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Abstract: Magnetic resonance imaging (MRI) is a successful technique for the observation of the
inside of the body. One of its modality, di�usion MRI, provides techniques to capture information
about the movemement of water molecules. Thus, it can give information at a microscopic scale,
while the typical resolution of clinical MRI is close to 1 millimeter. The acquisition sequences in
di�usion MRI rely on time-dependent magnetic �eld gradients. Every gradient waveform provides
one di�usion-weighted measurement, and the repetition of di�erent measurements allows for the
reconstruction of microstructure parameters and di�usion features. The problem is that, for the
moment, the number of acquisitions needed to correctly estimate the microstructure parameters
may be too high for in vivo imaging. Several families of gradient waveforms have been proposed,
in order to optimize the precision of the reconstruction and to decrease the number of
acquisitions. During the internship, we explored generalized gradient waveforms. In this report,
we propose a method to predict the signal for a given set of gradient waveforms, using only a
subset of the measurements. This method relies on compressed sensing, with the use of a
dictionary that we learned on data generated with Monte-Carlo simulations. We then compare
two di�erent heuristics to select the measures to use for the prediction; we found that limiting the
redundancy of the measures allows us to reduce the number of measurements, with minimum loss
of precision of the prediction.
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Chapter 1

Introduction

Magnetic resonance imaging (MRI) is a medical imaging technique based on electromagnetic res-
onance properties of spin-bearing particles in a strong magnetic �eld. Hence, this technique is
minimally invasive and gives picture of the inside of the body. Since the creation of this technique,
many acquisition sequences have been developed to better capture the structural and metabolic
complexity of the brain, the heart, and other parts of the body. An information that can be cap-
tured is the di�usion of molecules. The study of this is the aim of whole branch of MRI: di�usion
MRI [14]. As the movement of the molecules is constrained by the tissue structure, di�usion MRI
also provides information about the latter. This can be very useful to detect some diseases; for
example, in multiple sclerosis, axons in brain and spine white matter are demyelinated, which mod-
i�es their apparent density; this can be observed and measured using di�usion MRI.

The problem is that the axons are at a microscopic scale, while the resolution of MRI is close
to 1 millimeter. However, even if the microstructure cannot be observed directly, there are some
techniques that give submillimetric information. This is comparable to light di�raction in optics,
that allows to measure objects of small dimensions. In di�usion MRI, the observation is made by
exciting the spin magnetic moments of the molecules, and measuring the signal attenuation due to
the movement of the molecules which introduces phase incoherence in the spin magnetization.

This incoherence results from the position of the molecule in a magnetic �eld gradient. Hence,
several di�erent measures can be done using several di�erent gradients. Taking more acquisitions
yields to capturing more information and makes the reconstruction of di�usion features easier.
However, the number of acquisitions should not be too high, because it would need too much time,
with the subject inside the MRI scanner. It is actually assumed that the scan should not exceed
one hour for in vivo human brain [2], and less in a clinical context. That's why some techniques
emerged to reduce the number of acquisitions for reconstructing di�usion features or microstructure
parameters [7, 19].

A promising method for acquiring fewer and recovering the original signal is called compressed
sensing [6]. The idea of compressed sensing is to take advantage of the sparsity of the signal to
recover the signal from only a few measurements. In this technique, the aim is to �nd a sparse
representation of the signal. This is used in order to undersample the signal, the number of nonzero
values tells us a minimum number of measures for a correct reconstruction of the signal.
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Several studies used compressed sensing in di�usion MRI [11, 17, 19]. However, these studies
do not take advantage of the degree of freedom that we have on the gradient waveforms, and are
restricted to speci�c forms of gradients. The aim of the internship is to use compressed sensing
techniques to �nd generalized gradient waveforms to e�ciently reconstruct microstructure param-
eters.

In chapter 2, we �rst give some background about di�usion MRI, including a description of
the sequence for a di�usion MRI acquisition and some di�usion features, then we describe some
gradient waveforms that can be used in this sequence for a better estimation of the microstructure,
and �nally, we see how the number of acquisitions may be reduced, mainly using compressed sensing.

In chapter 3, we detail the contribution. We explain how we generate data for our experiments,
then we describe the dictionary learning performed on this dataset, and how the resulting dictionary
can be used to select gradient waveforms. Finally, experimental results are presented for evaluating
the e�ciency of the techniques.
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Chapter 2

State of the art

Di�usion imaging allows to indirectly estimate microscopic features of the white matter. However,
a large number of acquisitions remain necessary for these estimations. A promising technique to
decrease this number of acquisitions is compressed sensing. In this chapter, we �rst explain the
di�usion MRI techniques that rely on magnetic �eld gradients, and show how these gradients are
an important acquisition parameter. Then, we present compressed sensing and give a quick review
of studies that used compressed sensing in di�usion MRI.

2.1 Di�usion MRI background

Di�usion MRI and the acquisition sequence that is presented in this section dates back to 1965
[24]. Since, many ameliorations have been made, but the principle remains the same. Di�usion
MRI can be used for the reconstruction of microstructure parameters and to detect some diseases.
It can also be used to get some di�usion features, that are used to build a map of the connexions
of the brain, called connectome.

2.1.1 Spin Echo sequence and di�usion-sensitizing gradients

The method described here is the most classical di�usion MRI sequence. It is based on spin echo
in presence of a magnetic �eld gradient.

The classical sequence

This method consists in the study of the spin echo that occurs at a time t = TE after two RF
pulses (Fig. 2.2, on the left). For this kind of sequences, the subject is submitted to an intense
magnetic �eld B0, of a few teslas. At steady state, the spin magnetic moment of each molecule
angle is aligned with the magnetic �eld B0 (Fig. 2.1.A). At the time t = 0, the molecules are
excited by an RF pulse in order to make the spin rotate by 90 degrees (Fig. 2.1.B). Hence, the
spins are coherently aligned in the transverse plan. Then, for a duration of TE=2, the spins rotate
in the transverse plan at a frequency !. According to physics laws, and more precisely, to the
Larmor precession, there is a constant 
, called the gyromagnetic ratio, such that !(t) = 
B(t)
(Fig. 2.1.C). At time TE=2, the molecules are excited by a second RF pulse that makes the spins
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Figure 2.1: In
uence of the spin echo sequence on spin magnetic moments. (Illustration of Gavin
Morley)

rotate by 180 degrees (Fig. 2.1.D). As a consequence, the spins now rotate in the opposite direction
(Fig. 2.1.E). Hence, for t > TE=2, !(t) = �
B(t). The phase-angle accumulated by the spin
between t = 0 and t = TE is:

� =

Z TE

0
!(t)dt =

Z TE=2

0

B(t)dt�

Z TE

TE=2

B(t)dt (2.1)

If B(t) is constant, then, there is no phase-angle, and all the spins come back to alignment
at the end of the sequence. This alignment yield to the observation of an echo at the end of the
sequence (Fig.2.1.F).

In
uence of a magnetic �eld gradient

In presence of a magnetic �eld gradient, we can observe an attenuation of the echo when the matter
is submitted to a magnetic �eld gradient: the signal measured at t = TE has a lower value (Fig.
2.2, on the right) than if the magnetic �eld was uniform (Fig. 2.2, on the left). This attenuation
is due to the movement of the molecules of water in the matter. That's why this method permit
to deduce some information about the di�usion, and as a consequence, about the microstructure
in which the molecules are moving.

If there is a magnetic �eld gradient gr(t), the magnetic �eld becomes B(t) = B0 + gr(t):r(t)
where r(t) is the position of the molecule at time t.

� =

Z TE=2

0

(B0 + gr(t):r(t))dt�

Z TE

TE=2

(B0 + gr(t):r(t))dt = 


Z TE

0
g(t):r(t)dt (2.2)
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Figure 2.2: Spin echo sequence : on the left, the classical spin echo sequence ; on the right, the
same sequence with a magnetic �eld gradient. The signal on the right is attenuated, it is di�usion
weighted.

where g(t) is the e�ective gradient which is gr(t) from 0 to TE=2 and �gr(t) from TE=2 to TE.
Remark that � only depends on the trajectory r(t) of the molecule, and the di�usion-sensitizing
gradient g.

Mathematically, we can represent the normalised spin magnetization in the transverse plan by
a dimensionless complex number. Therefore, if after the �rst RF pulse, every spin is the complex
number 1, then at t = TE, the magnetic moment of a molecule m is ei�m . Hence, the signal
attenuation can be computed by adding the spins [25]:

E =
S(TE)

S(0)
=

1

N

�����
NX

m=1

ei�m

����� (2.3)

If the gradient is not speci�c, the phase-angles of the spins risk to to be completely uncorrelated,
that may lead to vanish the resuling signal (as the mean of complex numbers with uniformly spread
phases). In order to avoid this problem, we can force the integral of the e�ective between t = 0 and
t = TE to be zero. With this condition, every motionless spin will have the same phase-angle in
the end, and the measured attenuation will only be due to spin motion. In general, the gradients
present a symmetry at t = TE=2, that is to say gr(TE=2 + t) = gr(TE=2� t), like in [9].

2.1.2 Extracting microscopic information

The MRI resolution is at a millimetric scale, but we can collect statistical information about the
microstructure. In the case of di�usion MRI, what is studied is the movement of the molecules.
So the information that we recover in di�usion MRI is about this movement, and about the main
direction of di�usion.
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Di�usion features

One of the most widespread methods to model information about di�usion, is di�usion tensor
imaging. This method relies on the computation of the di�usion tensor, which is a positive sym-
metric 3� 3 matrix, characterizing the di�usion of molecules in the matter. A minimum of only 6
acquisitions is needed to reconstruct this tensor. The main direction of di�usion is then given by
the eigen vector associated to the highest eigen value of the matrix.

In di�usion weighted imaging, we often try to reconstruct the ensemble average propagator
(EAP) P (~rj~r0;�). This propagator is the density probability for a molecule to move from a posi-
tion ~r0 to a position ~r during a period �. This representation contains more information about the
microstructure than the di�usion tensor and allows a better estimation of the microstructure, in
particular for crossing �bers. In fact, the di�usion tensor contains a summary of the EAP, assuming
that the EAP is a 3D Gaussian function, and computing the covariance matrix of this distribution.
Contrary to the di�usion tensor imaging, the methods that permit to reconstruct the EAP need a
lot more acquisitions.

Microstructure

Figure 2.3: Microstructure parameters.

These two previous representations are very convenient, however they don't give concrete in-
formation about the microstructure, but only about the di�usion. To this end, we can also use
parametric, biophysical models of microstructure [21]. Well known examples of such representation
are a composite hindered and restricted model of di�usion (CHARMED) (Fig. 2.4) [4] and Axcal-
iber [3]. These kinds of representation rely on assumptions on the microstructure. We suppose that
the matter corresponds to a model with only a few parameters about the �bers, such as membrane
permeability, orientation dispersion, radii distribution, or axon density (Fig. 2.3). The aim of the
acquisitions becomes the estimation of these parameters. For example, CHARMED models the wa-
ter di�usion within "restricted" cylindrical axons to estimate their diameter, and di�usion around
the axons as "hindered" by the latter to estimate the density (Fig. 2.4, right). AxCaliber is an
extension of CHARMED that provides an estimation of a diameter distribution instead of a �xed
diameter. AxCaliber also considers stationary water and free water in addition to the hindered and
restricted di�usion. These representations are a very good approach to �nd concrete information
about the microstructure.
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Figure 2.4: On the left: electron microscopy of a transverse section of a white matter axon bundle.
On the right: CHARMED model. The modeling framework showing the two modes of di�usion in
white matter, hindered outside the cylinders and restricted within the cylinders. Di�usion in the
hindered part is characterized by a di�usion tensor.

One of the main advantages of these models, is that we now need only a few parameters to
describe the microstructure. This low number of parameters is interesting, because in order to
recover them, we need a number of measurements which is at least greater than the number of
parameters to recover. In practice, the number of acquisitions is larger in order to get a higher
precision and to compensate for the redundancy in the acquisitions.

2.2 Several existing families of di�usion gradients

One way to improve the precision of estimation without increasing too much the number of acqui-
sitions, is to �nd magnetic �eld gradient waveforms which increase the sensitivity of the measured
signal to microstructure parameters. In fact, there is a wide 
exibility in the choice of the magnetic
�eld gradient, since we can virtually choose any function of time for each of the 3 axes.

2.2.1 Constraints on the gradient waveforms

Yet, there are a few constraints to respect.

� The gradient magnitude is bounded and cannot exceed a given value. This limitation is due
to hardware constraints, and physiological safety constraints. In fact, the subject can not
endure too high magnetic �eld gradients.

� The slew rate: similarly to the magnitude, the gradient derivative also is limited. This
limitation is also due to the hardware and the safety of the subject who cannot endure too
fast variations of magnetic �eld.

� In order to get a high contrast between motionless and moving molecules, we also have to
respect a symmetry constraint as explained in section 2.1.1
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Figure 2.5: Di�erent gradient waveforms. On the left: a pulsed gradient. In the middle: a sine
oscillating gradient. On the right: a randomly generated gradient.

2.2.2 Pulsed Gradient Spin Echo (PGSE)

The Pulsed Gradient Spin Echo [24] is the sequence illustrated on the right of Fig. 2.2, and on
the left of Fig. 2.5. In this sequence, the gradient waveform is zero almost everywhere but it has
two pulses of the same constant direction, the same amplitude and the same duration �. These
two pulses are separated by a duration �. This sequence is one the most common, because it is
quite simple, and in the approximation � � �, we can express the signal attenuation as a Fourier
transform of the EAP:

E(q) =

Z
�(r0)

Z
P (rjr0;�)e

i2�q:rdrdr0 (2.4)

where �(r0) is the density probability of �nding a molecule at the position r0 when the �rst gradient
pulse occurs, P (rjr0;�) is the EAP, and q = (2�)�1
�gmax. Thus, we can reconstruct the EAP by
computing the inverse Fourier transform of the signal attenuation. However, this computation needs
to measure the signal attenuation for a lot of di�erent q -vectors. This can be done by measuring
the signal attenuation for several pulsed gradients, modifying the direction, �, � and the amplitude.

2.2.3 Gradient waveforms specialized for microstructure reconstruction

PGSE is very convenient for the estimation of the EAP, but it may not be the case for the recon-
struction of the microstructure. In [9], Dobnjak et al. try to �nd some sets of gradient waveform to
optimize the estimation of microstructure parameters, and more precisely, the axon diameter. The
search is made among all possible waveforms in a discretized time, and respecting the technical lim-
its. The optimized gradient waveforms that result from the experiments allow a better estimation
than PGSE for small diameters. It also appears that those optimized gradient waveforms are very
similar to oscillating functions. They also noticed that the optimized frequency of the oscillations
increases when the diameter decreases. More precisely, the characteristic period of the oscillations
is close to the time for the molecule to travel the diameter of the axons.
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Those results were then con�rmed in [22]. While in [9], generalized gradient waveforms were
optimized, in [22], gradients were limited to pulsed gradients, or oscillating gradients. In fact,
Siow et al. [22] compare pulsed gradient with the following protocols: sine oscillating gradients
(SNOGSE, Fig. 2.5, in the middle) , sine with arbitrary phase oscillating gradients (SPOGSE),
and square oscillating gradients (SWOGSE). They optimized the length, duration, frequency and
phase of the waveforms for a �xed gradient magnitude. They showed that the choice of the protocol
does not in
uence a lot the estimation, the SWOGSE gives slightly better results than the others.
Each optimized set of gradients reveals a mix of low and high gradient frequencies.

In the two previous examples, either there is a total freedom on the choice of the gradient
waveforms, or there is only one parameter to optimize (the frequency). But none of them provide
a gradient waveforms family that gives a summarized representation of the gradient waveforms
without constraining too much the waveform.

2.2.4 Parameterization of the gradients

Other families of gradient waveforms have been proposed to give an even better estimation of the
microstructure parameters. Many of them rely on making the orientation of the gradient changing
[23, 26]. For example, Daniel Topgaard [26] uses pulsed gradients, but the direction of the gradient
evolves during the pulse. This technique captures information about the di�usion in several direc-
tion, in only one acquisition.

Another proposition of gradient waveforms [20] is expressed in terms of cosine series:

g(t) = �ncn cos(2�nt=TE) (2.5)

where the cn are the coe�cients of the gradient in the corresponding basis. However, the optimiza-
tion of these kind of gradient waveforms yields to the use of square oscillating gradients, as well as
before. But �nding a good parameterization of the gradients for the di�usion MRI is not easy, and
there is no consensus on this question so far.

2.3 Compressed sensing

One of the biggest problem of the most advanced techniques in di�usion MRI is that they need a lot
of acquisitions. Since each acquisition takes 5-10s, when a great number of acquisitions is required,
the subject may be asked to stay a long time in the MRI machine. In this section, we will see how
the number of measurements can be reduced using compressed sensing. The point of compressed
sensing is to perform two tasks, acquisition and compression, at once, making some assumptions
on the sparsity of the signal. In compressed sensing the number of measurements is the size of the
compressed vector. After a presentation of the method of compressed sensing, we will see that it
can be combined with dictionary learning, and then we will see some use of compressed sensing in
MRI and di�usion MRI.
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2.3.1 The principle

The Nyquist-Shannon sampling theorem states that if the signal's highest frequency is less than half
of the sampling rate, then the signal can be reconstructed perfectly. The aim of compressed sensing
[6] is to make the reconstruction possible even if there are fewer samples. This reconstruction can
be done by making some assumptions about the sampled signal. First, the signal has to be sparse,
that means it must have only a few nonzero values. In practice, the signal s, of dimension N , is
rarely sparse, but we can generally �nd a transform  in which the signal is sparse. We can then
consider the vector x, with only K << N nonzero entries (x is said K-sparse), such that s =  x.
Then, we are looking for a sensing matrix A of dimensions M �N such that the compressed signal
is y = Ax (Fig. 2.6). Each row of the sensing matrix can be seen as a measurement vector, and
the vector y contains the measures.

Once the sensing matrix is �xed, we want to be able to reconstruct the vector x, by knowing
the compressed vector y and the sensing matrix A. Since the equation y = Ax has an in�nite
number of solution, we have to force the resolution to give a sparse result. This resolution can
be considered as an optimization problem, in which we try to minimize the number of nonzero
entries of the solution (it is the `0-norm of the solution). Unfortunately, this optimization problem
in not convex, and the resolution is NP-hard. That's why the `1-norm is often used instead of the
`0-norm. Then, the problem can be solved using linear programming.

.~~
measurements

1
sparse
signal

nonzero
entries

Figure 2.6: Compressed sensing main relation

The di�culty is to �nd a sensing matrix such that the resolution is possible. Candes and Walkin
[6] points out several conditions that the sensing matrix must satify:

A spark greater than 2K: The spark of a given matrix A is the smallest number of columns
of A that are linearly dependent. It has been proved that for any vector y 2 RM , there exists at
most one K-sparse signal x such that y = Ax if and only if the spark of A is greater than 2K.

The Null Space Property (NSP): The NSP quanti�es the notion that vectors in the kernel
of the sensing matrix should not be too concentrated on a small subset of indices. If the sensing
matrix satis�es the NSP, then the error between the vector to reconstruct, and the solution returned
by the optimization is bounded.
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The Restricted Isometry Property (RIP): The RIP of orderK is a property that quanti�es
how much the `2-norm of a K-sparse signal can be modi�ed by a multiplication by the matrix that
satis�es the property. If a matrix A satis�es the RIP of order 2K, then we can interpret the property
as saying that A approximately preserves the distance between any pair of K-sparse vectors.

A low coherence: The coherence of a matrix A, �(A), is the largest absolute inner product

between any two columns ai, aj of A: �(A) = maxi;j
jhai;ajij

jjaijj2jjaj jj2
. Intuitively, we understand that a

low coherence limits the redundancy of the columns of A.

A particular attention in generally given to the low coherence constraint, because a low coher-
ence gives some guarantees about the other ones. For example, the spark of a matrix is necessarily
greater than 1 + 1

coherence(A) .

2.3.2 Link with dictionary learning

The dictionary learning is a method that solves a problem useful to compressed sensing, it can be
used if there is no known space in which the signal is sparse (i.e if  is not known). For example,
K-SVD [1] is an algorithm that, given a training set of signals yi, tries to �nd a dictionary that
leads to the best representation for each member in this set, under sparsity constraints. This is
done by solving the equation yi = Dxi where D, a n�K matrix, and xi, a K-long vector, are both
unknown. The algorithm used to solve this equation alternates between two phases of optimization.
The �rst one tries to �nd the bet set of xi with a �xed dictionary D, that minimizes the error under
constraints of sparsity of the xi. The second phase updates the dictionary D and the nonzero values
of the xi, using the Singular Value Decompisition (SVD, the generalization of the spectral theorem
to nonsquare matrices) of the error matrix. These two phases are repeated until convergence. This
learning algorithm provides a sparse representation of signals, with a low loss of information.

Merlet et al. [18] propose an adaptation of K-SVD for the reconstruction of two di�usion
features: the Ensemble Average Propagator (EAP), and the Orientation Distribution Function
(ODF). The dictionary is here characterized by a set of polynomial and scale parameters. This
characterization is well adapted to sparsely and continuously model the di�usion signal. Once the
dictionary learned, it is used as a sensing matrix, to reconstruct the sparse signal, in a known space.
This signal can be used to recover the EAP and the ODF.

Gramfort et al [11], also used dictionary learning in di�usion MRI. In their study, they perform
online dictionary learning to learn the structure of the di�usion-weighted signal in the brain. This
dictionary is used for both denoising and undersampling. The learning relies on physical properties
of the signal such symmetry and positivity. An encouraging result about dictionary learning in dif-
fusion MRI comes from Bilgic et al [5] who showed that learning from acquisitions of one subjects
generalizes well to other subjects.

2.3.3 Compressed sensing in di�usion MRI

As the number of acquisitions in limited in di�usion MRI, several techniques are already used to use
as fewer measurements as possible. For example, q-space imaging is a method to �nd small sets of q
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vectors as described in section 2.1.1 such that we can perform the inverse Fourier transform. In [7],
Caruyer et al. propose schemes of acquisitions in which the q are spread on balls. This approach
gives a way of decreasing the number of acquisitions by utilizing the best angular distributions of
the magnetic �eld gradients.

Several studies use compressed sensing in anatomical MRI [15]. In order to respect the necessary
condition of sparsity, the signal is not expressed in the pixel domain. Thus, the Transform Point
Spread Function (TPSF) is used for changing the basis. A particular attention is also given to the
incoherence of the acquisitions. The measurements that are chosen, resulting from the choice of the
sensing matrix, are very various, limiting their redundancy. Those results on anatomical MRI give
promising perspectives on the use of compressed sensing for limiting the number of measurements
in di�usion MRI.

Later work [17] studied how to use compressed sensing in di�usion MRI. Here, the acquisitions
are made with the PGSE sequence, the compressed sensing is then used to choose the q vectors of
the used gradients. For the q-space imaging, other basis are used to represent the signal sparsely.
Merlet et al compared 4 of them and found that the SHORE basis seems to be the more appropriate
for the compressed sensing recovery.

Michailovich et al [19] proposed a reconstruction method for High Angular Resolution Di�u-
sion Imaging (HARDI) using compressed sensing simultaneously in the spatial and the di�usion
domains. The sparsifying transform for the di�usion domain uses spherical ridgelets. This method
lead to reliable reconstruction with only 16 measurements while between 60 and 100 are usually
required.

Those studies showed that compressed sensing can be used to decrease the number of measure-
ments, and to shorten the acquisition times. However, ameliorations can still be made. In fact,
previous studies intend to use compressed sensig to optimize q-values [17], gradient directions [19],
or to denoise the signal [11]. But no study using compressed sensing and di�erent forms of gradient
waveforms have been found. Generally, only PGSE sequences are used. There may be even more
satisfying results by taking advantage of the degrees of freedom on the gradient waveforms.
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Chapter 3

Contribution

From the study of the state of the art, we can conclude that a promising idea to reduce the number
of acquisitions is to combine compressed sensing with general magnetic �eld gradient waveforms.
Thus, during the internship, we intended to build a dictionary that could allow us to predict the
signal value for a given gradient waveform from a few samples. In this chapter, we present how we
built this dictionary, beginning by explaining how we generated data to perform the learning. Then
we present how we can use the dictionary to optimally select a subset of the samples that would
give a good reconstruction of the signal. Finally, we present experimental results that compare the
di�erent techniques of gradient selection.

3.1 Data generation

In order to perform dictionary learning on signals, we need a large database of measurements. Since
using MRI scanners is very expensive and time consuming, in order to get su�ciently large training
set, we use Monte Carlo simulations instead of real acquisitions.

3.1.1 Monte Carlo simulations

The signal are obtained using the tool Camino [8]. The Monte Carlo simulations implementation is
based on Hall and Alexander work [12]. The principle of these simulations is to compute trajectories
of a large number of molecules. For a given gradient waveform, it is then possible to compute the
phase-angle accumulated in the whole simulation for each molecule spin with equation 2.2. Finally,
the signal is computed by addition of all the spins.

Microstructure variability

Since we want to perform dictionary learning on the signals, it is necessary not to have a biased
dataset. Then the microstructure parameters must be various. Camino allows us to generate any
kind of microstructure. For our experiments, we use the model "Irregularly Packed, Distributed Ra-
dius Cylinders". This model is made of parallel cylinders. Their radii follow a gamma distribution
with two parameters (mean radius and shape). Another parameter that we vary in our simulations
is the number of cylinders in the square in which the cylinders are uniformly distributed. This last
parameter modi�es the density of the cylinders. This model is very close to the AxCaliber model
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(restricted and hindered di�usion, and distributed radii). The parameters of our experiments are
the following:

� the mean radius is in [0.5 �m, 1 �m, 1.5 �m, 2 �m, 2.5 �m, 3 �m].

� the shape parameter of the gamma law is in [1.5, 3, 4.5, 6, 7.5, 9].

� the number of cylinders in a square of side 50 �m is in [50, 100, 150, 200, 250]. If the mean
radius and the number of cylinder are both too high, it means that the simulation will not be
able to �t all cylinders in the space, then the number of cylinders is automatically reduced.

This gives us 180 di�erent microstructure parameter combinations. The minimum intracellular
volume fraction is around 0.015, and it reaches a maximum around 0.8 when all cylinders cannot
be placed.

Gradients

In order to reduce the search space, we decided to restrict ourselves to piecewise constant gradients
with a �xed orientation. In what follows, we use an exhaustive list of gradients with four time steps
and 3 possible values (�gmax, 0, +gmax). A symmetry is used to complete the gradient waveform
after the RF180 pulse. We then �lter them to keep only those which actually reach the value
+gmax. This leads to a set of 65 waveforms. Last, in order to better cover the space, we make the
simulations for these waveforms in 40 directions. These directions are selected uniformly on the
unit sphere [7]. We now have a total of 2600 gradients for our study.

The simulated signals are normalized by dividing the value of the simulation by the value of
a simulation without magnetic �eld gradient (called b0 signal). This gives us the measure of the
attenuation E as in equation 2.3. Studying the attenuation instead of the signal without normal-
ization does not make us lose information about the di�usion. In fact, the b0 signal is not sensitive
to the di�usion.

3.1.2 Data augmentation

An important feature to avoid having a biased dictionary is having rotation invariant data. In fact,
if all microstuctures of the learning dataset have the same orientation, the gradients that are perpen-
dicular to the �ber direction will have too much importance in the dictionaryb and the dictionary
will not generalize to situations where the microstructure has a di�erent orientation. Thus, we pro-
ceed a data augmentation to generate signals for microstructure made of �bers in several directions.

To have several directions of microstructure: we interpolate the signal using spherical harmon-
ics of rank L = 6. For every waveform, we use the 40 signals that comes from the 40 gradients
directions to build a continuous function. Then we simply sample the signal values that correspond
to the rotated signal.

Finally, we have 100 directions uniformly spread on the unit sphere for every previous mi-
crostructure. We now have 18,000 microstructures in our dataset.
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3.2 Dictionary learning

We used the implementation of Mairal et al algorithm [16] in SPAMS (SPArse Modeling Software).
SPAMS is an optimization toolbox for solving various sparse estimation problems. It aims at
solving:

min
D;xi

1

n

nX
i=1

1

2
jjyi �Dxijj

2
2 + �jjxijj1 (3.1)

where n is the number of vectors in the learning set and � is a parameter that quanti�es the con-
straint on the sparsity of the sparse representations xi. As well as k-SVD, the algorithm used here
by SPAMS alternatively updates the xi (with the LARS-Lasso algorithm [10]) and the dictionary
D. The optimization constraints the dictionary D to have normalized columns.

There are mainly two parameters to choose: the number N of atoms of the dictionary (i.e the
number of columns of D) and the parameter �. The number of atoms need to be big in order not
to lose too much information by compression. After several tries, it has been chosen to be 200, that
allows a good reconstruction of signals, and has a reasonable computation time. � is �xed at 0:15
to have about 20 nonzero values according to SPAMS documentation. The dictionary is learned
using 20% of the 18000 generated signals.

3.3 Gradients selection

In practice, only a few measures can be done. We must choose the gradients in order to reconstruct
the full signal e�ciently. In this section, we describe several ways for selecting the gradients from
the dictionary.

3.3.1 Minimizing the redundancy of the measures

A �rst approach for selecting the gradients among the available ones is to select a set of lines of the
dictionary that are uncorrelated. The idea behind this choice is that if two lines of the dictionary
are similar, then the two corresponding gradients capture the same kind of information, they have
the same response. Hence, minimizing the correlation of a subset of lines of the dictionary may limit
the redundancy of the measures. The correlation is measured as followed: the lines of the dictionary
D are centered and reduced to get the matrix eD, then the correlation matrix is C = eD eDT , and for
a subset 
 of the gradients, the correlation is the Frobenius norm of the matrix C restricted to the
lines and columns of 
. This de�nes the following correlation score:

f(
) =
X

i;j in 


 X
k

eDik
eDjk

!2

(3.2)

In order to �nd the set 
 that minimizes the correlation score, we perform a local and discrete
optimization. The algorithm consists in:

� Choosing an initial subset 
0 of gradients with a greedy algorithm.

� While the correlation decreases, at step t:
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{ we �nd the gradient i 2 
t that is the most correlated with the other gradients of 
. If
C
;k is the column k of the matrix C restricted to the lines of 
, we have:

it = argmax
k2
t

(f(
t n fkg)) = argmax
k2
t

jjC
t;kjj2

{ then we �nd the gradient jt =2 
t that is the less correlated with 
t. We have:

jt = argmin
k=2
t

(f((
t n fitg) [ fkg)) = argmin
k=2
t

jjC
tnfitg;kjj2

{ �nally, we update 
t+1 = (
t n fitg) [ fjtg

� We stop the optimization when the last change of index does not improve the objective
function.

Since this algorithm is a local optimization (we change only one element of 
 at each step),
there is a risk to fall in local minimum. Thus, the result may be far from the real minimum. Finding
a theoretical lower bound of the objective function would give us more con�dence in the result.
A lower bound can be given by the result of the relaxed optimization problem. In fact, since the
relaxed problem is a convex optimization, the minimum that is found is global and not local, so
the result gives us a lower bound for the minimum that can be found in the discrete problem. In
the relaxed problem, instead of having a subset of gradients 
, we have a positive variable �i for
each available gradient. The sum of all the variables must be the size of 
 and every �i has to be
positive. The objective function becomes :

f(�) =
X

i;j gradients

�i�j

 X
k

eDik
eDjk

!2

(3.3)

The di�erence between the continuous and discrete optimization is shown on Fig. 3.1. For
comparison, we also show a plot of the correlation score when the indices are selected randomly
(the plotted score is averaged on 100 sets of randomly selected indices). Since the blue curve is
close to the orange one, we can conclude that the discrete minimization ran well, as the result is
close to the theoretical minimum.

3.3.2 Optimizing the properties of the sensing matrix

Another strategy to choose the gradients it to minimize the coherence as de�ned in section 2.3.1.
The idea is to �nd a sensing matrix that is supposed to give a sparse representation according to
the matrix properties descried by Candes and Wakin. Here, we want to �nd:

b
 = argmin

;j
j=n

(�(
)) = argmin

;j
j=n

�
max

i;j atoms

jhd
;i; d
;jij

jjd
;ijj2jjd
;j jj2

�
(3.4)

where d
;i is the column i of the dictionary restricted to the lines described by 
. The algorithm

to �nd b
 is similar to the algorithm to minimize the lines correlation.

� We choose an initial set 
0

� While the objective function decreases, at step t:
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Figure 3.1: Comparing the discrete and local optimization with theoretical lower bound.

{ it = argmin
k2
t

(�(
t n fkg))

{ jt = argmax
k=2
t

(�((
t n fitg) [ fkg))

{ 
t+1 = (
t n fitg) [ fjtg

� We stop the optimization when the last change of index does not improve the objective
function.

Even if this algorithm is very similar to the algorithm minimizing the lines correlation, it costs
a lot more in computation. In fact, here we have to compute �(
) for every considered set 
, and
this computation is long because it has to compute N norms, and N2 scalar product of vectors
of size n. At each iteration, �(
) is evaluated M times. Then the complexity of one iteration is
O(MnN2). To minimize the lines correlation, if C is pre-computed, the complexity of one iteration
is O(Mn).

Another thing that makes this optimization harder than the previous one, is that it is not pos-
sible to �nd a relaxed problem. Then we do not have a theoretical lower and we can not check that
our local optimization did not reach a local minimum far from the real minimum.
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 • We select some lines of dictionary (which 
correspond to gradients) in several ways:

 • We can restrict the dictionary to the selected
gradients.

 • We can construct a sparse signal using 
only a  few measurements (with the Lasso
algorithm)

. =  • We can reconstruct a full signal
 using only a  few measurements

 • We use only the measures associated to 
the selected gradients.

 - randomly
 - uncorrelated lines (minimizing the norm of 
the restricted correlation matrix)
 - minimizing the coherence

Figure 3.2: Reconstruction of a full signal from a few samples.

3.3.3 Evaluation of a selection

In order to evaluate how good is our selection of measures, we need to study how e�cient are this
measures to predict the unseen data. Thus, we �rst evaluate how good is the reconstruction of the
full signal using only these measures. We proceed as follows:

� Select a subset 
 of gradients using one of the previous algorithms (from sections 3.3.1 and
3.3.2).

� Find a sparse representation with the LARS-Lasso algorithm [10] (for the `1 minimization)
using only the measures corresponding to the gradients of 
 and the dictionary restricted to
the lines corresponding to the gradients of 
.

� Multiply the sparse representation x with the complete dictionary to get a reconstructed
signal by.

� Compute a distance between y and by (in our case, we use the Euclidean distance). We
compute this distance for signals that are not in the learning set.

An illustration of the reconstruction pipeline is given on Fig. 3.2. The computed distance
allows us to evaluate the quality of the reconstruction. The smaller this distance, the better the
reconstruction. Then, we can evaluate the quality of a selection technique by measuring the quality
of the reconstruction it provides.
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On Fig. 3.3, we can observe an example of a reconstruction. On this �gure, the abscissa axis
does not have a particular meaning, except the fact that every set of 40 gradients with the same
waveform but di�erent directions are gathered together. We can see that there are as expected only
a few nonzero values in the sparse representation. The atom 50, that is predominant in the repre-
sentation of this signal, is also the atom that is the more used in the representation of all the signals.
This atom is isotropic, it has the same value for every gradient with the same waveform, wathever
the direction is. The other atoms that appear in the representation are less general, and anisotropic.
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Figure 3.3: Example of a reconstruction of a full signal from a few samples.

We made several experiments to �nd which method provide a better reconstruction. For the
experiments of �gures 3.4 end 3.5, the number of gradients used for the reconstruction. For the
experiments of �gures 3.6 and 3.7, � was set to 5E-5. To have signi�cant results, we plotted the
sum of the distance for the signals that were not in the learning set.

Figures 3.4 and 3.6 compare the e�ciency of the reconstruction depending on the technique
to choose the gradients. To have signi�cant results, we plotted the sum of the distance for the
signals that were not in the learning set. We can notice on Fig. 3.6 that the 3 techniques give
a similar score when the number of gradients is higher than 25, but if the number of authorized
measurements is lower, the best technique consists in minimizing the correlation of the lines of
the restricted dictionary. However, Fig. 3.4 shows that we have to choose � carefully. If it's too
small, there is over-�tting because the LARS-Lasso algorithm gives too much importance to the
data �delity and is not able to generalize for gradient waveforms that are not used to �nd the
representation. On the contrary, if it's too high, the algorithm �nds a representation that is too
sparse, then the representation does not contains enough information. We can see on �gures 3.5
and 3.7 that, according to what Candes and Wakin stated, the sensing matrix with a low coherence
gives a sparser representation. The two other methods have a similar sparsity.
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Figure 3.4: Fidelity of the reconstruction depending on � (using 30 measures for the reconstruction).
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Figure 3.5: Sparsity depending on � (using 30 measures for the reconstruction).
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Figure 3.6: Fidelity of the reconstruction depending on the number of measures used. For a small
number of measures, minimizing the lines correlation o�ers a better prediction.
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Figure 3.7: Sparsity depending on the number of measures used. Minimizing the columns correla-
tion provides a sparser representation.
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Chapter 4

Conclusion

Discussion

Di�usion MRI is a successful technique to reconstruct microstructure parameters and di�usion fea-
tures, but many ameliorations remain possible. In fact, there is a wide 
exibility in the choice of
acquisition parameters such as the magnetic �eld gradient waveforms. However, only a few fami-
lies of gradient waveforms have been proposed, and there is no convincing parameterization of the
gradients. For the moment, the most e�cient gradient waveforms are simple: pulsed gradients or
oscillating gradients.

Since compressed sensing already gives good results in anatomical MRI and in di�usion MRI to
optimize pulsed gradient, the idea for �nding gradient waveforms better-suited to microstructure
reconstruction was utilizing the sparsity of the signal. We proposed a method based on dictionary
learning and compressed sensing to predict the signal for a given set of magnetic �eld gradients.
The �rst results are encouraging and the signal seems to have a sparse representation.

The proposed technique still relies a lot on the set of samples that are used. Even if a random
selection of the samples already gives interesting results, when the number of samples is too small,
the random selection may choose redundant measures. In fact, selecting the samples by minimizing
the correlation of the measures leads to a better production for a small number of samples. An-
other tested technique of selection is based on the minimization of the coherence of the sensing. As
expected, this technique leads to a sparser representation. However, it does not provide a better
prediction.

Further work

As explained before, our method allows us to predict the signal for a given set of magnetic �eld
gradients. For the moment, this set of gradients is quite simple, and could be made more general.
Then, we would like to �nd a parameterization of the magnetic �eld gradient waveforms to decrease
the number of gradients used in the simulations, in order to decrease the number of lines of the
dictionary. The parameterization should take advantage of the gradients waveforms properties.
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We should also �lter the gradients with their b-value. A too high b-value would be responsible
of a too high attenuation of the signal and as a result a poor signal-noise ratio. Conversely, a too
small b-value would not have enough impact on the signal. In both cases, the signal value does not
vary enough between a microstructure and another.

Another possibility to �nd interesting waveforms is to see them as function of the time in R3.
Then, we would try to �nd a good way to sample this space of functions to avoid the redundancy
of the measures. An idea to do so is minimizing

P 1
di;j

under the constraint that the maximum

value of the gradient is reached and where di;j is the (integral) distance between two waveforms.
This idea is based on electrostatic repulsion [13], in which we use the integral distance instead of a
spatial distance.

However, even if we have an e�cient way to predict the signal, we still have to check that
the predicted signals are good enough for estimating the model parameters. Future studies will
compare the reconstruction of the microstructure parameters depending on the techniques and on
the algorithm parameters.

For further work, we would also like to acquire real data using phantoms, with known parame-
ters instead of using Monte-Carlo simulations.
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