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1 Introduction

Everyone has opinions about topics such as politics, religion or even consumer
products. Those opinions do not remain the same in one’s life, as one is subject to
several sources of influence such as friends or media. Other psychological mech-
anisms can also explain such opinion changes. Opinion formation and opinion
dynamics have been widely studied. One of the objectives of opinion dynamics
is to understand how local phenomena such as social influence or homophily can
lead to some macroscopic phenomena such as consensus or polarization. Opinion
dynamics only study the interactions between agents to explain the emergence
of opinions. External factors, such as socio-demographic factors are not taken
into account but may also be essential.

One of the first models of opinion dynamics was proposed by J.R.P French
Jr [13]. It has been designed to understand complex phenomena about groups
from a few simple postulates about interpersonal relations. Later work [9] de-
scribed a more formal model to explain the emergence of a consensus. Most of
the models are based on social influence, and lead to consensus, until new mech-
anisms such as bounded confidence are introduced to explain the coexistence of
several opinions [14, 8]. Then, many studies [1, 19, 20, 18, 7] tried to model an
opinion polarization, like S. Banisch and E. Olbrich [2] who proposed a model
in which agents learn from social feedback. This model is the basis of this in-
ternship. Another important phenomenon is homophily, which is the tendency
to interact with people that are similar. A simple model for homophily has been
proposed by P. Holme and M.E.J Newman [15] in which agents can modify their
neighborhood.

In this intership, we provide a model that combines characteristics from [2]
and [15]. So, in section 2, I will first explain the original model [2], and highlight
the fact that it leads to polarization. In section 3, we provide a first extension, in
which there are more than two opinions. In this model, we observe that the final
state depends on the initial network. Finally, in section 4, I will introduce to
this model the rewiring mechanism from [15]. This adding creates a new model
with several parameters, and different combinations of the parameters can lead
to different behaviors of the system.

2 A game on a network

The model described in this section has been developed by S. Banisch and E.
Olbrich [2]. This model can be seen as a game on network [16]. This game is
a coordination game in which the objective of every agent in the network is to
adapt her opinion in order to get positive reactions.

2.1 The rules of the game

The game is played on a network with N agents. They are represented by nodes
of the network, and they are linked by edges. At the beginning, every agent has
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an opinion in the set of opinions O = {o+1, o−1}. Fig. 1 shows agent 0’s turn. In
agent i’s turn, the player expresses her opinion, and she receives a reaction from
one of her neighbors, selected randomly (agent 1 on Fig. 1). This feedback is the
only way for the agent to get information about her neighborhood, and more
generally about the network. If the opinion of the neighbor is the same as the
opinion expressed, then the reaction is positive (agreement) and the player gets
a reward R = +1. Otherwise, the opinion of the neighbor is different from the
opinion expressed, the reaction is negative (disagreement) and the player gets a
reward R = −1. Then, the player perform an action: she decides to change her
opinion or not. This opinion will remain until her next turn and this opinion will
be expressed in the player’s next turn. Note that the reward is the payoff for the
move made at the end of the previous turn of the agent. The objective of every
agent is to maximize the expected reward.

0

1 2

3 4 5

6

blue

←−− bl
ue

−−
→

bl
ue

←−
−

blue

−−→

−−−−−→

disagree

Fig. 1: One step of the game.

This game provides a partial modeling of social influence. Indeed, as the ob-
jective of the agents is to maximize the positive reactions, they might tend to
have similar opinions to their neighbors. The concrete changing opinion mecha-
nisms will come with strategies on the game.

We can describe the Nash equilibrium for this game. This equilibrium hap-
pens when every agent plays best response — no one could play better, fixing
the moves of the other players. In this game, an agent plays best response when
she chooses the same opinion as the majority of her neighbors. In fact, if she
chooses the other opinion, she would get lower probability of getting a positive
reward in her next turn. Note that an isolated agent (without any neighbor) is
also considered as playing best response. In the following, we will call an agent
”satisfied” if she plays best response.

2.2 A reinforcement learning approach

Reinforcement learning [21] provides solution strategies for the players. In fact,
the point of reinforcement learning is also to maximize a reward. As we can see
in the traditional schedule of reinforcement learning on Fig. 2, an agent receives



Dynamical networks for modeling opinion dynamics in social networks 5

a reward after performing an action, as well as in our game. The state of the
environment can be described by the opinions of all the agents in the network.
Yet, there are some differences and we have to make some approximations to
use reinforcement learning techniques for our model. First, we are working with
several learning agents, while there is only one in the traditional schedule of re-
inforcement learning. Second, every agent receives only incomplete information,
only one feedback each turn. Thus, we will suppose that every agent acts as well
as if she is the only one interacting with the environment, and learning from
the environment. As a consequence, we suppose that every agent considers the
environment constant.

Environment

Agent

Action at
Reward rt

and State st

Fig. 2: Reinforcement learning schedule.

For the model, we will use a method of reinforcement learning called Q-
learning. This technique consists in computing an estimate Q(a, s) of the ex-
pected reward after performing action a in state s. According to our previous
approximations, we will compute Qi(o), the expected reward for agent i to ex-
press opinion o, instead of Q(a, s). Once Q-values are initialized, the opinion of
an agent is determined by the highest Q-value: If Qi(o+1) ≥ Qi(o−1), then agent
i’s opinion is o+1, otherwise it is o−1. Then, every time it’s agent i’s turn, agent
i expresses this opinion, gets the corresponding reward R, and the agent finally
updates her Q-value for opinion o as follow :

Qi(o)← Qi(o) + α(R−Qi(o)) (1)

where 0 ≤ α ≤ 1 is the learning rate.

This approach has two main advantages. First, this value converges to the
expected reward. In fact, if Rt is the random variable of the reward received at
the update number t, then the expected value of Qi(o) after update number T
is:
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E(Qi(o)) = (1− α)TQi(o)initial +

T∑
k=0

α(1− α)T−tE(Rt) (2)

= (1− α)TQi(o)initial + E(R)
(
1− (1− α)T+1

)
−−−−→
T→∞

E(R) (3)

if we consider that the Rt are independent and identically distributed random
variables, which is the case with the approximations made before. The second
advantage of the Q-learning update formula, is that the formula gives more
weight to the latest received rewards. This is interesting because, as the constant
environment is only an approximation, the Q-value contains more information
about the current network.

The Q-value has also an interesting interpretation in the context of opinion
dynamics. It can be seen as an evaluation of an opinion, and the update models
the psychological impact of expressing this opinion. And the opinion of an agent
is the opinion in which she has more confidence. While the game explains why
one should change her opinion, the Q-learning gives a possible answer to the
question: When should one change her opinion?

2.3 Simulation

The complete model First, in all the following experiments we initialize the
Q-values at random between −1 and +1. In the model, the agents play in turn,
and the player i is selected randomly. The player will express her opinion o,
which is the opinion with the highest Q-value. Note that only the Q-value of
the expressed opinion is updated. So, in order to avoid never updating some Q-
values, we have to allow the agent to express the opposed opinion. This is why
we introduce the exploration rate ε, which is the probability of expressing the
opinion with the lower Q-value. Then, we select randomly the agent j that will
react among the neighbors of player i. If player i has no neighbor, then the turn
ends now. Otherwise, we check if the agent j’s opinion is the expressed opinion
o, and we compute the reaction and the corresponding reward. Then we update
Qi(o) with formula 1. The turn is finished and we can select another player for
the next turn. A complete step of the model is summarized in Fig. 3.

The model has been initially implemented in Matlab by S. Banisch [2], and
the results are reproduced here in python. The parameters of the experiment are
N = 100, α = 0.05, ε = 0.1. The initial graph is a spatial random graph [6] with
parameter r = 0.175, which is a graph where nodes are positioned randomly in a
unit square, and two nodes are connected if the distance between them is lower
than r.

Results The results are presented in Fig. 4. Dispersion [10] is the variance over
the distribution of convictions ∆Qi = Qi(o+1)−Qi(o−1). The support strength
is the average |∆Qi| over the respective sets of supporters. The average opinion
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Fig. 3: One step of the model.

is the proportion of agents that express opinion o+1. The dissimilarity is the
polarization measure introduced in [12] whose adaptation to this model is:

dissimiliarity =
1

N(N − 1)

i=N,j=N∑
i 6=j

(di,j − d̄)2 (4)

where d̄ is the average of the all the di,j and

di,j =
1

2
(|Qi(o+1)−Qj(o+1)|+ |Qi(o−1)−Qj(o−1)|) (5)
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Fig. 4: Time evolution of the model.

The measures presented here reveal an opinion polarization, which is a pro-
cess by which strong divergences of political opinions come about. An example
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of political polarization is the fundamental divide between Democrats and Re-
publicans in the United States.

Indeed, in Fig. 4, the increase of the support strengths shows that people’s
beliefs in their opinion become stronger, more extreme. A high dissimilarity
points out the coexistence of, on the one hand, a great number of pairs of agents
with similar opinions, and on the other hand, a great number of pairs of agents
with radically different opinions. Thus, dissimilarity, as well as dispersion, indi-
cates the polarizing effect of the process. The average opinion value controls the
coexistence of the two opinions in similar proportions.

3 Extension of the model to more than two opinions

The model described before was made for two opinions o+1 and o−1 only. In
this section, we adapt the model to more opinions and we study its behavior on
different kind of networks.

3.1 Modification of the model

For this adaptation, the schedule of Fig. 3 remains valid. There is one simple
modification in the model. Instead of having 2 possible opinions, there are C
possible opinions and the set of opinions becomes O = {o1, o2, ..., oC}. Then,
every agent has C Q-values, and her opinion is determined by the highest Q-
value. We also have to change the exploration mechanism as far as ”the opposite
opinion” does not have a sense anymore. Then, exploring now means expressing
a random opinion different from the agent’s opinion.

A new problem that we have to deal with, is the number of steps of an
experiment. In fact, the more opinions there are in the model, the more Q-
values there are, and the more steps we need to update all of them. We can use
the Nash equilibrium as a stop condition.

3.2 Results over several kinds of random graphs

Spatial graph On random spatial graph, we observe the formation of commu-
nities, as we can see in Fig. 5. This is not surprising because the spatial random
graphs structure tend to form geographic communities. The clustering was al-
ready observed in the two opinions model, but using more opinions allows to
distinguish better the communities.

A good way to quantify the clustering is to compute the modularity. The
modularity is a measure which is defined for a graph and a partition of its nodes
as the difference of the proportion of edges between vertices of the same group
and the same proportion if the edges were distributed at random. The modularity
is given by:

mod(G,P) =
1

2m

∑
i,j nodes

[
Ai,j −

kikj
2m

]
δ(ci, cj) (6)
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(a) Initial state (b) Final state, after 28,000 steps

Fig. 5: Model on a spatial random graph.

where m is the number of edges, ki is the degree of node i, Ai,j is 1 if nodes i and
j are connected in the graph G, 0 otherwise, and δ(ci, cj) is 1 if nodes i and j
are in the same group of the partition P, 0 otherwise. The modularity measures
how good a partition of a network is. A random partition gives a modularity
close to zero (it can even be negative).

In our model, the partition is given by the different opinions. We can compare
the modularity value given by the model, and the one obtained with a community
detection algorithm, the Louvain method [4]. On 100 random spatial graphs of
N = 100 agents and a parameter r = 0.175, with C = 100 initial opinions, α =
0.05 and ε = 0.1, the average modularity is 0.58 with on average 6.39 clusters.
The Louvain method on the same graphs gives partitions of on average 6.88
clusters, giving an average modularity 0.68. Even if the Louvain method gives
partitions of higher modularity, community detection seems to be an interesting
side effect of the model. There is even one of the 100 graphs on which the opinion
dynamics model gave a partition with a higher modularity than the Louvain
method.

Erdös-Rényi graph The Erdös-Rényi model [11] is one of the most common
model of random graphs. It has two parameters, the number of nodes N and the
probability p for two nodes to be connected.

We run the model on Erdös-Rényi graphs of N = 100 nodes with different
values of p. Note that the parameter p could be replaced by the average degree
d = (N − 1)p that we can easily approximate by Np. The number of opinions
is C = 10, the learning rate is α = 0.05 and the exploration rate is ε = 0.1. In
fact, by running the same experiment on larger graphs, we can observe that the
kind of behavior depends more on the average degree d, than the parameter p.
We can observe 3 main kinds of behavior:



10 Raphaël Truffet

– For d ≤ 2, The stop condition is quickly reached (around 50,000 steps). In
the end, every opinion remains. Note that with small values of d, the graph is
not connected, but even on connected components, several opinions survive.
The final state can be seen on Fig. 6 for d = 2.

– For 2 < d < 5, It is very long to reach the stop condition (more than 20
million steps, generally, there is only a few agents that become satisfied
slowly). In the end, we can observe an opinion clustering, but only a few
opinions survive.

– For d ≥ 5, The model does not stabilize until it reaches a consensus. This
consensus is reached quite fast (around 100,000 steps).

Fig. 6: Final state with average degree d = 2. Visualized with the software Gephi
[3] using the Force Atlas 2 algorithm [17].

Reaching a consensus on Erdös-Rényi graphs is not surprising because, as
the edges are distributed at random, the neighborhood of an agent is a sample
of the whole population, so the agent will adapt her opinion to the opinion of the
majority. With a low average degree, the sample may be not representative of the
population, and moreover, the graph may be not connected. The intermediate
value of average degree might make the equilibrium hard to reach because of
a biased sample of the population. Indeed, the neighborhood of the agent is a
lot influenced by the agent herself, in a way, the agent also learns from her own
opinion.

4 Adding a rewiring mechanism

Until now, agents only have the possibility to adapt their opinion. Actually, an
other possible approach on a network, is to let agents adapt their neighborhood
to their opinion. This new mechanism represents the possibility to delete and
add friends on an online social network for example. This mechanism can be
modeled with the help of dynamical networks [5].
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4.1 The rewiring mechanism

This mechanism is inpired by P. Holme and M.E.J Newman [15]. We introduce
to our model a rewiring rate ϕ. The possibility to rewire appears when an agent
i receives a negative reward from an agent j. This agent will, with probability
1 − ϕ, update her Q-value as it was done until now, and with probability ϕ,
delete the edge between i and j, and create a new edge between i and a random
new neighbor (see Fig. 7).
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blue

←−− bl
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−−
→
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←−
−
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−−→
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disagree

(a) Receiving a negative reward

0
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3 4 5

6

(b) Rewiring

Fig. 7: Rewiring mechanism.

The schedule in Fig. 3 will be augmented with Fig. 8. The stop condition is no
more a Nash equilibrium, a ”satisfied” agent could still change some neighbors
to have an even better neighborhood. With the rewiring mechanism, the Nash
equilibrium is more complex to identify, because there are several reasons to
explain that an agent is playing best response:

– She has the same opinion as all her neighbors.

– She is connected to every agent that has the same opinion as her, and this
opinion is the opinion of the majority in her neighborhood. Note that if there
is in the network an opinion that affects more agents, the agent could still
change her opinion and rewire to connect to a maximum of agents with this
opinion to improve her expected reward, but this would take several steps.

So, we still consider as satisfied an agent with the same opinion as the majority
of her neighbors, and stop the simulations when all agents are satisfied. This
stop condition is more convenient, because, it is simpler and, in the following
the rewiring rate may be 0, and the final state is still close to a Nash equilibrium.

In this model, as the total number of edges remains constant, then the av-
erage degree and the density does not evolve neither. In order to observe the
evolution of the connections in the graph, we can compute the average local
clustering coefficient, which express the tendency of the graph to form triangles.
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R = −1

Updating Q-value

Rewiring

next step
negative
reaction

1− ϕ

ϕ

Fig. 8: Rewiring schedule.

This average clustering coefficient is defined in [22] as follow :

acc =
1

N

∑
i node

Ci (7)

where the clustering coefficient of a node is :

Ci =
number of pairs of neighbors connected

degreei × (degreei − 1)
(8)

4.2 Evolution in time

The first approach to study the new model is to observe the evolution of several
measures in time. On Fig. 9, we can follow the evolution of the modularity,
the average clustering coefficient, the proportion of agent satisfied as defined
in section 2.1, and the proportion of opinions remaining compared to the total
number of possible opinions. The experiment has been run for an Erdös-Rényi
graph of N = 1000 agents and a density p = 0.1, C = 100 possible opinions, a
learning rate α = 0.05, an exploration rate ε = 0.1 and a rewiring rate ϕ = 0.5.
We can observe that the measures do not evolve a lot until a sudden transition.
This transition is quick compared to the time elapsed before. After that, all the
measures stabilize to a final value. Note that we did not stop the simulation
when all agents are satisfied in this experiment.

The final state can be observed in Fig 10. The graph presented has been
visualized with the software Gephi using the Force Atlas 2 algorithm. In the
end, the network contains several connected components of several sizes. On
every component, a consensus is reached.

As the system stabilized after a transition, in what follows, we only get
interested in the final values of the measures.

4.3 Exploration of the parameters space

WithN = 100, C = 10, ε = 0.1 on an Erdös-Rényi graph with parameter p = 0.1,
we ran 100 experiments over 31×31 pairs of values of (α,ϕ). As the the result of
an experiment is not deterministic, averaging over these 100 experiments gives
reliable estimates. The mean values of several measures are presented on Fig.
11.
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Fig. 9: Time evolution of the model.

Fig. 10: Final state.

Fig. 11a shows the time to reach the stop condition. It can be interpreted as
how efficient the parameters are to satisfy the agents — in the sense that how
fast the stop condition is reached. For example, it does not seem efficient to set
both α and ϕ at a low value, or both at a high value. The most efficient regime
seems to be a high ϕ with a low α. The line ϕ = 1 also seems interesting. Finally,
the fact that the line ϕ = 1 − α looks efficient is intuitive: The more you can
change your opinion, the less you need to change your friends.

But even if Fig. 11a shows several possible regimes, Fig. 11b and 11d show
that those regimes lead to different final states. For example, the most efficient
regime described earlier and the line ϕ = 1, lead to a final state in which many
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Fig. 11: Observables over the parameter space.

opinions, forming several clusters of a similar size. On the line ϕ = 1 − α, the
higher α is, the more one opinion is supported, implying the predominance of
one cluster. The final clustering coefficients presented in Fig. 11c also reveal
different ending structures of network depending on the regime. The modularity
is not presented here because, as the number of cluster varies a lot depending
on the parameters, the modularity measure may not be relevant.

In Fig. 12, we show the number of clusters of different sizes in the final state
of the 100 experiments for 3 values of ϕ and α = 0.05. This result is very similar
to what is observed by P. Holme and M.E.J Newman [15] in their model. We
can see a qualitative change from a regime with no giant community to one
with a giant community. At an intermediate value of ϕ, we find a distribution
of community sizes that appears to follow a power law. P. Holme and M.E.J
Newman show that this intermediate value is a critical value that separates two
regimes in which a giant component appears or not. As we can guess from Fig.
11b and 12, α has an influence on this critical ϕ-value for α ≤ 0.2.
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Fig. 12: Community sizes for 100 experiments with α = 0.05.

5 Conclusion

We provided, during this internship, two extensions to an existing model of
opinion dynamics [2]. The first extension provides a model for several opinions
instead of two. The increase of the number of opinions does not impede to reach
an equilibrium. The equilibrium depends on the initial network. On random
spatial graphs, the equilibrium is characterized by an opinion clustering of the
network. On Erdös-Rényi graphs, if the average degree is big enough, we can
observe the emergence of a consensus.

The second extension allows agents to rewire. This possibility leads to the
formation of disconnected clusters. Depending on the parameters of the model,
we can observe several kinds of regimes, in which a giant component appears
or not. In fact, the lower the rewiring rate is, the more one opinion dominates.
With a high rewiring rate, the final clusters have similar sizes. Between these two
regimes, there is a critical value of the rewiring rate for which the distribution
of the sizes of the clusters follows a power law. This critical value depends on
the learning rate.

Yet, these results are obtained with many parameters of the model fixed.
Even if we ran some experiments with different values for those parameters –
exploration rate, number of possible opinions, number of agents, graph density –
the exploration is not exhaustive. At least, the few experiments that have been
run show the same kind of behavior, but with different critical values. A further
study would be necessary to highlight a correlation between those parameters
and the observations.
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The model provided here and tested on simple random graphs, could also give
interesting results over more complex structures. For example, one can wonder
what the behavior of the system is on a configuration model, or on real data
networks. The model without rewiring might be more sensitive to the initial
network configuration because the rewiring mechanism leads to a reconfiguration
of the network, so the initial configuration does not persist for a long time.

It would also be interesting to use the Q-learning approach not only for
choosing an opinion, but also to give an evaluation of the rewiring mechanism
as an action performed by the agent.
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