, ANTS 2010. Proceedings, volume 6234 of Lecture Notes in Computer
Science, pages 95–106. Springer. (citation on page 8)

López-Ibáñez, M. and Stützle, T. (2010b). The impact of design choices of multiobjective antcolony
optimization algorithms on performance: an experimental study on the biobjective TSP. In Pe-
likan, M. and Branke, J., editors, Genetic and Evolutionary Computation Conference, GECCO 2010.
Proceedings, pages 71–78. ACM. (citation on page 8)

Lourenço, H., Martin, O., and Stützle, T. (2010). Iterated local search: Framework and applications.
In Gendreau and Potvin (2010), chapter 9, pages 363–397. (citation on page 27)

Lourenço, H., Martin, O., and Stützle, T. (2003). Iterated local search. In Glover, F. W. and Kochen-
berger, G. A., editors, Handbook of Metaheuristics, volume 57 of International Series in Operations
Research & Management Science, pages 321–353. Springer. (citations on pages 37 and 58)

Lust, T. and Teghem, J. (2010). Two-phase Pareto local search for the biobjective traveling salesman
problem. Journal of Heuristics, 16(3):475–510. (citation on page 30)

Malitsky, Y., Sabharwal, A., Samulowitz, H., and Sellmann, M. (2013). Algorithm portfolios based
on cost-sensitive hierarchical clustering. In Rossi, F., editor, Twenty-Third International Joint Con-
ference on Artificial Intelligence, IJCAI 2013. Proceedings, pages 608–614. IJCAI/AAAI.

(citation on page 17)

Mansour, I. B. and Alaya, I. (2015). Indicator based ant colony optimization for multi-objective
knapsack problem. Procedia Computer Science, 60:448–457. (citation on page 7)

Martí, R., Campos, V., Resende, M. G. C., and Duarte, A. (2015). Multiobjective GRASP with path
relinking. European Journal of Operational Research, 240(1):54–71. (citation on page 28)

Bibliography 136

Maturana, J., Fialho, Á., Saubion, F., Schoenauer, M., and Sebag, M. (2009). Extreme compass and
dynamic multi-armed bandits for adaptive operator selection. In IEEE Congress on Evolutionary
Computation, CEC 2009. Proceedings, pages 365–372. IEEE. (citations on pages 20, 46, and 104)

Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers & Operations
Research, 24(11):1097–1100. (citations on pages 27 and 28)

Moalic, L., Caminada, A., and Lamrous, S. (2013). A fast local search approach for multiobjective
problems. In Nicosia and Pardalos (2013), pages 294–298. (citations on pages 30, 32, 39, and 40)

Moffaert, K. V., Drugan, M. M., and Nowé, A. (2013). Hypervolume-based multi-objective rein-
forcement learning. In Purshouse, R. C., Fleming, P. J., Fonseca, C. M., Greco, S., and Shaw, J.,
editors, Evolutionary Multi-Criterion Optimization - 7th International Conference, EMO 2013. Proceed-
ings, volume 7811 of Lecture Notes in Computer Science, pages 352–366. Springer.

(citation on page 45)

Molina, J., Laguna, M., Martí, R., and Caballero, R. (2007). SSPMO: A scatter tabu search procedure
for non-linear multiobjective optimization. INFORMS Journal on Computing, 19(1):91–100.

(citation on page 28)

Moslehi, G. and Mahnam, M. (2011). A Pareto approach to multi-objective flexible job-shop
scheduling problem using particle swarm optimization and local search. International Journal
of Production Economics, 129(1):14–22. (citation on page 29)

Murata, T., Ishibuchi, H., and Gen, M. (2000). Cellular genetic local search for multi-objective
optimization. In Whitley, L. D., Goldberg, D. E., Cantú-Paz, E., Spector, L., Parmee, I. C., and
Beyer, H., editors, Genetic and Evolutionary Computation Conference, GECCO ’00. Proceedings, pages
307–314. Morgan Kaufmann. (citation on page 29)

Nawaz, M., Enscore, E. E., and Ham, I. (1983). A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. Omega, 11(1):91–95. (citation on page 102)

Nicosia, G. and Pardalos, P. M., editors (2013). Learning and Intelligent Optimization – 7th Interna-
tional Conference, LION 7. Revised Selected Papers, volume 7997 of Lecture Notes in Computer Science.
Springer. (citations on pages 133 and 136)

Okabe, T., Jin, Y., and Sendhoff, B. (2003). A critical survey of performance indices for multi-
objective optimisation. In IEEE Congress on Evolutionary Computation, CEC 2003. Proceedings,
pages 878–885. IEEE. (citation on page 8)

Paquete, L., Chiarandini, M., and Stützle, T. (2004). Pareto local optimum sets in the biobjective
traveling salesman problem: An experimental study. In Gandibleux, X., Sevaux, M., Sörensen,
K., and T’kindt, V., editors, Metaheuristics for multiobjective optimisation, volume 535, pages 177–
199. Springer Science & Business Media. (citations on pages 30, 32, 34, 39, and 40)

Paquete, L. and Stützle, T. (2003). A two-phase local search for the biobjective traveling salesman
problem. In Fonseca et al. (2003), pages 479–493. (citation on page 30)

Pareto, V. (1896). Cours d’économie politique, volume 1. F. Rouge. (citation on page 6)

Petke, J., Haraldsson, S. O., Harman, M., Langdon, W. B., White, D. R., and Woodward, J. R. (2017).
Genetic improvement of software: a comprehensive survey. IEEE Transactions on Evolutionary
Computation. (citation on page 21)

Rajaraman, K. and Sastry, P. S. (1996). Finite time analysis of the pursuit algorithm for learning
automata. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 26(4):590–598.

(citation on page 104)

Rice, J. R. (1976). The algorithm selection problem. In Advances in computers, volume 15, pages
65–118. Elsevier. (citation on page 17)

Bibliography 137

Riquelme, N., von Lücken, C., and Barán, B. (2015). Performance metrics in multi-objective optim-
ization. In 2015 Latin American Computing Conference, CLEI 2015, pages 1–11. IEEE.

(citation on page 8)

Ruiz, R. and Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation
flowshop scheduling problem. European Journal of Operational Research, 177(3):2033–2049.

(citation on page 76)

Sabar, N. R., Ayob, M., Kendall, G., and Qu, R. (2015). A dynamic multiarmed bandit-gene expres-
sion programming hyper-heuristic for combinatorial optimization problems. IEEE Transactions
on Cybernetics, 45(2):217–228. (citation on page 104)

Sakurai, Y., Takada, K., Kawabe, T., and Tsuruta, S. (2010). A method to control parameters of
evolutionary algorithms by using reinforcement learning. In Yétongnon, K., Dipanda, A., and
Chbeir, R., editors, Sixth International Conference on Signal-Image Technology and Internet-Based Sys-
tems, SITIS 2010, pages 74–79. IEEE Computer Society. (citation on page 105)

Schumer, M. and Steiglitz, K. (1968). Adaptive step size random search. IEEE Transactions on
Automatic Control, 13(3):270–276. (citation on page 19)

Serafini, P. (1994). Simulated annealing for multi objective optimization problems. In Multiple
Criteria Decision Making, pages 283–292. Springer.

(citations on pages 8, 27, 32, 35, 36, 39, and 40)

Silva, S. and Esparcia-Alcázar, A. I., editors (2015). Genetic and Evolutionary Computation Conference,
GECCO 2015. Proceedings. ACM. (citations on pages 128, 130, and 139)

Suman, B. (2003). Simulated annealing-based multiobjective algorithms and their application for
system reliability. Engineering Optimization, 35(4):391–416. (citation on page 28)

Suman, B. and Kumar, P. (2006). A survey of simulated annealing as a tool for single and multiob-
jective optimization. Journal of the Operational Research Society, 57(10):1143–1160.

(citation on page 28)

Suppapitnarm, A. and Parks, G. (1999). Simulated annealing: an alternative approach to true mul-
tiobjective optimization. In Banzhaf, W., Daida, J. M., Eiben, A. E., Garzon, M. H., Honavar, V. G.,
Jakiela, M. J., and Smith, R. E., editors, Genetic and Evolutionary Computation Conference, GECCO
1999. Proceedings, pages 406–407. Morgan Kaufmann. (citation on page 28)

Suresh, R. K. and Mohanasundaram, K. M. (2004). Pareto archived simulated annealing for per-
mutation flow shop scheduling with multiple objectives. In IEEE Conference on Cybernetics and
Intelligent Systems, CIS 2004. Proceedings, volume 2, pages 712–717. IEEE. (citation on page 28)

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning - an introduction. Adaptive computation
and machine learning. MIT Press. (citations on pages 20, 103, 104, and 105)

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational
Research, 64(2):278–285. (citation on page 11)

Talbi, E., Rahoual, M., Mabed, M. H., and Dhaenens, C. (2001). A hybrid evolutionary approach
for multicriteria optimization problems: Application to the flow shop. In Zitzler, E., Deb, K.,
Thiele, L., Coello, C. A. C., and Corne, D., editors, Evolutionary Multi-Criterion Optimization – 1st
International Conference, EMO 2001. Proceedings, pages 416–428. Springer.

(citations on pages 8, 27, 28, 29, 32, 39, and 40)

Thathachar, M. and Sastry, P. S. (1985). A new approach to the design of reinforcement schemes for
learning automata. IEEE Transactions on Systems, Man, and Cybernetics, 15(1):168–175.

(citation on page 104)

Bibliography 138

Thierens, D. (2005). An adaptive pursuit strategy for allocating operator probabilities. In Beyer, H.
and O’Reilly, U., editors, Genetic and Evolutionary Computation Conference, GECCO 2005. Proceed-
ings, pages 1539–1546. ACM. (citations on pages 20, 103, and 104)

Thornton, C., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2013). Auto-weka: combined selection
and hyperparameter optimization of classification algorithms. In Dhillon, I. S., Koren, Y., Ghani,
R., Senator, T. E., Bradley, P., Parekh, R., He, J., Grossman, R. L., and Uthurusamy, R., editors,
Knowledge Discovery and Data Mining – 19th ACM SIGKDD International Conference, KDD 2013,
pages 847–855. ACM. (citations on pages 23 and 99)

Trautmann, H., Rudolph, G., Klamroth, K., Schütze, O., Wiecek, M. M., Jin, Y., and Grimme, C.,
editors (2017). Evolutionary Multi-Criterion Optimization – 9th International Conference, EMO 2017.
Proceedings, volume 10173 of Lecture Notes in Computer Science. Springer.

(citations on pages 129 and 134)

Tricoire, F. (2012). Multi-directional local search. Computers & Operations Research, 39(12):3089–3101.
(citation on page 31)

Ulungu, B., Fortemps, P., and Teghem, J. (1995). Heuristic for multi-objective combinatorial op-
timization problems by simulated annealing. In Gu, J., Chen, G., Wei, Q., and Wang, S., editors,
MCDM: Theory and Applications 1995, pages 229–238. Sci-Tech.

(citations on pages 8, 27, 32, 35, 36, 39, and 40)

Ulungu, B., Teghem, J., Fortemps, P., and Tuyttens, D. (1999). MOSA method: a tool for solving
multiobjective combinatorial optimization problems. Journal of Multi-Criteria Decision Analysis,
8(4):221. (citations on pages 27 and 34)

van Veldhuizen, D. A. and Lamont, G. B. (2000). Multiobjective evolutionary algorithms: Analyzing
the state-of-the-art. Evolutionary Computation, 8(2):125–147. (citation on page 8)

Veerapen, N. and Saubion, F. (2011). Pareto autonomous local search. In Coello (2011), pages
392–406. (citations on pages 47 and 105)

Vermorel, J. and Mohri, M. (2005). Multi-armed bandit algorithms and empirical evaluation. In
Gama, J., Camacho, R., Brazdil, P., Jorge, A., and Torgo, L., editors, 16th European Conference
on Machine Learning, ECML 2005. Proceedings, volume 3720 of Lecture Notes in Computer Science,
pages 437–448. Springer. (citation on page 103)

Vianna, D. S. and Arroyo, J. E. C. (2004). A GRASP algorithm for the multi-objective knapsack
problem. In XXIV International Conference of the Chilean Computer Science Society, SCCC 2004.
Proceedings, pages 69–75. IEEE Computer Society. (citation on page 28)

Whiteson, S. and Stone, P. (2006). On-line evolutionary computation for reinforcement learning
in stochastic domains. In Cattolico, M., editor, Genetic and Evolutionary Computation Conference,
GECCO 2006. Proceedings, pages 1577–1584. ACM. (citation on page 105)

Wong, Y.-Y., Lee, K.-H., Leung, K.-S., and Ho, C.-W. (2003). A novel approach in parameter adapt-
ation and diversity maintenance for genetic algorithms. Soft Computing, 7(8):506–515.

(citations on pages 20 and 105)

Xu, L., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2008). Satzilla: Portfolio-based algorithm
selection for SAT. Journal of Artificial Intelligence Research, 32:565–606. (citation on page 17)

Yahyaa, S. Q., Drugan, M. M., and Manderick, B. (2014). Annealing-Pareto multi-objective multi-
armed bandit algorithm. In IEEE Symposium on Adaptive Dynamic Programming and Reinforcement
Learning. ADPRL 2014, pages 1–8. IEEE. (citation on page 104)

Yao, X., Burke, E. K., Lozano, J. A., Smith, J., Guervós, J. J. M., Bullinaria, J. A., Rowe, J. E., Tiño, P.,
Kabán, A., and Schwefel, H., editors (2004). Parallel Problem Solving from Nature – 8th International
Conference, PPSN VIII. Proceedings, volume 3242 of Lecture Notes in Computer Science. Springer.

(citations on pages 133 and 139)

Bibliography 139

Zhang, Q. and Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on decom-
position. IEEE Transactions on Evolutionary Computation, 11(6):712–731. (citation on page 7)

Zhang, T., Georgiopoulos, M., and Anagnostopoulos, G. C. (2015). SPRINT multi-objective model
racing. In Silva and Esparcia-Alcázar (2015), pages 1383–1390.

(citations on pages 21, 64, and 73)

Zhang, T., Georgiopoulos, M., and Anagnostopoulos, G. C. (2016). Multi-objective model selection
via racing. IEEE Transactions on Cybernetics, 46(8):1863–1876. (citations on pages 21, 64, and 73)

Zhang, T., Georgiopoulos, M., and Anagnostopoulos, G. C. (2018). Pareto-optimal model selection
via SPRINT-Race. IEEE Transactions on Cybernetics, 48(2):596–610.

(citations on pages 21, 64, and 73)

Zitzler, E. and Künzli, S. (2004). Indicator-based selection in multiobjective search. In Yao et al.
(2004), pages 832–842. (citation on page 7)

Zitzler, E., Laumanns, M., and Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary
algorithm. TIK-report, 103. (citation on page 7)

Zitzler, E. and Thiele, L. (1998). Multiobjective optimization using evolutionary algorithms - A
comparative case study. In Eiben, A. E., Bäck, T., Schoenauer, M., and Schwefel, H., editors,
Parallel Problem Solving from Nature – 5th International Conference, PPSN V. Proceedings, volume
1498 of Lecture Notes in Computer Science, pages 292–304. Springer. (citation on page 8)

Zitzler, E. and Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case study
and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4):257–271.

(citations on pages 7, 8, 9, and 30)

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and da Fonseca, V. G. (2003). Performance as-
sessment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary
Computation, 7(2):117–132. (citations on pages 8, 9, and 81)

Title. Reacting and Adapting to the Environment – Designing Autonomous Methods for Multi-
Objective Combinatorial Optimisation

Keywords. automatic algorithm design, multi-objective optimisation, combinatorial optimisation,
metaheuristics, local search algorithms

Abstract. Large-scale optimisation problems are usually hard to solve optimally. Approximation
algorithms such as metaheuristics, able to quickly find sub-optimal solutions, are often preferred.
This thesis focuses on multi-objective local search (MOLS) algorithms, metaheuristics able to deal
with the simultaneous optimisation of multiple criteria. As many algorithms, metaheuristics ex-
pose many parameters that significantly impact their performance. These parameters can be either
predicted and set before the execution of the algorithm, or dynamically modified during the exe-
cution itself.

While in the last decade many advances have been made on the automatic design of algorithms,
the great majority of them only deal with single-objective algorithms and the optimisation of a
single performance indicator such as the algorithm running time or the final solution quality. In
this thesis, we investigate the relations between automatic algorithm design and multi-objective
optimisation, with an application on MOLS algorithms.

We first review possible MOLS strategies ans parameters and present a general, highly config-
urable, MOLS framework. We also propose MO-ParamILS, an automatic configurator specifically
designed to deal with multiple performance indicators. Then, we conduct several studies on the
automatic offline design of MOLS algorithms on multiple combinatorial bi-objective problems. Fi-
nally, we discuss two online extensions of classical algorithm configuration: first the integration of
parameter control mechanisms, to benefit from having multiple configuration predictions; then the
use of configuration schedules, to sequentially use multiple configurations.

Titre : Réagir et s’adapter à son environnement – Concevoir des méthodes autonomes pour l’op-
timisation combinatoire à plusieurs objectifs

Mots-clés : design automatique d’algorithmes, optimisation multi-critères, optimisation combina-
toire, métaheuristiques, algorithmes de recherche locale

Résumé : Les problèmes d’optimisation à grande échelle sont généralement difficiles à résoudre
de façon optimale. Des algorithmes d’approximation tels que les métaheuristiques, capables de
trouver rapidement des solutions sous-optimales, sont souvent préférés. Cette thèse porte sur les
algorithmes de recherche locale multi-objectif (MOLS), des métaheuristiques capables de traiter
l’optimisation simultanée de plusieurs critères. Comme de nombreux algorithmes, les MOLS ex-
posent de nombreux paramètres qui ont un impact important sur leurs performances. Ces para-
mètres peuvent être soit prédits et définis avant l’exécution de l’algorithme, soit ensuite modifiés
dynamiquement.

Alors que de nombreux progrès ont récemment été réalisés pour la conception automatique
d’algorithmes, la grande majorité d’entre eux ne traitent que d’algorithmes mono-objectif et l’opti-
misation d’un unique indicateur de performance. Dans cette thèse, nous étudions les relations entre
la conception automatique d’algorithmes et l’optimisation multi-objective.

Nous passons d’abord en revue les stratégies MOLS possibles et présentons un framework
MOLS général et hautement configurable. Nous proposons également MO-ParamILS, un confi-
gurateur automatique spécialement conçu pour gérer plusieurs indicateurs de performance. Nous
menons ensuite plusieurs études sur la conception automatique de MOLS sur de multiples pro-
blèmes combinatoires bi-objectifs. Enfin, nous discutons deux extensions de la configuration
d’algorithme classique : d’abord l’intégration des mécanismes de contrôle de paramètres, pour
bénéficier de multiples prédictions de configuration ; puis l’utilisation séquentielle de plusieurs
configurations.

	General Introduction
	Motivations
	Outline

	I Multi-objective Optimisation and Algorithm Design
	Multi-objective Metaheuristics
	Multi-objective Combinatorial Optimisation
	Introduction
	Definition
	Solution Comparison
	Multi-objective Metaheuristics

	Performance Assessment
	Overview
	Hypervolume
	D Spread

	Permutation Problems
	Permutation Flow Shop Scheduling Problem
	Travelling Salesman Problem
	Quadratic Assignment Problem

	Automatic Algorithm Design
	Preliminaries
	Overview
	Algorithm Selection
	Algorithm Configuration / Parameter Tuning
	Parameter Control
	Hyper-heuristics
	Other Fields and Taxonomies
	Multi-objective Automatic Design

	Overall Automatic Design Taxonomy Proposition
	Temporal Viewpoint
	Structural Viewpoint
	Overview
	Additional Complexity Viewpoint

	II Multi-objective Local Search
	Unified MOLS Structure
	Preliminaries
	Definitions
	Historical Development
	Condensed Literature Summary
	Analysis and Discussion

	MOLS Strategies
	Set of Potential Pareto Optimal Solutions (Archive)
	Set of Current Solutions (Memory)
	Exploration Strategies
	Selection Strategies
	Termination Criteria

	Escaping Local Optima
	MOLS Unification Proposition
	Main Loop
	Local Search Exploration
	Iterated Local Search Algorithm

	Literature Instantiation

	MOLS Instantiations
	Static MOLS Algorithm
	Algorithm
	Configuration Space

	Control Mechanisms Integration
	Parameter Analysis
	Knowledge Exploitation
	Knowledge Extraction
	Knowledge Modelling
	Decisional Schedule

	Adaptive MOLS Algorithm
	Algorithm
	Related adaptive MOLS Algorithms

	Configuration Scheduling
	Proposition
	Definitions
	Related Approaches

	AMH: Adaptive MetaHeuristics
	Motivation
	Philosophy
	Design and Implementation
	Execution Flow Examples

	Perspectives

	III Automatic Offline Design
	MO-ParamILS
	Multi-objective Automatic Configuration
	Definition
	Use Cases

	Single-objective ParamILS
	Core Algorithm
	BasicILS, FocusedILS
	Adaptive Capping Strategies
	Configuration Protocol

	Multi-objective ParamILS
	Motivations
	Core Algorithm
	Configuration Protocol

	Hybrid Multi-Objective Approaches
	Single Performance Indicator
	Aggregation of Multiple Performance Indicators

	Framework Evaluation
	Experimental Protocol
	Results

	Perspectives

	MOLS Configuration
	Exhaustive Analysis
	Experimental Protocol
	Parameter Distribution Analysis
	Optimal Configurations
	Discussions

	AAC Approaches Analysis
	Experimental Protocol
	Small Configuration Space Results
	Large Configuration Space Results
	Discussions

	Analysis of Objective Correlation
	Experimental Protocol
	Optimised Configurations
	Discussions

	Perspectives

	IV Automatic Online Design
	MOLS Control
	Adaptive MOLS Algorithm
	Adaptive Algorithm
	Generic Online Mechanisms

	Experimental Protocol
	Experimental Results
	3-arm Results
	2-arm Results
	Long Term Learning Results

	Discussions
	Perspectives

	MOLS Configuration Scheduling
	MOLS Configurations
	Experimental Protocol
	Experimental Results
	Exhaustive Enumeration
	K=2 Configuration Schedules
	K=3 Configuration Schedules

	Discussions
	Perspectives

	General Conclusion
	Contribution Summary
	Future Research

	Publications
	Bibliography

