Classification of random groups

Emily Clement¹

Joint work with: John Mackay²

¹CNRS, LIPN UMR 7030, Université Sorbonne Paris Nord, F-93430 Villetaneuse, France ²University of Bristol, England, UK

5th of November 2024

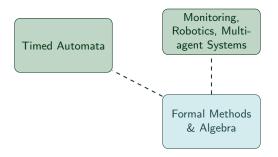
Emily Clement Classification of random groups

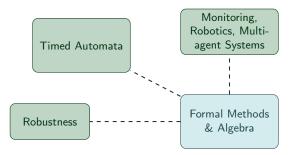
Short bio

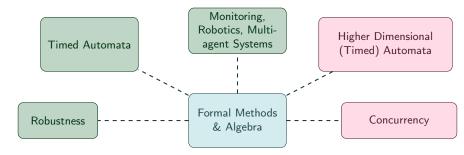
 L3, M1, M2 (Maths), M2 (Computer science) 	ENS Rennes	2014 - 2018	
► PhD in computer science	Université de Rennes & MERCE	10/18 - 03/22	
Directors: Nicolas Markey, Thierry Jéron	. Advisor: David Mentré		
► Post-doc in CS & Robotics	Sorbonne Université (ISIR)	04/22 - 05/23	
Director: Nicolas Perrin-Gilbert. Collabor: Philipp Schlehuber-Caissier			
► ATER in Computer Science	Université Paris Cité (IRIF)	09/23 - 09/24	
Collaborators: Sylvain Schmitz, Marie Fortin, Jeremy Ledent, Uli Fahrenberg, Hugo Bazille, Amazigh Amrane, Krzysztof Ziemański , Damien Bussato-Gaston, John Mackay			
► Post-doc in Computer Science	Sorbonne Nord (LIPN)	10/24 - now	

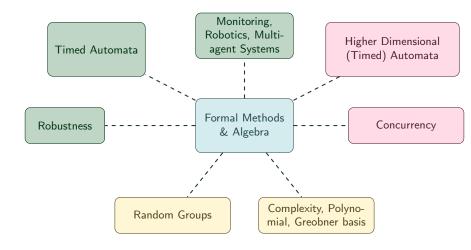
Director: Étienne André.

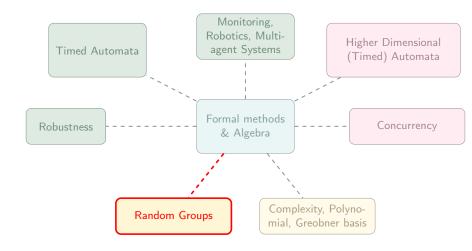
Formal Methods & Algebra

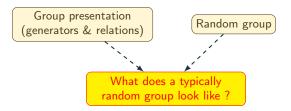












Motivations

- ▶ Trivial groups, Finite groups, Free groups
- ▶ Hyperbolic groups: "Most of random group are Hyperbolic" (Gromov¹)
 - Decidability of problems (word problem)
 - Representation with Automata

Emily Clement

• Application: networks²

²Chepoi, Dragan, and Vaxès, "Core congestion is inherent in hyperbolic networks", 2017.

4/19

¹Gromov, "Hyperbolic Groups", 1987.

• Generators
$$S = \{a, b\}, S = \{a, b, c\}.$$

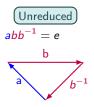
• Generators $S = \{a, b\}$, $S = \{a, b, c\}$.

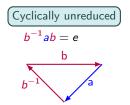
► Word: *a*, *ab*, *abb*⁻¹*a*, *abccb*⁻¹.

- Generators $S = \{a, b\}$, $S = \{a, b, c\}$.
- ► Word: *a*, *ab*, *abb*⁻¹*a*, *abccb*⁻¹.
- ▶ Relations: cancelling word w = e

- Generators $S = \{a, b\}, S = \{a, b, c\}$.
- ► Word: *a*, *ab*, *abb*⁻¹*a*, *abccb*⁻¹.
- ▶ Relations: cancelling word w = e

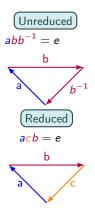
Examples of relations:



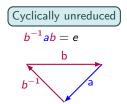


- Generators $S = \{a, b\}, S = \{a, b, c\}$.
- ► Word: *a*, *ab*, *abb*⁻¹*a*, *abccb*⁻¹.
- ▶ Relations: cancelling word w = e

Examples of relations:

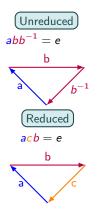


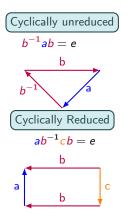
Emily Clement



- Generators $S = \{a, b\}, S = \{a, b, c\}$.
- ▶ Word: *a*, *ab*, *abb*⁻¹*a*, *abccb*⁻¹.
- ▶ Relations: cancelling word w = e

Examples of relations:





Classification of random groups

▶ No relations, only generators $\langle a, b \rangle$: words made with letters a, a^{-1}, b, b^{-1} .

- ► No relations, only generators (a, b) : words made with letters a, a⁻¹, b, b⁻¹.
- ► Group presentation :

$$\boxed{ G = \langle S_+ \mid R \rangle } s.t. \begin{cases} S_+ \subseteq \Sigma & (\text{generator}) \\ R \subseteq (S_+ \cup S_-)^* & (\text{relations}) \end{cases}$$

- ► No relations, only generators (a, b) : words made with letters a, a⁻¹, b, b⁻¹.
- ► Group presentation :

$$\label{eq:G} \fbox{$G=\langle S_+ \mid R \rangle$} s.t. \ \begin{cases} S_+ \subseteq \Sigma & (\text{generator}) \\ R \subseteq (S_+ \cup S_-)^* & (\text{relations}) \end{cases}$$

- ► No relations, only generators (a, b) : words made with letters a, a⁻¹, b, b⁻¹.
- ► Group presentation :

$$\begin{array}{|c|c|}\hline G = \langle S_+ \mid R \rangle \\ \hline S = \langle S_+ \mid R \rangle \\ \hline S = (S_+ \cup S_-)^* \quad (\text{relations}) \end{array}$$

► Example:

- ► No relations, only generators (a, b) : words made with letters a, a⁻¹, b, b⁻¹.
- ► Group presentation :

$$\begin{array}{c|c} \hline G = \langle S_+ \mid R \rangle \\ \hline S.t. & \begin{cases} S_+ \subseteq \Sigma & (\text{generator}) \\ R \subseteq (S_+ \cup S_-)^* & (\text{relations}) \end{cases} \end{array}$$

► Example:

• How to represent the commutative group, generated by *a* and *b* ?

- ► No relations, only generators (a, b) : words made with letters a, a⁻¹, b, b⁻¹.
- ► Group presentation :

$$\begin{array}{c|c} \hline G = \langle S_+ \mid R \rangle \\ \hline S.t. & \begin{cases} S_+ \subseteq \Sigma & (\text{generator}) \\ R \subseteq (S_+ \cup S_-)^* & (\text{relations}) \end{cases} \end{array}$$

- ► Example:
 - How to represent the commutative group, generated by *a* and *b* ? $\Sigma = \{a, b\}, R = \{aba^{-1}b^{-1}\}$

$$\langle a, b \mid aba^{-1}b^{-1} \rangle$$

Elements $aba^{-1}b^{-1}bb = bb$, abb = bab

- ► No relations, only generators (a, b) : words made with letters a, a⁻¹, b, b⁻¹.
- ► Group presentation :

$$\begin{array}{c|c} \hline G = \langle S_+ \mid R \rangle \\ \hline S.t. & \begin{cases} S_+ \subseteq \Sigma & (\text{generator}) \\ R \subseteq (S_+ \cup S_-)^* & (\text{relations}) \end{cases} \end{array}$$

- ► Example:
 - How to represent the commutative group, generated by *a* and *b* ? $\Sigma = \{a, b\}, R = \{aba^{-1}b^{-1}\}$

$$\langle a, b \mid aba^{-1}b^{-1} \rangle$$

Elements $aba^{-1}b^{-1}bb = bb$, abb = bab

 $\circ~$ What about ($\mathbb{Z}/2\mathbb{Z},+)$?

- ► No relations, only generators (a, b) : words made with letters a, a⁻¹, b, b⁻¹.
- ► Group presentation :

$$\begin{array}{c|c} \hline G = \langle S_+ \mid R \rangle \\ \hline S.t. & \begin{cases} S_+ \subseteq \Sigma & (\text{generator}) \\ R \subseteq (S_+ \cup S_-)^* & (\text{relations}) \end{cases} \end{array}$$

- ► Example:
 - How to represent the commutative group, generated by *a* and *b* ? $\Sigma = \{a, b\}, R = \{aba^{-1}b^{-1}\}$

$$\langle a, b \mid aba^{-1}b^{-1} \rangle$$

Elements $aba^{-1}b^{-1}bb = bb$, abb = bab

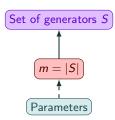
 $\circ~$ What about ($\mathbb{Z}/2\mathbb{Z},+)$?

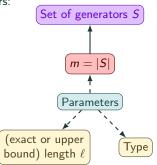
$$\langle a \mid a^2 = e \rangle$$

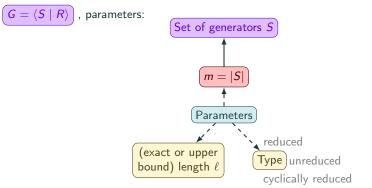
Elements are exactly *e* and *a*

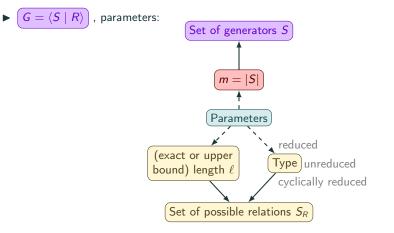
Emily Clement Cla

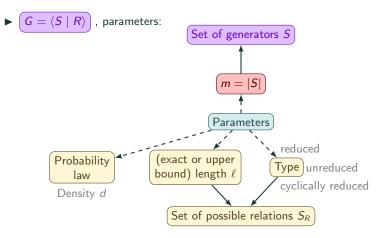
Classification of random groups

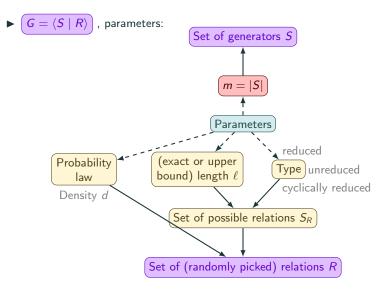


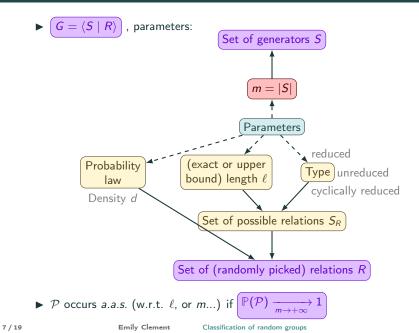








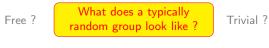




Motivation & our model: random triangular groups

► Motivation: geometric properties

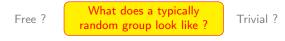
Finite ?



Hyperbolic ?

▶ Motivation: geometric properties

Finite ?



Hyperbolic ?

• Our model: triangular ($\ell = 3$, exact length) random group, with:

• unreduced words

• Relations picked uniformly, independently with probability $\binom{m^{(d-1)\ell}}{m^{(d-1)\ell}}$

▶ Motivation: geometric properties

Finite ?

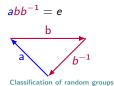
Hyperbolic ?

▶ Our model: triangular ($\ell = 3$, exact length) random group, with:

• unreduced words

• Relations picked uniformly, independently with probability $\binom{m^{(d-1)\ell}}{m^{(d-1)\ell}}$

► Example of unreduced relations:



Emily Clement

► Models:

Words Parameters	Reduced, cyclically reduced words	Unreduced words
$m \ge 2, \ell \to +\infty$	Yann Ollivier ³	Yann Ollivier ⁴
$m \to +\infty, \ell = 3$	Antoniuk et al. ⁵	Our model

³Ollivier, "A january 2005 Invitation to Random Groups", 2005.

⁴Ollivier, "A january 2005 Invitation to Random Groups", 2005.

⁵Antoniuk, Friedgut, and Łuczak, "A sharp threshold for collapse of the random triangular group", 2014; Antoniuk, Łuczak, and Świcatkowski, "Collapse of random triangular groups: a closer look", 2013; Antoniuk, Łuczak, and Świcatkowski, "Random triangular groups at density 1/3", 2013.

► Our model: triangular ($\ell = 3$, exact length) random group, with unreduced words. Relations picked uniformly, independently with probability $m^{(d-1)\ell}$.

▶ Our results when $m \to +\infty$:

Let $G = \langle S \mid R \rangle$. G is:

- ▶ Finite: $|G| < +\infty$
- ▶ Trivial: all word from $\langle S | R \rangle$ are equal to e_G
- Free: for some set of generators $S' \subseteq G$, all elements of G have a unique representation (as sequence of S').

Representation of empty word

For any word $w = e_G$:

$$w = \prod_{i=1}^{N(w)} g_i \cdot r_i^{\pm 1} \cdot g_i^{-1}, g_i \in S, r_i \in R$$

▶ N(w): the minimal number of relations needed to write w.

• Example: $a^4 = a^2 a^2$ in $\langle a \mid a^2 \rangle$, N(a) = 2

Word problem

Given G a group, determine the set of word $w \ s.t. \ w = e_G$?

Hyperbolic groups: linear bound of N*G* is hyperbolic iff $\exists C > 0, \forall w \in G \text{ s.t. } w = e_G, N(w) \leq C |w|$.

Examples

- ▶ Hyperbolic: Finite groups, \mathbb{Z}
- ▶ Non-hyperbolic: \mathbb{Z}^2

Geometric point of view: Van Kampen Diagram ${\cal D}$

▶ Intuition: "Glue" relations together to form a word equal to e.

- $S = \{a, b\}$, Relations $R = \{abb, aba\}$, $G = \langle S | R \rangle$.
- ▶ Is $bba^{-1}b^{-1} = e_G?$

$$bba^{-1}b^{-1} = a^{-1}(abb)aa^{-1}(aba)^{-1}a = e_G$$

So is **a**⁻¹**b**...

▶ Hyperbolicity caracterisation: $\exists C > 0$, *s.t.* for any \mathcal{D} , $|\mathcal{D}| \leq C |\delta \mathcal{D}|$

Our contribution

Relation of type i

- ▶ Type *i*: contains exactly *i* different letters (inverse does not count).
- ▶ *abb*, *aba*⁻¹: type 2, *aaa*⁻¹: type 1, *abc*: type 3.

Counting relations

$$\blacktriangleright$$
 $\mathbb{E}[X_i] \simeq m^{2d-3+i}$

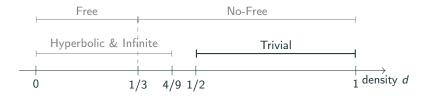
- When d < 2/3, $\mathbb{E}[X_1] \xrightarrow[\ell \to +\infty]{} 0$
- ▶ When d < 1/3, i = 1, 2, $\mathbb{E}[X_i] \xrightarrow[\ell \to +\infty]{} 0$.

- When d < 1/3, *a.a.s.* relations are of type 3
- $\blacktriangleright \text{ Type 3} \Rightarrow \text{reduced word of length 3}$
- ▶ Reduction to Antoniuk et al.⁶ results:

⁶Antoniuk, Łuczak, and Świcatkowski, "Collapse of random triangular groups: a closer look", 2013; Antoniuk, Łuczak, and Świcatkowski, "Random triangular groups at density 1/3", 2013; Antoniuk, Friedgut, and Łuczak, "A sharp threshold for collapse of the random triangular group", 2014.

Compute the set of trivial generators T (using graph theory)

- ▶ Initialise $T = \emptyset$
- ▶ Relation of type⁷ $aaa^{-1} = e$ or $abb^{-1} = e$: add *a* in *T*
- ▶ Relation of type 3, of the form [*T*][*T*][?]: add [?] to *T*.
- ▶ Results: T = S



⁷up to permutation

Emily Clement

Adapt our model to Yann Ollivier's one

Yann Ollivier's model: fixed number of relations.



Adapt our model to Yann Ollivier's one

Yann Ollivier's model: fixed number of relations.

▶ 1): Give a lower and upper bound of |R|.

Adapt our model to Yann Ollivier's one

Yann Ollivier's model: fixed number of relations.

- ▶ 1): Give a lower and upper bound of |R|.
- \blacktriangleright 2): Give an equivalent model, with varying probability (to pick a relation).



Conclusion

Words Parameters	Reduced, cyclically reduced words	Unreduced words
$m \ge 2, \ell \to +\infty$	Yann Ollivier	Yann Ollivier
$m \to +\infty, \ell = 3$	Antoniuk et al.	Our model

Our results

Current & Future work What about $4/9 \le d \le 1/2$?

19/19

Emily Clement

Classification of random groups

- International conference:
 - Formats'20: Computing Maximally-Permissive Strategies in Acyclic Timed Automata.
 Emily Clement, Thierry Jéron, Nicolas Markey, David Mentré
 - Formats'23: Layered controller synthesis for dynamic multi-agent systems
 Emily Clement, Nicolas Perrin-Gilbert, Philipp Schlehuber-Caissier
 - Petri Nets'24: Languages of Higher-Dimensional Timed Automata Amazigh Amrane, Hugo Bazille, Emily Clement, Uli Fahrenberg
 - Ramics'24: Presenting Interval Pomsets with Interfaces Amazigh Amrane, Hugo Bazille, Emily Clement, Uli Fahrenberg, Krzysztof Ziemiański
- Submitted articles:
 - FOSSACS'25: Expressivity of Linear Temporal Logic for Pomset Languages of Higher Dimensional Automata Emily Clement, Enzo Erlich, Jérémy Ledent