Top of the spectrum of the Anderson Hamiltonian with correlated Gaussian noise

Cyril Labbé LPSM - Université Paris Cité

Work in progress with Giuseppe Cannizzaro and Willem van Zuijlen

Nancy - December 6th 2024

$$\mathcal{H}_L f = \Delta f + f \cdot \xi$$
, on $Q_L := \mathbb{Z}^d \cap [-L, L]^d$,

where $\xi : \mathbb{Z}^d \to \mathbb{R}$ is a random field.

$$\mathcal{H}_L f = \Delta f + f \cdot \xi$$
, on $Q_L := \mathbb{Z}^d \cap [-L, L]^d$,

where $\xi : \mathbb{Z}^d \to \mathbb{R}$ is a random field.

Eigenvalues: $\lambda_{1,L} \geq \lambda_{2,L} \geq \ldots$

$$\mathcal{H}_L f = \Delta f + f \cdot \xi$$
, on $Q_L := \mathbb{Z}^d \cap [-L, L]^d$,

where $\xi : \mathbb{Z}^d \to \mathbb{R}$ is a random field.

 $\begin{array}{l} \mbox{Eigenvalues:} \ \lambda_{1,L} \geq \lambda_{2,L} \geq \dots \\ \mbox{Eigenfunctions:} \ \varphi_{1,L}, \ \varphi_{2,L}, \ \dots \end{array}$

$$\mathcal{H}_L f = \Delta f + f \cdot \xi$$
, on $Q_L := \mathbb{Z}^d \cap [-L, L]^d$,

where $\xi : \mathbb{Z}^d \to \mathbb{R}$ is a random field.

Eigenvalues: $\lambda_{1,L} \geq \lambda_{2,L} \geq \ldots$

Eigenfunctions: $\varphi_{1,L}, \varphi_{2,L}, \ldots$

"Centers" of localisation: $x_{k,L} \in Q_L$ where $\varphi_{k,L}$ reaches its maximum

$$\mathcal{H}_L f = \Delta f + f \cdot \xi$$
, on $Q_L := \mathbb{Z}^d \cap [-L, L]^d$,

where $\xi : \mathbb{Z}^d \to \mathbb{R}$ is a random field.

Eigenvalues: $\lambda_{1,L} \geq \lambda_{2,L} \geq \ldots$

Eigenfunctions: $\varphi_{1,L}, \varphi_{2,L}, \ldots$

"Centers" of localisation: $x_{k,L} \in Q_L$ where $\varphi_{k,L}$ reaches its maximum Successive maximas of the field: $\xi(y_{1,L}) \ge \xi(y_{2,L}) \ge \ldots$

$$\mathcal{H}_L f = \Delta f + f \cdot \xi$$
, on $Q_L := \mathbb{Z}^d \cap [-L, L]^d$,

where $\xi : \mathbb{Z}^d \to \mathbb{R}$ is a random field.

Eigenvalues: $\lambda_{1,L} \geq \lambda_{2,L} \geq \ldots$

Eigenfunctions: $\varphi_{1,L}$, $\varphi_{2,L}$, ...

"Centers" of localisation: $x_{k,L} \in Q_L$ where $\varphi_{k,L}$ reaches its maximum

Successive maximas of the field: $\xi(y_{1,L}) \ge \xi(y_{2,L}) \ge \ldots$

Main questions

As $L
ightarrow \infty$

- 1. Statistics of the largest eigenvalues?
- 2. What do the associated eigenfunctions look like?
- 3. Relationships between largest eigefunctions and maximas of the field?

$$\mathcal{H}_L f = \Delta f + f \cdot \xi$$
, on $Q_L := \mathbb{Z}^d \cap [-L, L]^d$.

$$\mathcal{H}_L f = \Delta f + f \cdot \xi$$
, on $Q_L := \mathbb{Z}^d \cap [-L, L]^d$.

If we turn off the potential (i.e. $\mathcal{H}_L f = \Delta f$) then:

$$\mathcal{H}_L f = \Delta f + f \cdot \xi$$
, on $Q_L := \mathbb{Z}^d \cap [-L, L]^d$.

If we turn off the potential (i.e. $\mathcal{H}_L f = \Delta f$) then:

- 1. eigenvalues and eigenfunctions are explicit
- 2. eigenfunctions put mass everywhere (delocalised).

$$\mathcal{H}_L f = \Delta f + f \cdot \xi$$
, on $Q_L := \mathbb{Z}^d \cap [-L, L]^d$.

If we turn off the potential (i.e. $\mathcal{H}_L f = \Delta f$) then:

- 1. eigenvalues and eigenfunctions are explicit
- 2. eigenfunctions put mass everywhere (delocalised).

If we turn off the Laplacian (i.e. $\mathcal{H}_L f = \xi \cdot f$) then for any $k \ge 1$:

$$\mathcal{H}_L f = \Delta f + f \cdot \xi$$
, on $Q_L := \mathbb{Z}^d \cap [-L, L]^d$.

If we turn off the potential (i.e. $\mathcal{H}_L f = \Delta f$) then:

- 1. eigenvalues and eigenfunctions are explicit
- 2. eigenfunctions put mass everywhere (delocalised).

If we turn off the Laplacian (i.e. $\mathcal{H}_L f = \xi \cdot f$) then for any $k \ge 1$:

- 1. $\lambda_{k,L} = \xi(y_{k,L})$
- 2. $\varphi_{k,L} = \delta_{y_{k,L}}$ (localised).

Continuous Anderson Hamiltonian with white noise potential:

$$\mathcal{H}_L f := \Delta f + f \cdot \xi$$
, on $\mathbb{R}^d \cap [-L, L]^d$.

Continuous Anderson Hamiltonian with white noise potential:

$$\mathcal{H}_L f := \Delta f + f \cdot \xi$$
, on $\mathbb{R}^d \cap [-L, L]^d$.

Very precise information in d = 1.

Theorem (Dumaz-L.'18)

In d = 1, take $a_L = (\frac{3}{8} \ln L)^{2/3}$. Then:

Continuous Anderson Hamiltonian with white noise potential:

$$\mathcal{H}_L f := \Delta f + f \cdot \xi$$
, on $\mathbb{R}^d \cap [-L, L]^d$.

Very precise information in d = 1.

Theorem (Dumaz-L.'18) In d = 1, take $a_L = (\frac{3}{8} \ln L)^{2/3}$. Then: 1. $(4\sqrt{a_L}(\lambda_{k,L} - a_L))_{k \ge 1}$ CV in law as $L \to \infty$ to a P.P.P. on \mathbb{R} of intensity $e^{-u}du$.

Continuous Anderson Hamiltonian with white noise potential:

$$\mathcal{H}_L f := \Delta f + f \cdot \xi$$
, on $\mathbb{R}^d \cap [-L, L]^d$.

Very precise information in d = 1.

Theorem (Dumaz-L.'18)

In
$$d = 1$$
, take $a_L = \left(\frac{3}{8} \ln L\right)^{2/3}$. Then:
1. $\left(4\sqrt{a_L}(\lambda_{k,L} - a_L)\right)_{k \ge 1}$ CV in law as $L \to \infty$ to a P.P.P. on \mathbb{R} of intensity $e^{-u}du$.

2. For any $k \ge 1$:

$$\left(rac{\sqrt{2}}{a_L^{1/4}} arphi_{k,L} (x_{k,L} + rac{x}{\sqrt{a_L}}), x \in \mathbb{R}
ight) \xrightarrow{(\mathbb{P})} \left(rac{1}{\operatorname{cosh}(x)}, x \in \mathbb{R}
ight).$$

Continuous Anderson Hamiltonian with white noise potential:

$$\mathcal{H}_L f := \Delta f + f \cdot \xi$$
, on $\mathbb{R}^d \cap [-L, L]^d$.

Very precise information in d = 1.

Theorem (Dumaz-L.'18) In d = 1, take $a_L = (\frac{3}{8} \ln L)^{2/3}$. Then: 1. $(4\sqrt{a_L}(\lambda_{k,L} - a_L))_{k \ge 1}$ CV in law as $L \to \infty$ to a P.P.P. on \mathbb{R} of intensity $e^{-u}du$.

2. For any
$$k \ge 1$$
:

$$\left(rac{\sqrt{2}}{a_L^{1/4}} arphi_{k,L} (x_{k,L} + rac{x}{\sqrt{a_L}}), x \in \mathbb{R}
ight) \xrightarrow{(\mathbb{P})} \left(rac{1}{\cosh(x)}, x \in \mathbb{R}
ight).$$

3. The centers of localisation are uniform:

$$\left(\frac{x_{k,L}}{L}\right)_{k\geq 1}$$
 \Rightarrow *i.i.d.* $Uniform[-1,1]$.

Continuous Anderson Hamiltonian with white noise potential:

$$\mathcal{H}_L f := \Delta f + f \cdot \xi$$
, on $\mathbb{R}^d \cap [-L, L]^d$.

Much less is known in d = 2, 3.

Continuous Anderson Hamiltonian with white noise potential:

$$\mathcal{H}_L f := \Delta f + f \cdot \xi$$
, on $\mathbb{R}^d \cap [-L, L]^d$.

Much less is known in d = 2, 3.

Theorem

a.s. $\lambda_{1,L} \underset{L \to \infty}{\sim} a_L$ where $a_L := C_d (\log L)^{\frac{1}{2-\frac{d}{2}}} \begin{cases} d = 2 \ Chouk-van \ Zuijlen'20 \\ d = 3 \ Hsu-L.'21 \end{cases}$

Continuous Anderson Hamiltonian with white noise potential:

$$\mathcal{H}_L f := \Delta f + f \cdot \xi \;, \quad ext{ on } \mathbb{R}^d \cap [-L, L]^d \;.$$

Much less is known in d = 2, 3.

Theorem

a.s.
$$\lambda_{1,L} \underset{L \to \infty}{\sim} a_L$$

where $a_L := C_d (\log L)^{\frac{1}{2-\frac{d}{2}}} \quad \begin{cases} d = 2 \ Chouk-van \ Zuijlen'20 \\ d = 3 \ Hsu-L.'21 \end{cases}$

Conjectures (Hsu-L.'21):

1. $\left(\frac{\lambda_{k,L}-a_L}{b_L}\right)_{k\geq 1}$ CV in law as $L \to \infty$ to a P.P.P. on \mathbb{R} of intensity $e^{-u}du$. 2. $\left(\frac{1}{a_L^{d/4}}\varphi_{k,L}\left(x_{k,L}+\frac{x}{\sqrt{a_L}}\right), x \in \mathbb{R}^d\right) \Rightarrow \frac{Q}{\|Q\|_{L^2}}$

Continuous Anderson Hamiltonian with white noise potential:

$$\mathcal{H}_L f := \Delta f + f \cdot \xi$$
, on $\mathbb{R}^d \cap [-L, L]^d$.

Much less is known in d = 2, 3.

Theorem

a.s.
$$\lambda_{1,L} \underset{L \to \infty}{\sim} a_L$$

where $a_L := C_d (\log L)^{\frac{1}{2-\frac{d}{2}}} \begin{cases} d = 2 \ Chouk-van \ Zuijlen'20 \\ d = 3 \ Hsu-L.'21 \end{cases}$

Conjectures (Hsu-L.'21):

1. $\left(\frac{\lambda_{k,L}-a_L}{b_L}\right)_{k\geq 1}$ CV in law as $L \to \infty$ to a P.P.P. on \mathbb{R} of intensity $e^{-u}du$. 2. $\left(\frac{1}{a_L^{d/4}}\varphi_{k,L}\left(x_{k,L}+\frac{x}{\sqrt{a_L}}\right), x \in \mathbb{R}^d\right) \Rightarrow \frac{Q}{\|Q\|_{L^2}}$

where Q is the optimizer of Gagliardo-Nirenberg inequality $\|f\|_{L^{4}(\mathbb{R}^{d})} \leq C \|\nabla f\|_{L^{2}(\mathbb{R}^{d})}^{d/4} \|f\|_{L^{2}(\mathbb{R}^{d})}^{1-d/4}.$

$$\mathcal{H}_L f := \Delta f + f \cdot \xi$$
, on $Q_L := \mathbb{Z}^d \cap [-L, L]^d$.

Top of the spectrum when ξ is made of *i.i.d. r.v.*

$$\mathcal{H}_L f := \Delta f + f \cdot \xi$$
, on $Q_L := \mathbb{Z}^d \cap [-L, L]^d$.

Top of the spectrum when ξ is made of *i.i.d. r.v.*

It depends on the right tail of the law of $\xi(0)$:

The fatter the right tail is, the more localised the eigenfunctions are.

$$\mathcal{H}_L f := \Delta f + f \cdot \xi$$
, on $Q_L := \mathbb{Z}^d \cap [-L, L]^d$.

Top of the spectrum when ξ is made of *i.i.d. r.v.*

It depends on the right tail of the law of $\xi(0)$: The fatter the right tail is, the more localised the eigenfunctions are.

Two settings are well-understood:

1. Weibull tail: for some parameter
$$q > 0$$

$$\mathbb{P}(\xi(0) > x) = \exp(-x^q) , \quad x \ge 0 .$$

$$\mathcal{H}_L f := \Delta f + f \cdot \xi$$
, on $Q_L := \mathbb{Z}^d \cap [-L, L]^d$.

Top of the spectrum when ξ is made of *i.i.d. r.v.*

It depends on the right tail of the law of $\xi(0)$: The fatter the right tail is, the more localised the eigenfunctions are.

Two settings are well-understood:

1. Weibull tail: for some parameter q > 0

$$\mathbb{P}(\xi(0) > x) = \exp(-x^q) \ , \quad x \ge 0 \ .$$

2. Doubly-exponential tail: for some parameter $\rho > 0$

$$\mathbb{P}(\xi(0) > x) = \exp(-\exp(x/
ho)), \quad x \ge 0.$$

$$\mathcal{H}_L f := \Delta f + f \cdot \xi$$
, on $Q_L := \mathbb{Z}^d \cap [-L, L]^d$.

 ξ i.i.d. For some parameter q > 0.

$$\mathbb{P}(\xi(0) > x) = \exp(-x^q) , \quad x \ge 0 .$$

Theorem (Grenkova-Molchanov-Sudarev '90, Astrauskas '07, '08, Sidorova-Twarowski '14)

1. There exist a_L, b_L s.t. $\left(\frac{\lambda_{k,L}-a_L}{b_L}\right)_{k\geq 1}$ CV in law as $L \to \infty$ to a P.P.P. on \mathbb{R} of intensity $e^{-u}du$.

$$\mathcal{H}_L f := \Delta f + f \cdot \xi$$
, on $Q_L := \mathbb{Z}^d \cap [-L, L]^d$.

 ξ i.i.d. For some parameter q > 0.

$$\mathbb{P}(\xi(0) > x) = \exp(-x^q) , \quad x \ge 0 .$$

Theorem (Grenkova-Molchanov-Sudarev '90, Astrauskas '07, '08, Sidorova-Twarowski '14)

- 1. There exist a_L, b_L s.t. $\left(\frac{\lambda_{k,L}-a_L}{b_L}\right)_{k\geq 1}$ CV in law as $L \to \infty$ to a P.P.P. on \mathbb{R} of intensity $e^{-u}du$.
- 2. For any given $k \ge 1$, $\varphi_{k,L}$ is almost a Dirac mass at $x_{k,L}$.

$$\mathcal{H}_L f := \Delta f + f \cdot \xi$$
, on $Q_L := \mathbb{Z}^d \cap [-L, L]^d$.

 ξ i.i.d. For some parameter q > 0.

$$\mathbb{P}(\xi(0) > x) = \exp(-x^q) , \quad x \ge 0 .$$

Theorem (Grenkova-Molchanov-Sudarev '90, Astrauskas '07, '08, Sidorova-Twarowski '14)

- 1. There exist a_L, b_L s.t. $\left(\frac{\lambda_{k,L}-a_L}{b_L}\right)_{k\geq 1}$ CV in law as $L \to \infty$ to a P.P.P. on \mathbb{R} of intensity $e^{-u}du$.
- 2. For any given $k \ge 1$, $\varphi_{k,L}$ is almost a Dirac mass at $x_{k,L}$.
- 3. $(x_{k,L}/L)_{k\geq 1} \Rightarrow i.i.d.$ Uniform $[-1,1]^d$.

Question: relationship between $\varphi_{k,L}$ and the maximas of ξ on Q_L ?

 $\xi(y_{1,L}) \geq \xi(y_{2,L}) \geq \cdots$

Question: relationship between $\varphi_{k,L}$ and the maximas of ξ on Q_L ?

 $\xi(y_{1,L}) \geq \xi(y_{2,L}) \geq \cdots$

Let $\ell_L(k)$ be the integer s.t. $x_{k,L} = y_{\ell_L(k),L}$.

Question: relationship between $\varphi_{k,L}$ and the maximas of ξ on Q_L ?

 $\xi(y_{1,L}) \geq \xi(y_{2,L}) \geq \cdots$

Let $\ell_L(k)$ be the integer s.t. $x_{k,L} = y_{\ell_L(k),L}$.

Natural guess: $\ell_L(k) = k$ with large probability.

Question: relationship between $\varphi_{k,L}$ and the maximas of ξ on Q_L ?

 $\xi(y_{1,L}) \geq \xi(y_{2,L}) \geq \cdots$

Let $\ell_L(k)$ be the integer s.t. $x_{k,L} = y_{\ell_L(k),L}$.

Natural guess: $\ell_L(k) = k$ with large probability.

Theorem (Astrauskas'12)

In the Weibull case: $\mathbb{P}(\xi(0) > x) = \exp(-x^q)$, $x \ge 0$. For any given $k \ge 1$:

- 1. if q < 3, then $\ell_L(k) = k$ w.l.p.
- 2. if q = 3, then $\ell_L(k)$ of order 1 w.l.p.
- 3. if q > 3, then $\ell_L(k) \to +\infty$ in probability.

Not much explanation in Astrauskas'12 paper...

Literature on the i.i.d. case: doubly-exponential

$$\mathcal{H}_L f := \Delta f + f \cdot \xi$$
, on $\mathbb{R}^d \cap [-L, L]^d$.

 ξ i.i.d. For some parameter $\rho >$ 0.

$$\mathbb{P}(\xi(0) > x) = \exp(-\exp(x/
ho)), \quad x \ge 0.$$

Literature on the i.i.d. case: doubly-exponential

$$\mathcal{H}_L f := \Delta f + f \cdot \xi$$
, on $\mathbb{R}^d \cap [-L, L]^d$.

 ξ i.i.d. For some parameter $\rho >$ 0.

$$\mathbb{P}(\xi(0) > x) = \exp(-\exp(x/
ho)) \ , \quad x \ge 0 \ .$$

Theorem (Biskup-Konig'16)

1. There exist a_L, b_L s.t. $\left(\frac{\lambda_{k,L}-a_L}{b_L}\right)_{k\geq 1}$ converges in law as $L \to \infty$ to a Poisson point process on \mathbb{R} of intensity $e^{-u}du$.

Literature on the i.i.d. case: doubly-exponential

$$\mathcal{H}_L f := \Delta f + f \cdot \xi$$
, on $\mathbb{R}^d \cap [-L, L]^d$.

 ξ i.i.d. For some parameter $\rho >$ 0.

$$\mathbb{P}(\xi(0) > x) = \exp(-\exp(x/
ho)), \quad x \ge 0.$$

Theorem (Biskup-Konig'16)

- 1. There exist a_L, b_L s.t. $\left(\frac{\lambda_{k,L}-a_L}{b_L}\right)_{k\geq 1}$ converges in law as $L \to \infty$ to a Poisson point process on \mathbb{R} of intensity $e^{-u}du$.
- 2. For any given $k \ge 1$, $\varphi_{k,L}$ puts a macroscopic mass at distance O(1) from $x_{k,L}$.

3.
$$(x_{k,L}/L)_{k\geq 1} \Rightarrow i.i.d.$$
 Uniform $[-1,1]^d$.

Our work

We investigate the case where ξ is a correlated Gaussian field.

Our work

We investigate the case where ξ is a correlated Gaussian field.

Almost no results in the literature:

- Gärtner-König-Molchanov'00 on the continuum PAM,
- Astrauskas'03 on the discrete Anderson Hamiltonian

Our work

We investigate the case where ξ is a correlated Gaussian field.

Almost no results in the literature:

- Gärtner-König-Molchanov'00 on the continuum PAM,
- Astrauskas'03 on the discrete Anderson Hamiltonian

Our goal:

- 1. cover the counterpart of the "Weibull tail" i.i.d. case.
- 2. obtain a precise understanding of the relationship of the top of the spectrum with the maxima of the fields.

The (sequence of) potential(s)

Consider a sequence $(\xi_L)_{L\geq 1}$ of Gaussian fields on \mathbb{Z}^d s.t.:

The (sequence of) potential(s)

Consider a sequence $(\xi_L)_{L\geq 1}$ of Gaussian fields on \mathbb{Z}^d s.t.:

1. centred, stationary, unit variance

The (sequence of) potential(s)

Consider a sequence $(\xi_L)_{L\geq 1}$ of Gaussian fields on \mathbb{Z}^d s.t.:

- 1. centred, stationary, unit variance
- 2. the covariance function

$$v_L(x) := \mathbb{E}[\xi_L(0)\xi_L(x)] , \quad x \in \mathbb{Z}^d ,$$

only depends on Euclidean norm |x| of x.

The (sequence of) potential(s)

Consider a sequence $(\xi_L)_{L\geq 1}$ of Gaussian fields on \mathbb{Z}^d s.t.:

- 1. centred, stationary, unit variance
- 2. the covariance function

$$v_L(x) := \mathbb{E}[\xi_L(0)\xi_L(x)], \quad x \in \mathbb{Z}^d$$

only depends on Euclidean norm |x| of x.

Two parameters:

• correlation length:

$$c_L := \inf\{r \ge 1 : \forall r' \ge r, v_L(r') = 0\}.$$

The (sequence of) potential(s)

Consider a sequence $(\xi_L)_{L\geq 1}$ of Gaussian fields on \mathbb{Z}^d s.t.:

- 1. centred, stationary, unit variance
- 2. the covariance function

$$v_L(x) := \mathbb{E}[\xi_L(0)\xi_L(x)], \quad x \in \mathbb{Z}^d$$

only depends on Euclidean norm |x| of x.

Two parameters:

• correlation length:

$$c_L := \inf\{r \ge 1 : \forall r' \ge r, v_L(r') = 0\} .$$

• decay parameter:

$$d_L \in [1,\infty)$$
 s.t. $v_L(1) = 1 - rac{1}{d_l}$.

1. i.i.d. $\mathcal{N}(0, 1)$ r.v. Then $c_L = d_L = 1$.

- 1. i.i.d. $\mathcal{N}(0, 1)$ r.v. Then $c_L = d_L = 1$.
- 2. Gaussian correlated field independent with a compactly supported covariance function.

- 1. i.i.d. $\mathcal{N}(0, 1)$ r.v. Then $c_L = d_L = 1$.
- 2. Gaussian correlated field independent with a compactly supported covariance function.
- 3. Continuum Gaussian field evaluated at grid points. Let η be a white noise on \mathbb{R}^d . Let u be a radial function supported in B(0, 1/2). Set

$$\zeta := \eta * u$$
 .

- 1. i.i.d. $\mathcal{N}(0, 1)$ r.v. Then $c_L = d_L = 1$.
- 2. Gaussian correlated field independent with a compactly supported covariance function.
- 3. Continuum Gaussian field evaluated at grid points. Let η be a white noise on \mathbb{R}^d . Let u be a radial function supported in B(0, 1/2). Set

$$\zeta := \eta * u$$

For some sequence $c_L \rightarrow \infty$, set

$$\xi_L(x) := \zeta(x/c_L) , \quad x \in \mathbb{Z}^d .$$

Then $d_L \rightarrow +\infty$.

To understand the top of the spectrum of

$$\mathcal{H}_L = \Delta + \xi_L$$
, on $Q_L := \mathbb{Z}^d \cap [-L, L]^d$,

one needs to understand the largest peaks of ξ_L on Q_L .

To understand the top of the spectrum of

$$\mathcal{H}_L = \Delta + \xi_L \;, \quad \text{ on } Q_L := \mathbb{Z}^d \cap [-L, L]^d \;,$$

one needs to understand the largest peaks of ξ_L on Q_L .

The maxima of ξ_L over Q_L are of order

 $a_L \sim \sqrt{2d \ln L}$.

To understand the top of the spectrum of

$$\mathcal{H}_L = \Delta + \xi_L$$
, on $Q_L := \mathbb{Z}^d \cap [-L, L]^d$,

one needs to understand the largest peaks of ξ_L on Q_L .

The maxima of ξ_L over Q_L are of order

 $a_L \sim \sqrt{2d \ln L}$.

If $\xi_L(x_0) \approx a_L$, then for x close to x_0

To understand the top of the spectrum of

$$\mathcal{H}_L = \Delta + \xi_L$$
, on $Q_L := \mathbb{Z}^d \cap [-L, L]^d$,

one needs to understand the largest peaks of ξ_L on Q_L .

The maxima of ξ_L over Q_L are of order

 $a_L \sim \sqrt{2d \ln L}$.

If $\xi_L(x_0) \approx a_L$, then for x close to x_0

$$\xi_L(x) \approx \xi_L(x_0) - S_L(x-x_0) + \zeta_{L,x_0}(x) ,$$

To understand the top of the spectrum of

$$\mathcal{H}_L = \Delta + \xi_L$$
, on $Q_L := \mathbb{Z}^d \cap [-L, L]^d$,

one needs to understand the largest peaks of ξ_L on Q_L .

The maxima of ξ_L over Q_L are of order

 $a_L \sim \sqrt{2d \ln L}$.

If $\xi_L(x_0) \approx a_L$, then for x close to x_0

$$\xi_L(x) \approx \xi_L(x_0) - S_L(x-x_0) + \zeta_{L,x_0}(x) ,$$

where

- 1. $S_L(y) = a_L(1 v_L(y))$ is a deterministic shape
- 2. ζ_{L,x_0} is a Gaussian field independent of $\xi_L(x_0)$.

$$\xi_L(x) \approx \xi_L(x_0) - S_L(x-x_0) + \zeta_{L,x_0}(x)$$
.

$$\xi_L(x) \approx \xi_L(x_0) - S_L(x - x_0) + \zeta_{L,x_0}(x)$$
.

What local eigenvalue does this large peak produces?

$$\xi_L(x) \approx \xi_L(x_0) - S_L(x-x_0) + \zeta_{L,x_0}(x)$$
.

What local eigenvalue does this large peak produces?

Introduce the deterministic operator

$$\bar{\mathcal{H}}_L := \Delta - S_L(x) \; ,$$

Let $\bar{\lambda}_L$ and $\bar{\varphi}_L$ be its main eigenvalue and eigenfunction.

$$\xi_L(x) \approx \xi_L(x_0) - S_L(x - x_0) + \zeta_{L,x_0}(x)$$
.

What local eigenvalue does this large peak produces?

Introduce the deterministic operator

$$\bar{\mathcal{H}}_L := \Delta - S_L(x) ,$$

Let $\bar{\lambda}_L$ and $\bar{\varphi}_L$ be its main eigenvalue and eigenfunction.

Then the local eigenvalue produced by the large peak at x_0 is well-approximated by

$$\xi_L(x_0) + \bar{\lambda}_L + \sum_{\substack{x \text{ close to } x_0}} \bar{\varphi}_L(x-x_0)^2 \zeta_{L,x_0}(x) \ .$$

$$\xi_L(x) \approx \xi_L(x_0) - S_L(x-x_0) + \zeta_{L,x_0}(x) .$$

What local eigenvalue does this large peak produces?

Introduce the deterministic operator

$$\bar{\mathcal{H}}_L := \Delta - S_L(x) ,$$

Let $\bar{\lambda}_L$ and $\bar{\varphi}_L$ be its main eigenvalue and eigenfunction.

Then the local eigenvalue produced by the large peak at x_0 is well-approximated by

$$\xi_L(x_0) + \bar{\lambda}_L + \sum_{\substack{x ext{ close to } x_0}} \bar{\varphi}_L(x-x_0)^2 \zeta_{L,x_0}(x) \; .$$

Competition between two terms:

- 1. $\xi_L(x_0)$ which is of order a_L and fluctuates at scale $1/a_L$,
- 2. $\sum_{x \text{ close to } x_0} \bar{\varphi}_L(x-x_0)^2 \zeta_{L,x_0}(x)$ which fluctuates at scale τ_L where

$$au_L^2 := ext{var}\left[\sum_{\substack{x ext{ close to } x_{\mathbf{0}}}} ar{arphi}_L(x-x_{\mathbf{0}})^2 \zeta_{L,x_{\mathbf{0}}}(x)
ight].$$

Assume $d_L \ll a_L$.

Theorem (Eigenvalue order statistics)

The point process

$$\left(\frac{x_{k,L}}{L}, a_L(\lambda_{k,L} - a_L\sqrt{1 + \tau_L^2} - \bar{\lambda}_L)\right)_{1 \le k \le \#Q_L}$$

CV in law as $L \to \infty$ towards a *P.P.P.* on $[-1,1]^d \times \mathbb{R}$ of intensity $dx \otimes e^{-u} du$.

Assume $d_L \ll a_L$.

Theorem (Eigenvalue order statistics)

The point process

$$\left(\frac{x_{k,L}}{L}, a_L(\lambda_{k,L} - a_L\sqrt{1 + \tau_L^2} - \bar{\lambda}_L)\right)_{1 \le k \le \#Q_l}$$

 CV in law as $L \to \infty$ towards a P.P.P. on $[-1,1]^d \times \mathbb{R}$ of intensity $dx \otimes e^{-u} du$.

Theorem (Localisation)

For any $k \geq 1$, the r.v.

$$\frac{a_L}{d_L} \left\| \varphi_{k,L}(\cdot) - \bar{\varphi}_L(\cdot - x_{k,L}) \right\|_{\ell^2(Q_L)},$$

converges to 0 in probability.

Recall that

$$\tau_L^2 := \operatorname{var} \left[\sum_{\substack{x \text{ close to } x_0}} \bar{\varphi}_L (x - x_0)^2 \zeta_{L, x_0} (x) \right].$$

Theorem (Relationship with the maxima of ξ_L)

1. if $\tau_L \ll \frac{1}{a_l}$ then for any given $k \ge 1$, $\mathbb{P}(\ell_L(k) = k) \to 1$ as $L \to \infty$,

Recall that

$$\tau_L^2 := \mathsf{var}\left[\sum_{\substack{x \text{ close to } x_0}} \bar{\varphi}_L(x-x_0)^2 \zeta_{L,x_0}(x)\right].$$

Theorem (Relationship with the maxima of ξ_L)

- 1. if $\tau_L \ll \frac{1}{a_l}$ then for any given $k \ge 1$, $\mathbb{P}(\ell_L(k) = k) \to 1$ as $L \to \infty$,
- 2. if $\tau_L \sim b\frac{1}{a_L}$ for some constant b > 0 then $(\ell_L(k), k \ge 1)$ converges in law to $(\ell_{\infty,b}(k), k \ge 1)$,

Recall that

$$\tau_L^2 := \operatorname{var} \left[\sum_{\substack{ x \text{ close to } x_0 }} \bar{\varphi}_L(x-x_0)^2 \zeta_{L,x_0}(x) \right].$$

Theorem (Relationship with the maxima of ξ_L)

- 1. if $\tau_L \ll \frac{1}{a_l}$ then for any given $k \ge 1$, $\mathbb{P}(\ell_L(k) = k) \to 1$ as $L \to \infty$,
- 2. if $\tau_L \sim b\frac{1}{a_L}$ for some constant b > 0 then $(\ell_L(k), k \ge 1)$ converges in law to $(\ell_{\infty,b}(k), k \ge 1)$,
- 3. if $\tau_L \gg \frac{1}{a_l}$ then for any given $k \ge 1$, $\ell_L(k)$ converges to $+\infty$ in probability.

Recall that

$$\tau_L^2 := \operatorname{var} \left[\sum_{\substack{ x \text{ close to } x_0 }} \bar{\varphi}_L(x-x_0)^2 \zeta_{L,x_0}(x) \right].$$

Theorem (Relationship with the maxima of ξ_L)

- 1. if $\tau_L \ll \frac{1}{a_l}$ then for any given $k \ge 1$, $\mathbb{P}(\ell_L(k) = k) \to 1$ as $L \to \infty$,
- 2. if $\tau_L \sim b\frac{1}{a_L}$ for some constant b > 0 then $(\ell_L(k), k \ge 1)$ converges in law to $(\ell_{\infty,b}(k), k \ge 1)$,
- 3. if $\tau_L \gg \frac{1}{a_l}$ then for any given $k \ge 1$, $\ell_L(k)$ converges to $+\infty$ in probability.

Let $u_1 > u_2 > \ldots$ be distributed according to a P.P.P. of intensity $e^{-u}du$. Draw an independent sequence $(v_i)_{i \ge 1}$ of i.i.d. $\mathcal{N}(0, 1)$ r.v. Let $(w_i)_{i \ge 1}$ be the order statistics of $(u_i + bv_i)_{i \ge 1}$. Then for any $k \ge 1$, $\ell_{\infty,b}(k)$ is defined through $w_k = u_{\ell_{\infty,b}(k)}$.

Thank you for your attention!