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The operator

HLf = ∆f + f · ξ , on QL := Zd ∩ [−L, L]d ,

where ξ : Zd → R is a random field.

Eigenvalues: λ1,L ≥ λ2,L ≥ . . .

Eigenfunctions: ϕ1,L, ϕ2,L, . . .

“Centers” of localisation: xk,L ∈ QL where ϕk,L reaches its maximum

Successive maximas of the field: ξ(y1,L) ≥ ξ(y2,L) ≥ . . .

Main questions
As L→∞
1. Statistics of the largest eigenvalues?

2. What do the associated eigenfunctions look like?

3. Relationships between largest eigefunctions and maximas of the field?
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Some intuition

HLf = ∆f + f · ξ , on QL := Zd ∩ [−L, L]d .

If we turn off the potential (i.e. HLf = ∆f ) then:

1. eigenvalues and eigenfunctions are explicit

2. eigenfunctions put mass everywhere (delocalised).

If we turn off the Laplacian (i.e. HLf = ξ · f ) then for any k ≥ 1:

1. λk,L = ξ(yk,L)

2. ϕk,L = δyk,L (localised).
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A motivation
Continuous Anderson Hamiltonian with white noise potential:

HLf := ∆f + f · ξ , on Rd ∩ [−L, L]d .

Very precise information in d = 1.

Theorem (Dumaz-L.’18)

In d = 1, take aL = ( 3
8 ln L)2/3. Then:

1.
(
4
√
aL(λk,L − aL)

)
k≥1

CV in law as L→∞ to a P.P.P. on R of intensity

e−udu.

2. For any k ≥ 1:( √2
a
1/4
L

ϕk,L

(
xk,L +

x√
aL

)
, x ∈ R

)
(P)

=====⇒
loc. unif.

( 1
cosh(x)

, x ∈ R
)
.

3. The centers of localisation are uniform:(xk,L
L

)
k≥1
⇒ i.i.d. Uniform[−1, 1] .
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A motivation

Continuous Anderson Hamiltonian with white noise potential:

HLf := ∆f + f · ξ , on Rd ∩ [−L, L]d .

Much less is known in d = 2, 3.

Theorem
a.s. λ1,L ∼

L→∞
aL

where aL := Cd(log L)
1

2− d
2

{
d = 2 Chouk-van Zuijlen’20
d = 3 Hsu-L.’21

Conjectures (Hsu-L.’21):

1.
(
λk,L−aL

bL

)
k≥1

CV in law as L→∞ to a P.P.P. on R of intensity e−udu.

2.
(

1
a
d/4
L

ϕk,L

(
xk,L + x√

aL

)
, x ∈ Rd

)
⇒ Q
‖Q‖L2

where Q is the optimizer of Gagliardo-Nirenberg inequality
‖f ‖L4(Rd ) ≤ C‖∇f ‖d/4

L2(Rd )
‖f ‖1−d/4

L2(Rd )
.
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Literature on the i.i.d. case

HLf := ∆f + f · ξ , on QL := Zd ∩ [−L, L]d .

Top of the spectrum when ξ is made of i.i.d. r.v.

It depends on the right tail of the law of ξ(0):

The fatter the right tail is, the more localised the eigenfunctions are.

Two settings are well-understood:

1. Weibull tail: for some parameter q > 0

P(ξ(0) > x) = exp(−xq) , x ≥ 0 .

2. Doubly-exponential tail: for some parameter ρ > 0

P(ξ(0) > x) = exp(− exp(x/ρ)) , x ≥ 0 .
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Literature on the i.i.d. case: Weibull

HLf := ∆f + f · ξ , on QL := Zd ∩ [−L, L]d .

ξ i.i.d. For some parameter q > 0.

P(ξ(0) > x) = exp(−xq) , x ≥ 0 .

Theorem (Grenkova-Molchanov-Sudarev ’90, Astrauskas ’07, ’08, Sidorova-Twarowski ’14)

1. There exist aL, bL s.t.
(
λk,L−aL

bL

)
k≥1

CV in law as L→∞ to a P.P.P. on R

of intensity e−udu.

2. For any given k ≥ 1, ϕk,L is almost a Dirac mass at xk,L.

3. (xk,L/L)k≥1 ⇒ i.i.d. Uniform[−1, 1]d .
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Literature on the i.i.d. case: Weibull

Question: relationship between ϕk,L and the maximas of ξ on QL?

ξ(y1,L) ≥ ξ(y2,L) ≥ · · ·

Let `L(k) be the integer s.t. xk,L = y`L(k),L.

Natural guess: `L(k) = k with large probability.

Theorem (Astrauskas’12)

In the Weibull case: P(ξ(0) > x) = exp(−xq) , x ≥ 0. For any given k ≥ 1:

1. if q < 3, then `L(k) = k w.l.p.

2. if q = 3, then `L(k) of order 1 w.l.p.

3. if q > 3, then `L(k)→ +∞ in probability.

Not much explanation in Astrauskas’12 paper...
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Literature on the i.i.d. case: doubly-exponential

HLf := ∆f + f · ξ , on Rd ∩ [−L, L]d .

ξ i.i.d. For some parameter ρ > 0.

P(ξ(0) > x) = exp(− exp(x/ρ)) , x ≥ 0 .

Theorem (Biskup-Konig’16)

1. There exist aL, bL s.t.
(
λk,L−aL

bL

)
k≥1

converges in law as L→∞ to a

Poisson point process on R of intensity e−udu.

2. For any given k ≥ 1, ϕk,L puts a macroscopic mass at distance O(1) from
xk,L.

3. (xk,L/L)k≥1 ⇒ i.i.d. Uniform[−1, 1]d .
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Our work

We investigate the case where ξ is a correlated Gaussian field.

Almost no results in the literature:
• Gärtner-König-Molchanov’00 on the continuum PAM,
• Astrauskas’03 on the discrete Anderson Hamiltonian

Our goal:

1. cover the counterpart of the “Weibull tail” i.i.d. case.

2. obtain a precise understanding of the relationship of the top of the
spectrum with the maxima of the fields.
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Our framework

The (sequence of) potential(s)

Consider a sequence (ξL)L≥1 of Gaussian fields on Zd s.t.:

1. centred, stationary, unit variance

2. the covariance function

vL(x) := E[ξL(0)ξL(x)] , x ∈ Zd ,

only depends on Euclidean norm |x | of x .

Two parameters:
• correlation length:

cL := inf{r ≥ 1 : ∀r ′ ≥ r , vL(r ′) = 0} .

• decay parameter:

dL ∈ [1,∞) s.t. vL(1) = 1− 1
dL

.
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Three examples:

1. i.i.d. N (0, 1) r.v. Then cL = dL = 1.

2. Gaussian correlated field independent with a compactly supported
covariance function.

3. Continuum Gaussian field evaluated at grid points.
Let η be a white noise on Rd . Let u be a radial function supported in
B(0, 1/2). Set

ζ := η ∗ u .

For some sequence cL →∞, set

ξL(x) := ζ(x/cL) , x ∈ Zd .

Then dL → +∞.
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Analysis of ξL

To understand the top of the spectrum of

HL = ∆ + ξL , on QL := Zd ∩ [−L, L]d ,

one needs to understand the largest peaks of ξL on QL.

The maxima of ξL over QL are of order

aL ∼
√
2d ln L .

If ξL(x0) ≈ aL, then for x close to x0

ξL(x) ≈ ξL(x0)− SL(x − x0) + ζL,x0(x) ,

where

1. SL(y) = aL(1− vL(y)) is a deterministic shape

2. ζL,x0 is a Gaussian field independent of ξL(x0).
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Local eigenproblem

ξL(x) ≈ ξL(x0)− SL(x − x0) + ζL,x0(x) .

What local eigenvalue does this large peak produces?

Introduce the deterministic operator

H̄L := ∆− SL(x) ,

Let λ̄L and ϕ̄L be its main eigenvalue and eigenfunction.

Then the local eigenvalue produced by the large peak at x0 is
well-approximated by

ξL(x0) + λ̄L +
∑

x close to x0

ϕ̄L(x − x0)2ζL,x0(x) .

Competition between two terms:
1. ξL(x0) which is of order aL and fluctuates at scale 1/aL,
2.
∑

x close to x0
ϕ̄L(x − x0)2ζL,x0(x) which fluctuates at scale τL where

τ2
L := var [

∑
x close to x0

ϕ̄L(x − x0)2ζL,x0(x)] .
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Main results - Cannizzaro-L.-van Zuijlen (in progress)

Assume dL � aL.

Theorem (Eigenvalue order statistics)

The point process(xk,L
L
, aL(λk,L − aL

√
1 + τ2

L − λ̄L)
)

1≤k≤#QL

,

CV in law as L→∞ towards a P.P.P. on [−1, 1]d × R of intensity dx ⊗ e−udu.

Theorem (Localisation)

For any k ≥ 1, the r.v.

aL
dL

∥∥∥ϕk,L(·)− ϕ̄L(· − xk,L)
∥∥∥
`2(QL)

,

converges to 0 in probability.
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Main results - Cannizzaro-L.-van Zuijlen (in progress)

Recall that
τ2
L := var [

∑
x close to x0

ϕ̄L(x − x0)2ζL,x0(x)] .

Theorem (Relationship with the maxima of ξL)

1. if τL � 1
aL

then for any given k ≥ 1, P(`L(k) = k)→ 1 as L→∞,

2. if τL ∼ b 1
aL

for some constant b > 0 then (`L(k), k ≥ 1) converges in law
to (`∞,b(k), k ≥ 1),

3. if τL � 1
aL

then for any given k ≥ 1, `L(k) converges to +∞ in probability.

Let u1 > u2 > . . . be distributed according to a P.P.P. of intensity e−udu. Draw an
independent sequence (vi )i≥1 of i.i.d. N (0, 1) r.v. Let (wi )i≥1 be the order statistics
of (ui + bvi )i≥1. Then for any k ≥ 1, `∞,b(k) is defined through wk = u`∞,b(k)

.
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Thank you for your attention!
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