Layered controller synthesis for dynamic multi-agent systems

Emily Clement1,3 Nicolas Perrin-Gilbert1 Philipp Schlehuber-Caissier2

1Sorbonne Université, CNRS, Institut des Systèmes Intelligents et de Robotique, ISIR, F-75005 Paris, France
2EPITA Research Laboratory
3Université Paris Cité, CNRS, IRIF, Paris, France

Septembre 19 2023
Introduction

Dynamic multi-agent system’s verification
Our objectives

- A running example
 https://perso.eleves.ens-rennes.fr/people/Emily.Clement/Videos/example_episodes/ex_0.mp4

<table>
<thead>
<tr>
<th></th>
<th>Timed Automata</th>
<th>Reinforcement Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Abstract representation (acceleration)</td>
<td></td>
</tr>
<tr>
<td>Weakness</td>
<td>Time of execution</td>
<td>Combinatorial or Continuous aspects</td>
</tr>
</tbody>
</table>
Our layered approach

- Our assumptions

\[v(x) \]

\[\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\end{array} \]

▷ Speed:

\[\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\end{array} \]

- Our contribution: Three-layered Controller synthesis

SWA

Stage 1: Reachability algorithm on a simplified ISWA model

SMT

Stage 2: Refine the model of the speed

SWA-SMT Solver

Generate a dataset for random initial positions

Dataset

Stage 3: Train an RL algorithm with our dataset

RL

RL training
Our layered approach

- Our assumptions
 - **Speed:** $v(x)$
 - $v(x)$ is a step function with steps at $x = 1, 2, 3, 4, 5, 6$
 - $v(x) = 1$ for $x = 1, 2, 3, 4, 5, 6$

 - **Paths of cars:** fixed trajectories, fixed finals & initial positions.

Stage 1: Reachability algorithm on a simplified ISWA model
Stage 2: Refine the model of the speed
Stage 3: Train an RL algorithm with our dataset
Our layered approach

- Our assumptions

 \(v(x) \)

 ▶ **Speed:** 0, 1, 2, 3, 4, 5, 6

 ▶ **Paths of cars:** fixed trajectories, fixed finals & initial positions.

 ▶ **Trajectories:** we abstract from the curves of the trajectories.
Our layered approach

- Our assumptions

 - Speed: $v(x)$

 - Paths of cars: fixed trajectories, fixed finals & initial positions.

 - Trajectories: we abstract from the curves of the trajectories.

 - Our control: the speed of (all) cars.
Our layered approach

- **Our assumptions**

 \[v(x) \]

 ![Graph showing \(v(x) \)]

 ▶ **Speed:** 0

 ▶ **Paths of cars:** fixed trajectories, fixed finals & initial positions.

 ▶ **Trajectories:** we abstract from the curves of the trajectories.

 ▶ **Our control:** the speed of (all) cars.

 ▶ **Goal:** reach goals while avoiding collisions between agents.
Our layered approach

- **Our assumptions**
 - Speed: $v(x)$

 ![Graph showing speed](image)

 - **Speed:** 0, 1, 2, 3, 4, 5, 6

 - **Paths of cars:** fixed trajectories, fixed finals & initial positions.

 - **Trajectories:** we abstract from the curves of the trajectories.

 - **Our control:** the speed of (all) cars.

 - **Goal:** reach goals while avoiding collisions between agents.

- **Our contribution:** Three-layered Controller synthesis

 - **Stage 1:** Reachability algorithm on a simplified ISWA model

 - **SWA-SMT Solver**

 - **Stage 1:** Reachability algorithm on a simplified ISWA model

 - **SWA**
Our layered approach

- Our assumptions

 \[v(x) \]

 - **Speed:**

 - **Paths of cars:** fixed trajectories, fixed finals & initial positions.

 - **Trajectories:** we abstract from the curves of the trajectories.

 - **Our control:** the speed of (all) cars.

 - **Goal:** reach goals while avoiding collisions between agents.

- Our contribution: Three-layered Controller synthesis

 - **Stage 1:** Reachability algorithm on a simplified ISWA model
 - **Stage 2:** Refine the model of the speed

 - **Stage 3:** Train an RL algorithm with our dataset

SWA-SMT Solver
Our layered approach

- Our assumptions
 - Speed:
 - $v(x)$
 - $\text{Speed: } 0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6$
 - Paths of cars: fixed trajectories, fixed finals & initial positions.
 - Trajectories: we abstract from the curves of the trajectories.
 - Our control: the speed of (all) cars.
 - Goal: reach goals while avoiding collisions between agents.

- Our contribution: Three-layered Controller synthesis
 - SWA-SMT Solver
 - **Stage 1**: Reachability algorithm on a simplified ISWA model
 - **Stage 2**: Refine the model of the speed
 - **Stage 3**: Train an RL algorithm with our dataset
 - **Generate a dataset** for random initial positions
 - **Dataset**
SWA-SMT solver

SWA solver

Stage 1: Reachability algorithm on system of ISWA

Stage 2: Model the acceleration and deceleration
Rules to model collision avoidance

• #1: security distance when driving in the same direction and between neighbouring sections

\[\varepsilon \]

\[A \quad B \quad C \]

\[\varepsilon \quad \varepsilon \]
Rules to model collision avoidance

- #1: security distance when driving in the same direction and between neighbouring sections

- #2: cars cannot share a section if driving in opposite direction

• #3: No Overtaking between cars
Rules to model collision avoidance

• #1: security distance when driving in the same direction and between neighbouring sections

• #2: cars cannot share a section if driving in opposite direction
Rules to model collision avoidance

• #1: security distance when driving in the same direction and between neighbouring sections

• #2: cars cannot share a section if driving in opposite direction

• #3: No Overtaking between cars
Model for a car traffic

- A point in \mathbb{R}^2: a node n_0
- A section $s_{[n_0,n_1],L}$ of the road:

```
  n0  n1
   ^
  L   
```
Model for a car traffic

▷ A point in \mathbb{R}^2: a node n_0

▷ A section $s_{[n_0,n_1],L}$ of the road:

▷ A path: $p_0 : n_0 \rightarrow n_1 \rightarrow n_3 \rightarrow n_4 \rightarrow n_6 \rightarrow n_{11}$
Model for a car traffic

▷ A point in \mathbb{R}^2: a node n_0

▷ A section $s_{[n_0,n_1],L}$ of the road:

▷ A path: $p_0 : n_0 \rightarrow n_1 \rightarrow n_3 \rightarrow n_4 \rightarrow n_6 \rightarrow n_{11}$

▷ Car: (position, speed, trajectory)
Model for a car traffic

- A point in \mathbb{R}^2: a node n_0
- A section $s_{[n_0,n_1],L}$ of the road:
- A path: $p_0 : n_0 \rightarrow n_1 \rightarrow n_3 \rightarrow n_4 \rightarrow n_6 \rightarrow n_{11}$
- Car: (position, speed, trajectory)
- A car traffic: c_0, c_1, c_2 are each assigned paths p_0, p_1, p_2:
What type of Timed Automata to use to model this?

- Needs

▷ **Stopwatch Timed Automata:**

\[v(x) \]

\[\begin{array}{c|c|c|c|c|}
1 & 2 & 3 & 4 & x \\
\hline
0 & 1 & 1 & 1 & 1 \\
\end{array} \]
What type of Timed Automata to use to model this?

- **Needs**
 - **Stopwatch Timed Automata:**
 - **Clocks of TA:** Monitor each car’s progress.
What type of Timed Automata to use to model this?

- **Needs**

 - **Stopwatch Timed Automata**: Monitor each car’s progress.
 - **Clocks of TA**: Monitor each car’s progress.
 - **Synchronised action**: Compute distance between each car.
What type of Timed Automata to use to model this?

- Needs
 - **Stopwatch Timed Automata:**
 - **Clocks of TA:** Monitor each car’s progress.
 - **Synchronised action:** Compute distance between each cars.
 - **FiFo channels:** A car cannot overtake another car.
Initialized Stopwatch Timed Automata with bounded channels

- Example of a two-clocks Stopwatch Timed Automata

- Reachability is Undecidable in general cases.

- Initialized Stopwatch Timed Automata

- Reset the stopped clock in the previous or following transition:

- Reachability becomes Decidable for this fragment of SWA.

- Bounded channels

- Channels: FiFo queue of symbols (actions) to be pushed/read
Initialized Stopwatch Timed Automata with bounded channels

- Example of a two-clocks Stopwatch Timed Automata

\[0 \leq x \leq 1 \quad 0 \leq y \leq 1 \]

\[1 \leq x \leq 2 \quad 0 \leq y \leq 1 \]

Reachability is Undecidable in general cases.

- Initialized Stopwatch Timed Automata

 - Reset the stopped clock in the previous or following transition:

\[\{ y \} \quad \{ \} \]

- Reachability becomes Decidable for this fragment of SWA.

- Bounded channels

 - Channels: FiFo queue of symbols (actions) to be pushed/read
Initialized Stopwatch Timed Automata with bounded channels

- Example of a two-clocks Stopwatch Timed Automata

\[
\begin{align*}
\ell_0 & \xrightarrow{a_1} \ell_1 & 0 \leq x \leq 1 & 0 \leq y \leq 1 \\
\ell_1 & \xrightarrow{a_2} \ell_f & 1 \leq x \leq 2 & 0 \leq y \leq 1
\end{align*}
\]

Reachability is Undecidable in general cases.

- Initialized Stopwatch Timed Automata
 - Reset the stopped clock in the previous or following transition:

- Reachability becomes Decidable for this fragment of SWA.

Bounded channels
- Channels: FiFo queue of symbols (actions to be pushed/read)

Emily Clement

Layered controller synthesis for dynamic multi-agent systems
Initialized Stopwatch Timed Automata with bounded channels

- Example of a two-clocks Stopwatch Timed Automata

Reachability is Undecidable in general cases.
Initialized Stopwatch Timed Automata with bounded channels

- Example of a two-clocks Stopwatch Timed Automata

Reachability is **Undecidable** in general cases.

- Initialized Stopwatch Timed Automata

 - Reset the stopped clock in the previous or following transition:

Reachability becomes **Decidable** for this fragment of SWA.
Initialized Stopwatch Timed Automata with bounded channels

- Example of a two-clocks Stopwatch Timed Automata

\[
\begin{align*}
\ell_0 & \xrightarrow{a_1} \ell_1 \\
\{y\} & \quad & \{\} & \quad 0 \leq y \leq 1 \\
1 \leq x \leq 2 & \\
\ell_1 & \xrightarrow{a_2} \ell_f \\
\{\} & \quad & \{} & \\
0 \leq y \leq 1 & \\
\ell_f & \\
\end{align*}
\]

▷ Reachability is Undecidable in general cases.

- Initialized Stopwatch Timed Automata

▷ Reset the stopped clock in the previous or following transition:

\[
\begin{align*}
\ell_p & \xrightarrow{g_p} \ell \\
\{\} & \quad & \{y\} & \quad y \leftarrow 0 \\
\ell & \xrightarrow{g_f} \ell_f \\
\{\} & \\
\ell_f & \\
\end{align*}
\]

▷ Reachability becomes Decidable for this fragment of SWA.
Example of a two-clocks Stopwatch Timed Automata

Reachability is Undecidable in general cases.

Initialized Stopwatch Timed Automata

Reset the stopped clock in the previous or following transition:

Reachability becomes Decidable for this fragment of SWA.

Bounded channels

Channels: FiFo queue of symbols (actions) to be pushed/read
Model the car progress

- **Car A progress along its paths**

 Path: $s \xleftrightarrow{L_0} s' \xleftrightarrow{L} s''$

- **Car A Timed automaton:**

 ![Timed automaton diagram]

 - **Clock** x_A: distance travelled along its paths
 - **Stopwatches** $\{x_A\}$: the car A stops instantly.
 - **Channels** $c_{s'}!x_A / c_{s'}?x_A$: respect the order of cars in a section $s \Rightarrow$ no overtaking.
 - **Intersection**: use classical synchronized action to activate *intersection automata*

 \[\begin{align*}
 a_s & \xrightarrow{x_A = L_0} w_{s'} & x_A = L_0 \\
 & \text{sync}_{s'}(x_A) & c_{s'}?x_A \\
 \{\} & \{x_A\} & \{\} \\
 \hline
 d_{s'} & \xrightarrow{x_A = L_0 + L} a_{s'} & x_A = L_0 + L \\
 & c_{s''}!x_A & \text{sync}_{s''}(x_A) \\
 \{\} & \{\} & \{x_A\} \\
 \hline
 w_{s''} & \xrightarrow{x_A = L_0 + L} & \\
 \end{align*}\]
Model the car progress

- **Car A progress along its paths**

 Path: s \[\xrightarrow{L_0} \] s' \[\xrightarrow{L} \] s''

- **Car A Timed automaton:**

 ▶ **Clock** x_A: distance travelled along its paths
 ▶ **Stopwatches** $\{x_A\}$: the car A stops instantly.
 ▶ **Channels** $c_{s'}!x_A/c_{s'}?x_A$: respect the order of cars in a section $s \Rightarrow$ no overtaking.
 ▶ **Intersection**: use classical synchronized action to activate *intersection automata*

Layered controller synthesis for dynamic multi-agent systems
Model the car progress

- **Car A progress along its paths**

 Path: $L_0 \xrightarrow{ss} L \xrightarrow{ss'} L$

- **Car A Timed automaton:**

 ![Automaton Diagram]

 - **Clock** x_A: distance travelled along its paths
 - **Stopwatches** $\{x_A\}$: the car A stops instantly.
 - **Channels** $c_{s'}!x_A/c_{s'}?x_A$: respect the order of cars in a section $s \Rightarrow$ no overtaking.
 - **Intersection**: use classical synchronized action to activate *intersection automata*
Model the car progress

- **Car A progress along its paths**

 Path: \[s \overset{L_0}{\rightarrow} s' \overset{L}{\rightarrow} s'' \]

- **Car A Timed automaton:**

 - **Clock** \(x_A \): distance travelled along its paths
 - **Stopwatches** \(\{x_A\} \): the car A stops instantly.
 - **Channels** \(c_{s'}!x_A/c_{s'}?x_A \): respect the order of cars in a section \(s \Rightarrow \) no overtaking.
 - **Intersection**: use classical synchronized action to activate *intersection automata*
Car A progress along its paths

\[
\text{Path: } L_0 \xrightarrow{s} s' \xrightarrow{L} s''
\]

Car A Timed automaton:

▷ Clock \(x_A \): distance travelled along its paths
▷ Stopwatches \(\{x_A\} \): the car A stops instantly.
▷ Channels \(c_{s'}!x_A/c_{s'}?x_A \): respect the order of cars in a section \(s \Rightarrow \) no overtaking.
▷ Intersection: use classical synchronized action to activate intersection automata
Model distance between cars: intersection

Path of car A: $s_A \rightarrow s' \rightarrow s_A''$

Path of car B: $s_B \rightarrow s' \rightarrow s_B''$

- Intersection automaton

\[
x_{s'} = L + \epsilon
\]
Model distance between cars: intersection

Path of car A: \(s_A \rightarrow s' \rightarrow s''_A \)
Path of car B: \(s_B \rightarrow s' \rightarrow s''_B \)

- Intersection automaton

\[x_{s'} = L + \varepsilon \]

- \(f_{s'} \)
- \(b_{s', \rightarrow} \)
- \(sf_{s', \rightarrow} \)

\(\text{sync}_{s'}(x_B) \)
\(x_{s'} \leftarrow 0 \)

\(\text{sync}_{s'}(x_A) \)
\(x_{s'} \leftarrow 0 \)

\(\text{sync}_{s'}(x_A) \)
\(x_{s'} \leftarrow 0 \)

\(\text{sync}_{s'}(x_B) \)
\(x_{s'} \leftarrow 0 \)
Model distance between cars: intersection

Path of car A: \(s_A \rightarrow s' \rightarrow s_A'' \)
Path of car B: \(s_B \rightarrow s' \rightarrow s_B'' \)

- Intersection automaton

\(x_{s'} = L + \varepsilon \)

\(\text{sync}_{s'}(x_B) \)
\(x_{s'} \gets 0 \)
\(\text{sync}_{s'}(x_A) \)
\(x_{s'} \gets 0 \)
\(\text{sync}_{s'}(x_A) \)
\(x_{s'} \gets 0 \)
\(\text{sync}_{s'}(x_B) \)
\(x_{s'} \gets 0 \)
Model distance between cars: intersection

Path of car A: $s_A \xrightarrow{s'} s''$

Path of car B: $s_B \xrightarrow{s'} s''$

- Intersection automaton

$$x_{s'} = L + \epsilon$$

Layered controller synthesis for dynamic multi-agent systems
Model distance between cars: intersection

Path of car A: $s_A \rightarrow s' \rightarrow s_A''$

Path of car B: $s_B \rightarrow s' \rightarrow s_B''$

- Intersection automaton

$$x_{s'} = L + \epsilon$$

Layered controller synthesis for dynamic multi-agent systems
Model distance between cars: intersection

Path of car A: $s_A \rightarrow s' \rightarrow s_A''$
Path of car B: $s_B \rightarrow s' \rightarrow s_B''$

• Intersection automaton

$x_{s'} = L + \varepsilon$

sync$_{s'}(x_B)$
$x_{s'} \leftarrow 0$

sync$_{s'}(x_A)$
$x_{s'} \leftarrow 0$

sync$_{s'}(x_A)$
$x_{s'} \leftarrow 0$

sync$_{s'}(x_B)$
$x_{s'} \leftarrow 0$

Layered controller synthesis for dynamic multi-agent systems
Model distance between cars: intersection

Path of car A: $s_A \rightarrow s' \rightarrow s''$
Path of car B: $s_B \rightarrow s' \rightarrow s''$

- Intersection automaton

\[x_{s'} = L + \varepsilon \]

\[\text{sync}_{s'}(x_B) \]
\[x_{s'} \leftarrow 0 \]
\[\text{sync}_{s'}(x_A) \]
\[x_{s'} \leftarrow 0 \]

\[\text{sync}_{s'}(x_B) \]
\[x_{s'} \leftarrow 0 \]
\[\text{sync}_{s'}(x_A) \]
\[x_{s'} \leftarrow 0 \]

\[\text{sync}_{s'}(x_B) \]
\[x_{s'} \leftarrow 0 \]
\[\text{sync}_{s'}(x_A) \]
\[x_{s'} \leftarrow 0 \]
Model distance between cars: intersection

Path of car A: $s_A \rightarrow s' \rightarrow s_A''$
Path of car B: $s_B \rightarrow s' \rightarrow s_B''$

- Intersection automaton
Model distance between cars: intersection

Path of car A: $s_A \rightarrow s' \rightarrow s_A''$
Path of car B: $s_B \rightarrow s' \rightarrow s_B''$

- Intersection automaton

\[
x_{s'} = L + \varepsilon
\]

Layered controller synthesis for dynamic multi-agent systems
Model distance between cars: intersection

Path of car A: $s_A \rightarrow s' \rightarrow s_A''$

Path of car B: $s_B \rightarrow s' \rightarrow s_B''$

- Intersection automaton

\[
x_{s'} = L + \varepsilon
\]

Layered controller synthesis for dynamic multi-agent systems
Model distance between cars: intersection

Path of car A: $s_A \rightarrow s' \rightarrow s''$

Path of car B: $s_B \rightarrow s' \rightarrow s''$

- Intersection automaton

\[x_{s'} = L + \varepsilon \]

Layered controller synthesis for dynamic multi-agent systems
Model distance between cars: intersection

Path of car A: \(S_A \rightarrow S' \rightarrow S_{A''} \)
Path of car B: \(S_B \rightarrow S' \rightarrow S_{B''} \)

- Intersection automaton

\[x_{s'} = L + \varepsilon \]

\[f_{s'} \rightarrow b_{s', \rightarrow} \rightarrow s_{f_{s'}, \rightarrow} \]

- \(x_{s'} \leftarrow 0 \)
- \(\text{sync}_{s'}(x_B) \)
- \(\text{sync}_{s'}(x_A) \)
- \(x_{s'} \leftarrow 0 \)
- \(\text{sync}_{s'}(x_B) \)
- \(\text{sync}_{s'}(x_A) \)
- \(x_{s'} \leftarrow 0 \)
- \(x_{s'} \leftarrow 0 \)
Our Algorithm: a DFS with an optimised succ function

Transition t available

$t \in \text{car TA}?$
Our Algorithm: a DFS with an optimised succ function

Transition t available

Yes

$t \in \text{car TA}$?

Yes

loc = w_s?

No

loc = b_s?

No

Choice 1

Yes

Choice 2

Yes
Our Algorithm: a DFS with an optimised succ function

Transition t available

$t \in \text{car TA}？$

Yes

loc = w？

Yes

\exists other t' available？

No

No

loc = b？

\exists other t' available？

Take t
Our Algorithm: a DFS with an optimised succ function

Transition \(t \) available

- \(t \in \text{car TA?} \)
 - Yes
 - \(\text{loc = } w_s, ? \)
 - Yes
 - \(\exists \text{other } t' \text{ available?} \)
 - Choice 1: take \(t \)
 - Choice 2: take \(t \)
 - No
 - \(\text{wait for } t' \)
 - No
 - \(\text{loc= } b_s, ? \)
 - take \(t \)
Our Algorithm: a DFS with an optimised succ function

Transition t available

Yes

$t \in \text{car TA}?$

Yes

loc = w_s?

Yes

\exists other t' available?

Yes

take t

No

wait for t'

No

\exists car asking to enter in s, \rightarrow (t') ?

No

Choice 1

Choice 2

Yes

take t

No

take t

No

loc = b_s, \rightarrow ?
Our Algorithm: a DFS with an optimised succ function

Transition t available

Yes $t \in \text{car TA}$?

Yes $\exists \text{ other } t'$ available?

Choice 1

Choice 2

$\exists \text{ car asking to enter in } s, \rightarrow (t')$?

Yes $\text{take } t$

No $\text{take } t$ or t'

No $\text{take } t'$

No $\text{wait for } t'$

$\text{take } t$
SWA-SMT solver

Stage 1: Reachability algorithm on system of ISWA

Stage 2: Model the acceleration and deceleration

SWA SMT
Why use of SMT solver?

Stage 1: Reachability algorithm on a simplified ISWA model

Stage 2: Refine the model of the speed

Stage 3: Train an RL algorithm with our dataset

DFS algorithm

- **SWA**

SMT Solver

- **SMT**

RL training

- **Dataset**
- **RL**

Solved: combinatorial aspect of the problem.

Results: Important events and their relative order

Drawback: A very abstract model of speed

Generate a dataset for random initial positions
Why use of SMT solver?

Stage 1: Reachability algorithm on a simplified ISWA model

- **SWA**

 - Solved: combinatorial aspect of the problem.
 - Results: Important events and their relative order
 - Drawback: A very abstract model of speed

Stage 2: Refine the model of the speed

- **SMT**

Stage 3: Train an RL algorithm with our dataset

- **Dataset**

 - Generate a dataset for random initial positions

SMT solver

- The **continuous** aspect of the problem
- Introduce a more **realistic** model of speed
New model for speed graph

- A constant piecewise affine function
 - A more realistic model that takes into account the **dynamic of the system**
 - **Different** car speeds
 - **Bounds** on deceleration and acceleration

\[
\begin{align*}
 v_i(t) &\Rightarrow \tilde{v}_i(0), \ldots, \tilde{v}_i(k-1) \\
 x(t) &\Rightarrow \tilde{x}_i(k) = \sum_{l=0}^{k-1} \tilde{v}_i(l)
\end{align*}
\]
How to preserve security distance?

- New positions/speeds
 - $\tilde{x}_i(k) = \sum_{l=0}^{k-1} \tilde{v}_i(l)$
 - $\tilde{v}_i(0), \cdots, \tilde{v}_i(k-1)$
• New positions/speeds
 ▶ \(\tilde{x}_i(k) = \sum_{l=0}^{k-1} \tilde{v}_i(l) \)
 ▶ \(\tilde{v}_i(0), \ldots, \tilde{v}_i(k - 1) \)

• Example of SMT solver’s inequalities
 For each step \(k \) :
 ▶ \(\tilde{v}_i(k) - d_{\text{max}} \leq \tilde{v}_i(k + 1) \leq \tilde{v}_i(k) + a_{\text{max}} \)
How to preserve security distance?

● New positions/speeds
 ▶ \(\ddot{x}_i(k) = \sum_{l=0}^{k-1} \ddot{v}_i(l) \)
 ▶ \(\ddot{v}_i(0), \cdots, \ddot{v}_i(k-1) \)

● Example of SMT solver’s inequalities
For each step \(k \):
 ▶ \(\ddot{v}_i(k) - d_{\text{max}} \leq \ddot{v}_i(k+1) \leq \ddot{v}_i(k) + a_{\text{max}} \)
 ▶ \(0 \leq \ddot{v}_i(k) \leq v_{\text{max}} \)
RL training

Generate a dataset for random initial positions

Stage 3: Train an RL algorithm with our dataset
Why use of SMT solver?

Stage 1: Reachability algorithm on a simplified ISWA model

- **SWA**
- Solved: combinatorial aspect of the problem.
- Results: Important events and their relative order
- Drawback: A very abstract model of speed

Stage 2: Refine the model of the speed

- **SMT**
- A more realistic model of speed
- Results: traces that takes into account the dynamical aspect of the problem
- Drawback: runtime execution

SWA-SMT solver

Stage 3: Train an RL algorithm with our dataset

- **Dataset**
- **RL**
- Generate a dataset for random initial positions
- Drawback: our problem has both combinatorial and continuous aspects
- Goal: get an intuition from dataset to avoid unsuccessful choices
Why use of SMT solver?

Stage 1: Reachability algorithm on a simplified ISWA model

- **SWA**
- **SMT**

Solved: combinatorial aspect of the problem.
Results: Important events and their relative order
Drawback: A very abstract model of speed

Stage 2: Refine the model of the speed

- A more realistic model of speed
- Results: traces that take into account the dynamical aspect of the problem
- **Drawback:** runtime execution

Stage 3: Train an RL algorithm with our dataset

- **Generate** a dataset for random initial positions
- **Dataset**
- **RL**

Drawback: our problem has both combinatorial and continuous aspects

Goal: get an intuition from dataset to avoid unsuccessful choices

- **RL training dataset**
 - Create random initial positions/speeds for cars
 - Generate traces with the SWA-SMT solver

Emily Clement
Layered controller synthesis for dynamic multi-agent systems
• Markov Decision Process

 ▶ Deterministic running example: deterministic transition function.
• Markov Decision Process
 ▶ **Deterministic running example**: deterministic transition function.
 ▶ **State** s_i. For each section s, if a car c is in s: $v_{i,c}, \text{pos}_{i,c}, \text{id}_c, 1$

Model

Layered controller synthesis for dynamic multi-agent systems
• **Markov Decision Process**

 ▶ **Deterministic running example**: deterministic transition function.

 ▶ **State** \(s_i \). For each section \(s \), if a car \(c \) is in \(s \): \(v_{i,c}, pos_{i,c}, id_c, 1 \)

 ▶ **Action** \(act_i \): \((acc_{i,c})_{c \in \text{Cars}} \)

\[
(pos_{i,c}, v_{i,c}) \rightarrow (pos_{i,c} + v_i, v_{i,c} + acc_{i,c})
\]

\[
\begin{array}{l}
i \\
i + 1
\end{array}
\]
• Markov Decision Process

▷ **Deterministic running example**: deterministic transition function.

▷ **State** s_i. For each section s, if a car c is in s: $v_{i,c}, \text{pos}_{i,c}, \text{id}_c, 1$

▷ **Action** act_i: $(\text{acc}_{i,c})_{c \in \text{Cars}}$

$$$(\text{pos}_{i,c}, v_{i,c}) \rightarrow (\text{pos}_{i,c} + v_{i,c}, v_{i,c} + \text{acc}_{i,c})$$$

▷ **Trajectories** $s_i, \text{Obs}_i, \text{act}_i$
Model

- Markov Decision Process
 - **Deterministic running example**: deterministic transition function.
 - **State** s_i. For each section s, if a car c is in s: $v_{i,c}, pos_{i,c}, id_c, 1$
 - **Action** act_i: $(acc_{i,c})_{c \in \text{Cars}}$
 $$ (pos_{i,c}, v_{i,c}) \rightarrow_{i} (pos_{i,c} + v_{i,c}, v_{i,c} + acc_{i,c}) \rightarrow_{i+1} $$
 - **Trajectories** s_i, Obs_i, act_i
 - **Reward**:
 - $+2000$ if goals are achieved
 - -100 if distance rules are not respected
 - \uparrow with speed
 - \uparrow with the increase of distance between cars
Results with SWA-SMT solver, post SWA-SMT solver RL and single RL training
Steps of the layered method

Stage 1: Reachability algorithm on a simplified ISWA model
- **SWA**
- **Solved:** combinatorial aspect of the problem.
- **Results:** Important events and their relative order.
- **Drawback:** A very abstract model of speed.

Stage 2: Refine the model of the speed
- **SMT**
- **A more realistic model of speed**
- **Results:** traces that take into account the dynamical aspect of the problem.
- **Drawback:** Runtime execution.

Stage 3: Train an RL algorithm with our dataset
- **RL**
- **Generate a dataset for random initial positions**
- **Dataset**
- **Drawback:** our problem has both combinatorial and continuous aspects.
- **Method:** get an intuition from dataset to avoid unsuccessful choices.
- **MDP model to reward short-time episode and distance between cars.**
Conclusion

- **SWA-SMT Solver**

Automata-based model

Efficient algorithm
Abstract model with unrealistic speed model

Piecewise-affine speed graph

Bounded acceleration and deceleration
Different speed
SMT solver to model and solve the distance constraints

RL training

- Dataset
 - Trace generated with SWA-SMT solver
 - Random positions & speeds
- Performance of RL (helped with SWA-SMT solver)
 - Better than single RL
 - Better than SWA-SMT solver
- Runtime: ~ 2 days

Future work: Decentralized multi-agent systems
Conclusion

- **SWA-SMT Solver**

 Automata-based model

 Efficient algorithm
 Abstract model with unrealistic speed model

 Piecewise-affine speed graph

 Bounded acceleration and deceleration
 Different speeds
 SMT solver to model and solve the distance constraints

- **RL training**

 Dataset

 Trace generated with SWA-SMT solver
 Random positions & speeds

 Performance of RL (helped with SWA-SMT solver)

 Better than single RL
 Better than SWA-SMT solver
 Runtime: ~ 2 days
Conclusion

- **SWA-SMT Solver**

 Automata-based model

 Efficient algorithm
 Abstract model with unrealistic speed model

 Piecewise-affine speed graph

 Bounded acceleration and deceleration
 Different speed
 SMT solver to model and solve the distance constraints

- **RL training**

 Dataset

 Trace generated with SWA-SMT solver
 Random positions & speeds

 Performance of RL (helped with SWA-SMT solver)

 Better than single RL
 Better than SWA-SMT solver
 Runtime: \(\sim 2 \) days

- **Future work: Decentralized multi-agent systems**