Introduction 000	Main result 0000	Birkhoff normal form	PDEs: fight the small denominators 00000	Higher dimension	Abstract Theorem 0000	Open Problems 000

Almost global existence for nonresonant Hamiltonian PDEs on compact manifolds

Dario Bambusi

Universitá degli Studi di Milano

June 3, 2025

Nancy Joint work with J.Bernier,B. Grébert, R. Imekratz

Table o	f Conte	ents				
Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators	Higher dimension 00000000	Abstract Theorem	Open Problems 000

1 Introduction

2 Main result

Birkhoff normal form

PDEs: fight the small denominators

5 Higher dimension

6 Abstract Theorem

Open Problems

Introduction ●00	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators 00000	Higher dimension	Abstract Theorem	Open Problems 000
Table o	of Conte	ents				

1 Introduction

- 2 Main result
- 3 Birkhoff normal form
- PDEs: fight the small denominators
- 5 Higher dimension
- 6 Abstract Theorem
- Open Problems

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	0000	00000000	00000	00000000	0000	000

Model equations

$$u_{tt} = \Delta u - mu + f(x, u) , \qquad x \in M , \qquad (1)$$

$$i\psi_t = -\Delta\psi + V(x)\psi + f(x,|\psi|^2)\psi$$
, $x \in M$, (2)

M an arbitrary compact C^{∞} manifold, $f \in C^{\infty}(M \times \mathbb{R})$.

Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators 00000	Higher dimension	Abstract Theorem 0000	Open Problems 000
The pr	oblem					

• Model equations

$$u_{tt} = \Delta u - mu + f(x, u) , \qquad x \in M , \quad (1)$$

$$i\psi_t = -\Delta\psi + V(x)\psi + f(x,|\psi|^2)\psi$$
, $x \in M$, (2)

M an arbitrary compact C^{∞} manifold, $f \in C^{\infty}(M \times \mathbb{R})$.

• Question: if the initial datum is small and smooth, does the solution remain smooth? Small? At least for very long times.

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
0●0	0000	00000000	00000	00000000	0000	000

Model equations

$$u_{tt} = \Delta u - mu + f(x, u) , \qquad x \in M , \qquad (1)$$

$$i\psi_t = -\Delta\psi + V(x)\psi + f(x, |\psi|^2)\psi$$
, $x \in M$, (2)

M an arbitrary compact C^{∞} manifold, $f \in C^{\infty}(M \times \mathbb{R})$.

- Question: if the initial datum is small and smooth, does the solution remain smooth? Small? At least for very long times.
- Goal: prove that if (in NLKG)

$$\|(u_0,\dot{u}_0)\|_{H^s\times H^{s-1}}\leq \epsilon \ , \quad s\gg 1 \ ,$$

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
0●0	0000	00000000	00000		0000	000

Model equations

$$u_{tt} = \Delta u - mu + f(x, u) , \qquad x \in M , \qquad (1)$$

$$i\psi_t = -\Delta\psi + V(x)\psi + f(x, |\psi|^2)\psi$$
, $x \in M$, (2)

M an arbitrary compact C^{∞} manifold, $f \in C^{\infty}(M \times \mathbb{R})$.

- Question: if the initial datum is small and smooth, does the solution remain smooth? Small? At least for very long times.
- Goal: prove that if (in NLKG)

$$\|(u_0,\dot{u}_0)\|_{H^s\times H^{s-1}}\leq \epsilon \ , \quad s\gg 1 \ ,$$

then $\forall r$,

$$(u(t),\dot{u}(t))\in H^s imes H^{s-1}\ ,\ ext{for}\ |t|\leq rac{C_r}{\epsilon^r}$$

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	0000	00000000	00000	00000000	0000	000

Model equations

$$u_{tt} = \Delta u - mu + f(x, u) , \qquad x \in M , \qquad (1)$$

$$i\psi_t = -\Delta\psi + V(x)\psi + f(x, |\psi|^2)\psi$$
, $x \in M$, (2)

M an arbitrary compact C^{∞} manifold, $f \in C^{\infty}(M \times \mathbb{R})$.

- Question: if the initial datum is small and smooth, does the solution remain smooth? Small? At least for very long times.
- Goal: prove that if (in NLKG)

or
$$\forall r$$
,
 $\|(u_0, \dot{u}_0)\|_{H^s \times H^{s-1}} \leq \epsilon$, $s \gg 1$,
 $\|(u(t), \dot{u}(t))\|_{H^s \times H^{s-1}} \leq 2\epsilon$, for $|t| \leq \frac{C_r}{\epsilon^r}$

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	0000	00000000	00000	00000000	0000	000

Model equations

$$u_{tt} = \Delta u - mu + f(x, u) , \qquad x \in M , \qquad (1)$$

$$i\psi_t = -\Delta\psi + V(x)\psi + f(x, |\psi|^2)\psi$$
, $x \in M$, (2)

M an arbitrary compact C^{∞} manifold, $f \in C^{\infty}(M \times \mathbb{R})$.

- Question: if the initial datum is small and smooth, does the solution remain smooth? Small? At least for very long times.
- Goal: prove that if (in NLKG)

or
$$\forall r$$
,
 $\|(u_0, \dot{u}_0)\|_{H^s \times H^{s-1}} \leq \epsilon$, $s \gg 1$,
 $\|(u(t), \dot{u}(t))\|_{H^s \times H^{s-1}} \leq 2\epsilon$, for $|t| \leq \frac{C_r}{\epsilon^r}$

and similarly for the NLS (2).

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
	0000	00000000	00000	00000000	0000	000

Motivation

- Meaning of Sobolev norms:
 - an example $M = \mathbb{T}^d$

$$u = \sum_{k \in \mathbb{Z}^d} \hat{u}_k e^{ik \cdot x} , \quad \|u\|_{H^s}^2 \equiv \sqrt{\sum_{k \in \mathbb{Z}^d} (1 + |k|^{2s}) |\hat{u}_k|^2}$$

 since energy is conserved, growth of high Sobolev norms means that energy flows to high frequency modes, namely to small scales, it is a measure of development of turbulence.

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
	0000	00000000	00000	00000000	0000	000

Motivation

- Meaning of Sobolev norms:
 - an example $M = \mathbb{T}^d$

$$u = \sum_{k \in \mathbb{Z}^d} \hat{u}_k e^{ik \cdot x} , \quad \left\| u \right\|_{H^s}^2 \equiv \sqrt{\sum_{k \in \mathbb{Z}^d} \left(1 + |k|^{2s} \right) |\hat{u}_k|^2}$$

- since energy is conserved, growth of high Sobolev norms means that energy flows to high frequency modes, namely to small scales, it is a measure of development of turbulence.
- Numerical computations: If the solution is smooth, one can use large discretization steps.

Introduction 000	Main result ●000	Birkhoff normal form 00000000	PDEs: fight the small denominators 00000	Higher dimension 00000000	Abstract Theorem 0000	Open Problems 000	
Table of Contents							

1 Introduction

2 Main result

Birkhoff normal form

PDEs: fight the small denominators

6 Higher dimension

6 Abstract Theorem

Open Problems

Introduction 000	Main result 0●00	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem 0000	Open Problems 000

Main Result: the nonlinear Klein Gordon equation

Let *M* be a C^{∞} compact Riemannian manifold without boundary. Consider the Klein Gordon Equation

$$u_{tt} - \Delta u + mu = f(x, u) , \quad x \in M$$

with f(x, 0) = 0 and initial datum (u_0, \dot{u}_0) .

Theorem db+Bernier+Grébert+Imekratz (2025)

Let $s_0 > d/2$. For all $r \ge 1$, almost all m > 0, $\exists C > 0$, $\varepsilon_0 > 0$ s.t. given $s \ge Cs_0$, assume

$$\|(u_0,\dot{u}_0)\|_{H^s imes H^{s-1}} \le 1$$
, $\varepsilon := \|(u_0,\dot{u}_0)\|_{H^{s_0} imes H^{s_0-1}} < \varepsilon_0$

then one has

$$u(t) \in C^0((-\varepsilon^{-r},\varepsilon^{-r});H^s(M)) \cap C^1((-\varepsilon^{-r},\varepsilon^{-r});H^{s-1}(M))$$

Furthermore, as long as $|t| \leq \varepsilon^{-r}$, one has

 $\|(u(t),\dot{u}(t))\|_{H^{s_0}\times H^{s_0-1}}\lesssim \varepsilon.$

Main R	esult, c	ontinued				
Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	00●0	00000000		00000000	0000	000

Introduction 000	Main result 00●0	Birkhoff normal form 00000000	PDEs: fight the small denominators 00000	Higher dimension	Abstract Theorem 0000	Open Problems 000			
Main Result, continued									

Corollary

Assume $v_0, \dot{v}_0 \in C^{\infty}(M)$, then for any $\varepsilon \in (0, 1) \exists T_{\varepsilon}$, with

$$\lim_{\varepsilon \to 0} \varepsilon^r T_{\varepsilon} = +\infty$$

s.t. $u(.) \in C^{\infty}((-T_{\varepsilon}, T_{\varepsilon}); C^{\infty}(M))$, furthermore $\forall s \geq 1$, one has

 $\|(u(t), \dot{u}(t))\|_{H^{s} \times H^{s-1}} \leq C_{s,v} \|(u_{0}, \dot{u}_{0})\|_{H^{s} \times H^{s-1}}$

Introduction 000	Main result 00●0	Birkhoff normal form 00000000	PDEs: fight the small denominators	Higher dimension 00000000	Abstract Theorem 0000	Open Problems 000			
Main R	Main Result, continued								

Corollary

Assume $v_0, \dot{v}_0 \in C^{\infty}(M)$, then for any $\varepsilon \in (0, 1) \exists T_{\varepsilon}$, with

$$\lim_{\varepsilon \to 0} \varepsilon^r T_{\varepsilon} = +\infty$$

s.t. $u(.) \in C^{\infty}((-T_{\varepsilon}, T_{\varepsilon}); C^{\infty}(M))$, furthermore $\forall s \geq 1$, one has

$$\|(u(t), \dot{u}(t))\|_{H^{s} \times H^{s-1}} \leq C_{s,v} \|(u_{0}, \dot{u}_{0})\|_{H^{s} \times H^{s-1}}$$

This a particular case of a general theorem assuming

• A nonresonance condition

Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators 00000	Higher dimension	Abstract Theorem 0000	Open Problems 000
Main F	Result, c	ontinued				

Corollary

Assume $v_0, \dot{v}_0 \in C^{\infty}(M)$, then for any $\varepsilon \in (0, 1) \exists T_{\varepsilon}$, with

$$\lim_{\varepsilon \to 0} \varepsilon^r T_{\varepsilon} = +\infty$$

s.t. $u(.) \in C^{\infty}((-T_{\varepsilon}, T_{\varepsilon}); C^{\infty}(M))$, furthermore $\forall s \geq 1$, one has

 $\|(u(t), \dot{u}(t))\|_{H^{s} \times H^{s-1}} \leq C_{s,v} \|(u_{0}, \dot{u}_{0})\|_{H^{s} \times H^{s-1}}$

This a particular case of a general theorem assuming

- A nonresonance condition
- multilinear estimates on the nonlinearity.

Provinus results Somilinear								
Introduction N 000 C	Main result 000●	Birkhoft normal form 00000000	PDEs: fight the small denominators 00000	Higher dimension	Abstract Theorem	Open Problems 000		

• 1-d: db (2003), db+B Grébert (2006)

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	000●	00000000	00000	00000000	0000	000

- 1-d: db (2003), db+B Grébert (2006)
- Arbitrary dimension: several examples with the same spectral structure as in 1-d.
 - NLS on the square with a Fourier Multiplier (2003): db+Grbert
 - Zoll Manifolds: db+Delort+Grebert+Szeftel (2007).
 - Resonant quantum Harmonic oscillator: Grebert+Imekratz+Paturel (2009)
 - Stability of plane waves for NLS on the square torus: Faou+Gauckler+Lubich (2013).

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	000●	00000000	00000	00000000	0000	000

- 1-d: db (2003), db+B Grébert (2006)
- Arbitrary dimension: several examples with the same spectral structure as in 1-d.
 - NLS on the square with a Fourier Multiplier (2003): db+Grbert
 - Zoll Manifolds: db+Delort+Grebert+Szeftel (2007).
 - Resonant quantum Harmonic oscillator: Grebert+Imekratz+Paturel (2009)
 - Stability of plane waves for NLS on the square torus: Faou+Gauckler+Lubich (2013).
- A new mechanism based on Bourgain's cluster partition
 - arbitrary tori, equations of order > 1: db+Feola+Montalto (2024)
 - Manifolds with integrable geodesic flow: equations of order > 1 db+Langella+Monzani+Feola (2024)

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	000●	00000000	00000	00000000	0000	000

- 1-d: db (2003), db+B Grébert (2006)
- Arbitrary dimension: several examples with the same spectral structure as in 1-d.
 - NLS on the square with a Fourier Multiplier (2003): db+Grbert
 - Zoll Manifolds: db+Delort+Grebert+Szeftel (2007).
 - Resonant quantum Harmonic oscillator: Grebert+Imekratz+Paturel (2009)
 - Stability of plane waves for NLS on the square torus: Faou+Gauckler+Lubich (2013).
- A new mechanism based on Bourgain's cluster partition
 - arbitrary tori, equations of order > 1: db+Feola+Montalto (2024)
 - Manifolds with integrable geodesic flow: equations of order > 1 db+Langella+Monzani+Feola (2024)
- Times slightly shorter than the linear ones: there exists κ > 0 s.t one has existence and stability for times ε^{-(p+κ)}, where p + 1 is the order of the nonlinearity: Delort+Imekratz (2017).

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	000●	00000000	00000	00000000	0000	000

- 1-d: db (2003), db+B Grébert (2006)
- Arbitrary dimension: several examples with the same spectral structure as in 1-d.
 - NLS on the square with a Fourier Multiplier (2003): db+Grbert
 - Zoll Manifolds: db+Delort+Grebert+Szeftel (2007).
 - Resonant quantum Harmonic oscillator: Grebert+Imekratz+Paturel (2009)
 - Stability of plane waves for NLS on the square torus: Faou+Gauckler+Lubich (2013).
- A new mechanism based on Bourgain's cluster partition
 - arbitrary tori, equations of order > 1: db+Feola+Montalto (2024)
 - Manifolds with integrable geodesic flow: equations of order > 1 db+Langella+Monzani+Feola (2024)
- Times slightly shorter than the linear ones: there exists κ > 0 s.t one has existence and stability for times ε^{-(p+κ)}, where p + 1 is the order of the nonlinearity: Delort+Imekratz (2017).
- Existence with loss of derivatives: NLW on tori: Bernier+Faou+Grebert (2020) tori.

Table o	of Conte	ents					
Introduction 000	Main result 0000	Birkhoff normal form ●0000000	PDEs: fight the small denominators	Higher dimension 00000000	Abstract Theorem	Open Problems 000	

1 Introduction

2 Main result

Birkhoff normal form

PDEs: fight the small denominators

6 Higher dimension

6 Abstract Theorem

Open Problems

The Ha	amiltoni	an Structure	ć			
000	0000	0000000	00000	00000000	0000	000
Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems

- The case of cubic NLKG (assume for simplicity $-\partial_u f(x, 0) = 0$):
 - Let (λ_i, e_i) , be the eigenvalues-eigenvectors of the linearized problem: $-\Delta$ on *M*:

$$-\Delta e_j = \lambda_j e_j$$
,

and decompose $u = \sum_{i} q_{i} e_{i}$, $\dot{u} = \sum_{i} p_{i} e_{i}$.

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	0000	0●000000	00000	00000000	0000	000

The Hamiltonian Structure

- The case of cubic NLKG (assume for simplicity $-\partial_u f(x,0) = 0$):
 - Let (λ_j, e_j), be the eigenvalues-eigenvectors of the linearized problem: -Δ on M:

$$-\Delta e_j = \lambda_j e_j$$
,

and decompose $u = \sum_{j} q_{j}e_{j}$, $\dot{u} = \sum_{j} p_{j}e_{j}$. • The energy is also the Hamiltonian:

$$egin{aligned} \mathcal{H} &= \int_{\mathcal{M}} rac{\dot{u}^2 + u(-\Delta + m)u}{2} dx + rac{1}{4} \int_{\mathcal{M}} u^4 dx \ &= \sum_j rac{p_j^2 + \omega_j^2 q_j^2}{2} + \sum_{j_1, \dots, j_4} c_{j_1, \dots, j_4} q_{j_1} \dots q_{j_4} \;, \qquad \omega_j := \sqrt{\lambda_j + m} \;. \end{aligned}$$

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	0000	0●000000	00000	00000000	0000	000

The Hamiltonian Structure

- The case of cubic NLKG (assume for simplicity $-\partial_u f(x,0) = 0$):
 - Let (λ_j, e_j), be the eigenvalues-eigenvectors of the linearized problem: -Δ on M:

$$-\Delta e_j = \lambda_j e_j$$
,

and decompose $u = \sum_{j} q_{j}e_{j}$, $\dot{u} = \sum_{j} p_{j}e_{j}$. • The energy is also the Hamiltonian:

$$egin{aligned} \mathcal{H} &= \int_{M} rac{\dot{u}^2 + u(-\Delta + m)u}{2} dx + rac{1}{4} \int_{M} u^4 dx \ &= \sum_j rac{p_j^2 + \omega_j^2 q_j^2}{2} + \sum_{j_1, \dots, j_4} c_{j_1, \dots, j_4} q_{j_1} \dots q_{j_4} \;, \qquad \omega_j := \sqrt{\lambda_j + m} \;. \end{aligned}$$

$$\dot{p}_j = -\frac{\partial H}{\partial q_j} , \quad \dot{q}_j = \frac{\partial H}{\partial p_j} \iff NLKG$$

• Infinitely many Harmonic oscillators plus nonlinear perturbation.

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	0000	00●00000		00000000	0000	000

Consider

$$H = H_2 + H_3 + H_4 + \dots$$

where

$$H_2 = \sum_{j=1}^N \frac{p_j^2 + \omega_j^2 q_j^2}{2}$$

and H_r is a homogeneous polynomial of degree r.

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	0000	00●00000	00000	00000000		000

Consider

$$H = H_2 + H_3 + H_4 + \dots$$

where

$$H_2 = \sum_{j=1}^N \frac{p_j^2 + \omega_j^2 q_j^2}{2}$$

and H_r is a homogeneous polynomial of degree r.

• Question: do there exist a canonical transformation \mathcal{T} s.t. $H \circ \mathcal{T} = H_2$?

	Introduction M 000 C	1ain result 0000	Birkhoff normal form 00●00000	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems 000
--	-------------------------	---------------------	----------------------------------	------------------------------------	------------------	------------------	----------------------

Consider

$$H = H_2 + H_3 + H_4 + \dots$$

where

$$H_2 = \sum_{j=1}^{N} \frac{p_j^2 + \omega_j^2 q_j^2}{2}$$

and H_r is a homogeneous polynomial of degree r.

- Question: do there exist a canonical transformation T s.t. $H \circ T = H_2$?
- Try to construct it iteratively: construct first \mathcal{T}_1 eliminating terms of order 3, namely s.t.

$$H\circ \mathcal{T}_1=H_2+\tilde{H}_4+\tilde{H}_5+...$$

	Introduction 000	Main result 0000	Birkhoff normal form 00●00000	PDEs: fight the small denominators 00000	Higher dimension	Abstract Theorem	Open Problems 000
--	---------------------	---------------------	----------------------------------	---	------------------	------------------	----------------------

Consider

$$H = H_2 + H_3 + H_4 + \dots$$

where

$$H_2 = \sum_{j=1}^{N} \frac{p_j^2 + \omega_j^2 q_j^2}{2}$$

and H_r is a homogeneous polynomial of degree r.

- Question: do there exist a canonical transformation T s.t. $H \circ T = H_2$?
- Try to construct it iteratively: construct first \mathcal{T}_1 eliminating terms of order 3, namely s.t.

$$H\circ \mathcal{T}_1=H_2+\tilde{H}_4+\tilde{H}_5+...$$

• Lie transform: T_1 =time 1 flow of X_{g_1} , with a suitable g_1 $(\dot{p} = -\partial_q g_1, \dot{q} = -\partial_p g_1)$ of degree 3,

Introduction Main result Birkhoff normal form ODEs: fight the small denominators Higher dimension Abstract Theorem Open I 00000000000000000000000000000000000	roblems
---	---------

Consider

$$H = H_2 + H_3 + H_4 + \dots$$

where

$$H_2 = \sum_{j=1}^{N} \frac{p_j^2 + \omega_j^2 q_j^2}{2}$$

and H_r is a homogeneous polynomial of degree r.

- Question: do there exist a canonical transformation T s.t. $H \circ T = H_2$?
- Try to construct it iteratively: construct first \mathcal{T}_1 eliminating terms of order 3, namely s.t.

$$H\circ \mathcal{T}_1=H_2+\tilde{H}_4+\tilde{H}_5+...$$

• Lie transform: T_1 =time 1 flow of X_{g_1} , with a suitable g_1 $(\dot{p} = -\partial_q g_1, \dot{q} = -\partial_p g_1)$ of degree 3, then

 $H \circ T_1 = H + \{H; g_1\} + h.o.t. = H_2 + \{H_2; g_1\} + H_3 + O_4$

Introduction 000	Main result 0000	Birkhoff normal form 000●0000	PDEs: fight the small denominators 00000	Higher dimension	Abstract Theorem	Open Problems 000
Homological equation						

$$L_{H_2}g_1 = -H_3$$
, $L_{H_2} := \{H_2; .\}$ (3)

Introduction 000	Main result 0000	Birkhoff normal form 000●0000	PDEs: fight the small denominators	Higher dimension	Abstract Theorem 0000	Open Problems 000
Homole	ogical e	quation				

$$L_{H_2}g_1 = -H_3 , \quad L_{H_2} := \{H_2; .\}$$
(3)

This is a linear equation in the finite dimensional space of polynomials of degree 3 over \mathbb{R}^{2N} .

Introduction 000	Main result 0000	Birkhoff normal form 000●0000	PDEs: fight the small denominators 00000	Higher dimension	Abstract Theorem 0000	Open Problems 000
Homological equation						

$$L_{H_2}g_1 = -H_3$$
, $L_{H_2} := \{H_2; .\}$ (3)

This is a linear equation in the finite dimensional space of polynomials of degree 3 over \mathbb{R}^{2N} .

• Eigenvalues and eigenvectors: make the canonical change of variables

$$egin{aligned} z_j &:= rac{1}{\sqrt{2}} \left(rac{p_j}{\sqrt{\omega_j}} + i\sqrt{\omega_j} q_j
ight), \quad ar{z}_j &:= rac{1}{\sqrt{2}} \left(rac{p_j}{\sqrt{\omega_j}} - i\sqrt{\omega_j} q_j
ight), \ H_2 &= \sum_j \omega_j |z_j|^2 \end{aligned}$$

Introduction 000	Main result 0000	Birkhoff normal form 000●0000	PDEs: fight the small denominators 00000	Higher dimension	Abstract Theorem 0000	Open Problems 000
Homological equation						

$$L_{H_2}g_1 = -H_3$$
, $L_{H_2} := \{H_2; .\}$ (3)

This is a linear equation in the finite dimensional space of polynomials of degree 3 over \mathbb{R}^{2N} .

Eigenvalues and eigenvectors: make the canonical change of variables

$$egin{aligned} z_j &:= rac{1}{\sqrt{2}} \left(rac{p_j}{\sqrt{\omega_j}} + i\sqrt{\omega_j} q_j
ight), \quad ar{z}_j &:= rac{1}{\sqrt{2}} \left(rac{p_j}{\sqrt{\omega_j}} - i\sqrt{\omega_j} q_j
ight), \ H_2 &= \sum_j \omega_j |z_j|^2 \end{aligned}$$

For $\alpha = (\alpha_1, ..., \alpha_N)$ and $\beta = (\beta_1, ..., \beta_N)$ define

$$z^{\alpha}\bar{z}^{\beta} := z_1^{\alpha_1}...z_N^{\alpha_N}\bar{z}_1^{\beta_1}...\bar{z}_N^{\beta_N} ,$$

Introduction 000	Main result 0000	Birkhoff normal form 000●0000	PDEs: fight the small denominators 00000	Higher dimension	Abstract Theorem 0000	Open Problems 000
Homological equation						

$$L_{H_2}g_1 = -H_3$$
, $L_{H_2} := \{H_2; .\}$ (3)

This is a linear equation in the finite dimensional space of polynomials of degree 3 over \mathbb{R}^{2N} .

• Eigenvalues and eigenvectors: make the canonical change of variables

$$egin{aligned} z_j &:= rac{1}{\sqrt{2}} \left(rac{p_j}{\sqrt{\omega_j}} + i\sqrt{\omega_j} q_j
ight), \quad ar{z}_j &:= rac{1}{\sqrt{2}} \left(rac{p_j}{\sqrt{\omega_j}} - i\sqrt{\omega_j} q_j
ight), \ H_2 &= \sum_j \omega_j |z_j|^2 \end{aligned}$$

For $\alpha = (\alpha_1, ..., \alpha_N)$ and $\beta = (\beta_1, ..., \beta_N)$ define

$$z^{\alpha}\bar{z}^{\beta} := z_1^{\alpha_1}...z_N^{\alpha_N}\bar{z}_1^{\beta_1}...\bar{z}_N^{\beta_N} ,$$

then a simple computation gives $L_{H_2} \mathbf{z}^{\alpha} \bar{\mathbf{z}}^{\beta} = [i(\alpha - \beta) \cdot \omega] \mathbf{z}^{\alpha} \bar{\mathbf{z}}^{\beta}$.
Introduction 000	Main result 0000	Birkhoff normal form 000●0000	PDEs: fight the small denominators 00000	Higher dimension	Abstract Theorem 0000	Open Problems 000			
Homological equation									

• Find g₁ s.t. the red part vanishes. Rewrite it as

$$L_{H_2}g_1 = -H_3$$
, $L_{H_2} := \{H_2; .\}$ (3)

This is a linear equation in the finite dimensional space of polynomials of degree 3 over \mathbb{R}^{2N} .

Eigenvalues and eigenvectors: make the canonical change of variables

$$egin{aligned} z_j &:= rac{1}{\sqrt{2}} \left(rac{p_j}{\sqrt{\omega_j}} + i \sqrt{\omega_j} q_j
ight), \quad ar{z}_j &:= rac{1}{\sqrt{2}} \left(rac{p_j}{\sqrt{\omega_j}} - i \sqrt{\omega_j} q_j
ight), \ H_2 &= \sum_j \omega_j |z_j|^2 \end{aligned}$$

For $\alpha = (\alpha_1, ..., \alpha_N)$ and $\beta = (\beta_1, ..., \beta_N)$ define

$$z^{\alpha}\bar{z}^{\beta} := z_1^{\alpha_1}...z_N^{\alpha_N}\bar{z}_1^{\beta_1}...\bar{z}_N^{\beta_N} ,$$

then a simple computation gives $L_{H_2} z^{\alpha} \overline{z}^{\beta} = [i(\alpha - \beta) \cdot \omega] z^{\alpha} \overline{z}^{\beta}$. • Eigenvectors $z^{\alpha} \overline{z}^{\beta}$, eigenvectors $i(\alpha - \beta) \cdot \omega$.

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	0000	0000€000	00000		0000	000

Just write $H_{r+2} = \sum_{lpha,eta} H_{lpha,eta} z^lpha ar{z}^eta$ and define

	Introduction 000	Main result 0000	Birkhoff normal form 0000€000	PDEs: fight the small denominators	Higher dimension	Abstract Theorem 0000	Open Problems 000
--	---------------------	---------------------	----------------------------------	------------------------------------	------------------	--------------------------	----------------------

Just write
$$H_{r+2} = \sum_{\alpha,\beta} H_{\alpha,\beta} z^{\alpha} \bar{z}^{\beta}$$
 and define

$$g_r(z,ar{z}) = \sum_{lpha,eta} rac{H_{lpha,eta}}{-i(lpha-eta)\cdot\omega} z^lpha ar{z}^eta$$

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	0000	0000€000	00000		0000	000

Just write
$$H_{r+2} = \sum_{\alpha,\beta} H_{\alpha,\beta} z^{\alpha} \bar{z}^{\beta}$$
 and define

$$g_r(z, \bar{z}) = \sum_{\alpha, \beta} \frac{H_{\alpha, \beta}}{-i(\alpha - \beta) \cdot \omega} z^{\alpha} \bar{z}^{\beta}$$

provided $(\alpha - \beta) \cdot \omega \neq 0$.

Introduction 000	Main result 0000	Birkhoff normal form 0000€000	PDEs: fight the small denominators	Higher dimension	Abstract Theorem 0000	Open Problems 000

Just write
$$H_{r+2} = \sum_{\alpha,\beta} H_{\alpha,\beta} z^{\alpha} \bar{z}^{\beta}$$
 and define

$$g_r(z,\bar{z}) = \sum_{(\alpha-\beta)\cdot\omega\neq 0} \frac{H_{\alpha,\beta}}{-i(\alpha-\beta)\cdot\omega} z^{\alpha}\bar{z}^{\beta}$$

provided $(\alpha - \beta) \cdot \omega \neq 0$.

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	0000	0000●000	00000	00000000	0000	000

Just write
$$H_{r+2} = \sum_{\alpha,\beta} H_{\alpha,\beta} z^{\alpha} \bar{z}^{\beta}$$
 and define

$$g_{r}(z,\bar{z}) = \sum_{(\alpha-\beta)\cdot\omega\neq 0} \frac{H_{\alpha,\beta}}{-i(\alpha-\beta)\cdot\omega} z^{\alpha}\bar{z}^{\beta}$$

provided $(\alpha - \beta) \cdot \omega \neq 0$. In the nonresonant case $(\omega \cdot k \neq 0 \ \forall k \neq 0)$ one gets

$$L_{H_2}g_r + H_{r+2} = \sum_{\alpha} H_{\alpha,\alpha} |z|^{2\alpha}$$

The normal form depends only on the actions $|z|^2$.

Introduction 000	Main result 0000	Birkhoff normal form 00000●00	PDEs: fight the small denominators 00000	Higher dimension	Abstract Theorem	Open Problems 000				
Weake	Weaker normal form									

One can decide to "keep" more terms:

 \bullet fix a set $\mathcal{R} \subset \mathbb{N}^{2N}$ and define

$$g_r(z,ar{z}) = \sum_{(lpha,eta)
otin \mathcal{R}} rac{\mathcal{H}_{lpha,eta}}{-i(lpha-eta)\cdot\omega} z^lpha ar{z}^eta$$

Weaker	norma	l form				
Introduction 000	Main result 0000	Birkhoff normal form 00000●00	PDEs: fight the small denominators	Higher dimension	Abstract Theorem 0000	Open Problems 000

One can decide to "keep" more terms:

 \bullet fix a set $\mathcal{R} \subset \mathbb{N}^{2N}$ and define

$$g_r(z,\bar{z}) = \sum_{(\alpha,\beta)\notin\mathcal{R}} \frac{H_{\alpha,\beta}}{-i(\alpha-\beta)\cdot\omega} z^{\alpha}\bar{z}^{\beta}$$

one gets

$$L_{H_2}g_r + H_{r+2} = \sum_{(\alpha,\beta)\in\mathcal{R}} H_{\alpha,\beta} z^{\alpha} \bar{z}^{\beta}$$

Maaka	norma	l form					
Introduction 000	Main result 0000	Birkhoff normal form 00000●00	PDEs: fight the small denominators 00000	Higher dimension	Abstract Theorem	Open Problems 000	

One can decide to "keep" more terms:

 \bullet fix a set $\mathcal{R} \subset \mathbb{N}^{2 \textit{N}}$ and define

$$g_r(z,\bar{z}) = \sum_{(\alpha,\beta)\notin\mathcal{R}} \frac{H_{\alpha,\beta}}{-i(\alpha-\beta)\cdot\omega} z^{\alpha}\bar{z}^{\beta}$$

one gets

$$L_{H_2}g_r + H_{r+2} = \sum_{(\alpha,\beta)\in\mathcal{R}} H_{\alpha,\beta} z^{\alpha} \bar{z}^{\beta}$$

• Gain: One has to consider only small denominators

$$\omega \cdot (\alpha - \beta)$$
, with $(\alpha, \beta) \notin \mathcal{R}$.

• Price: one gets a weaker "normal form":

$$\sum_{(\alpha,\beta)\in\mathcal{R}}H_{\alpha,\beta}z^{\alpha}\bar{z}^{\beta}$$

Introduction 000	Main result 0000	Birkhoff normal form 000000●0	PDEs: fight the small denominators 00000	Higher dimension	Abstract Theorem	Open Problems 000				
Take home message										

To eliminate a monomyal

 $z^{\alpha} \bar{z}^{\beta}$

you have to control a denominator

 $(\alpha - \beta) \cdot \omega$

Nonres	Nonresonance condition								
Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems			
000	0000	0000000●		00000000	0000	000			

Classical nonresonant situation: assume

$$\omega \cdot k \neq 0$$
, $\forall k \in \mathbb{Z}^n \setminus \{0\}$,

000	0000	0000000	00000	00000000	0000	000				
Nonres	Nonresonance condition									

Classical nonresonant situation: assume

$$\omega \cdot k \neq 0$$
, $\forall k \in \mathbb{Z}^n \setminus \{0\}$,

then, to go to order r one considers

$$\inf_{k\neq 0\atop |k|\leq r} |\sum_{j=1}^n \omega_j k_j| = \gamma_r(n) .$$

Introduction 000	Main result 0000	Birkhoff normal form 0000000	PDEs: fight the small denominators 00000	Higher dimension 00000000	Abstract Theorem 0000	Open Problems 000	

Classical nonresonant situation: assume

$$\omega \cdot k \neq 0$$
, $\forall k \in \mathbb{Z}^n \setminus \{0\}$,

then, to go to order r one considers

$$\inf_{k\neq 0\atop |k|\leq r} |\sum_{j=1}^n \omega_j k_j| = \gamma_r(n) .$$

What happens in the case of PDEs, when $n \to \infty$?

Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators ●0000	Higher dimension	Abstract Theorem	Open Problems 000				
Table c	Table of Contents									

1 Introduction

2 Main result

Birkhoff normal form

PDEs: fight the small denominators

5 Higher dimension

6 Abstract Theorem

Open Problems

Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators 00000	Higher dimension	Abstract Theorem 0000	Open Problems 000

• To eliminate terms of order 4 from H one has to put denominators $\omega \cdot k$, $|k| \leq 4$

Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators 00000	Higher dimension	Abstract Theorem 0000	Open Problems 000		
1 Know your enemy								

- To eliminate terms of order 4 from H one has to put denominators $\omega \cdot k$, $|k| \leq 4$
- In 1-d NLKG on \mathbb{T} $\omega_j = \sqrt{j^2 + m} = |j| + \mathcal{O}\left(\frac{1}{|j|}\right)$

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	0000	00000000	0●000	00000000		000

• To eliminate terms of order 4 from H one has to put denominators $\omega \cdot k$, $|k| \le 4$

• In 1-d NLKG on
$$\mathbb{T}$$
 $\omega_j = \sqrt{j^2 + m} = |j| + \mathcal{O}\left(rac{1}{|j|}
ight)$

Remark (Small denominators)

There exists a sequence of integers vectors $k^{(\ell)}$, with $|k^{(\ell)}| = 4$ s.t.

$$k^{(\ell)} \cdot \omega o 0$$
.

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	0000	00000000	0●000	00000000	0000	000

• To eliminate terms of order 4 from H one has to put denominators $\omega \cdot k$, $|k| \le 4$

• In 1-d NLKG on
$$\mathbb{T}$$
 $\omega_j = \sqrt{j^2 + m} = |j| + \mathcal{O}\left(rac{1}{|j|}
ight)$

Remark (Small denominators)

There exists a sequence of integers vectors $k^{(\ell)}$, with $|k^{(\ell)}| = 4$ s.t.

$$k^{(\ell)} \cdot \omega o 0$$
.

Just take

$$k_\ell^{(\ell)} = 2 \;, \quad k_{\ell-1}^{(\ell)} = -1 \;, \quad k_{\ell+1}^{(\ell)} = -1 \;, \quad k_j^{(\ell)} = 0 \quad \text{otherwise} \;,$$

so that

$$k^{(\ell)} \cdot \omega = -\omega_{\ell+1} + 2\omega_{\ell} - \omega_{\ell-1} = \mathcal{O}\left(\frac{1}{\ell}\right)$$

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	0000	00000000	0●000	00000000	0000	000

• To eliminate terms of order 4 from H one has to put denominators $\omega \cdot k$, $|k| \le 4$

• In 1-d NLKG on
$$\mathbb{T}$$
 $\omega_j = \sqrt{j^2 + m} = |j| + \mathcal{O}\left(rac{1}{|j|}
ight)$

Remark (Small denominators)

There exists a sequence of integers vectors $k^{(\ell)}$, with $|k^{(\ell)}| = 4$ s.t.

$$k^{(\ell)}\cdot\omega o 0$$
.

Just take

$$k_\ell^{(\ell)} = 2 \;, \quad k_{\ell-1}^{(\ell)} = -1 \;, \quad k_{\ell+1}^{(\ell)} = -1 \;, \quad k_j^{(\ell)} = 0 \quad ext{otherwise} \;,$$

so that

$$k^{(\ell)} \cdot \omega = -\omega_{\ell+1} + 2\omega_{\ell} - \omega_{\ell-1} = \mathcal{O}\left(\frac{1}{\ell}\right)$$

The denominators go to zero as the index increases.

Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators	Higher dimension	Abstract Theorem 0000	Open Problems 000		
Tame estimate and cutoffs								

• A powerfull tool: in PDEs the nonlinearity is not general, but, due to Leibnitz formula

$$\|u^{r+1}\|_{H^{s}} \le C \|u\|_{H^{\frac{d}{2}+}}^{r} \|u\|_{H^{s}}, \quad s \ge \frac{d}{2}+$$
 (4)

for $s \gg d/2$, the $H^{\frac{d}{2}+}$ norm is much smaller than the s one.

Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators	Higher dimension	Abstract Theorem 0000	Open Problems 000		
Tame estimate and cutoffs								

• A powerfull tool: in PDEs the nonlinearity is not general, but, due to Leibnitz formula

$$\|u^{r+1}\|_{H^{s}} \le C \|u\|_{H^{\frac{d}{2}+}}^{r} \|u\|_{H^{s}}, \quad s \ge \frac{d}{2}+$$
 (4)

for $s \gg d/2$, the $H^{\frac{d}{2}+}$ norm is much smaller than the s one.

• One can use this estimate to show that polynomials quadratic in high modes are small and do not count.

Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators 00●00	Higher dimension	Abstract Theorem 0000	Open Problems 000		
Tame estimate and cutoffs								

• A powerfull tool: in PDEs the nonlinearity is not general, but, due to Leibnitz formula

$$\|u^{r+1}\|_{H^{s}} \le C \|u\|_{H^{\frac{d}{2}+}}^{r} \|u\|_{H^{s}}, \quad s \ge \frac{d}{2}+$$
 (4)

for $s \gg d/2$, the $H^{\frac{d}{2}+}$ norm is much smaller than the s one.

• One can use this estimate to show that polynomials quadratic in high modes are small and do not count. This means terms which in the Hamiltonian are cubic.

000	0000	00000000	00000000	0000	000	
Small c	lenomin	ators				

Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators 00000	Higher dimension	Abstract Theorem	Open Problems 000			
Small denominators									

small index : $|j| \le N$ large index : |j| > N

Small denominators									
000	0000	00000000		00000000	0000	000			
Introduction	Main result	Birkhoff normal form	PDFs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems			

small index : $|j| \le N$ large index : |j| > N

One has to control

• monomyals with only small indexes:

$$\inf_{|k|\leq r} \left| \sum_{j=1}^{N} \omega_j k_j \right| = \gamma(r, N)$$

Small d	lonomin	ators					
000	0000	0000000	00000	0000000	0000	000	
Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems	

small index : $|j| \le N$ large index : |j| > N

One has to control

• monomyals with only small indexes:

$$\inf_{|k| \le r} \left| \sum_{j=1}^{N} \omega_j k_j \right| = \gamma(r, N) \ge \frac{\tilde{\gamma}(r)}{N^{\tau}}$$
(5)

called 0-Melnikov condition.

Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators 000●0	Higher dimension	Abstract Theorem	Open Problems 000					
Small c	Small denominators										

small index : $|j| \le N$ large index : |j| > N

One has to control

• monomyals with only small indexes:

$$\inf_{|k| \le r} \left| \sum_{j=1}^{N} \omega_j k_j \right| = \gamma(r, N) \ge \frac{\tilde{\gamma}(r)}{N^{\tau}}$$
(5)

called 0-Melnikov condition. Typically it holds when the parameters are in a set of full measure.

Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems 000				
Small c	Small denominators									

• Polynomials with one large index

$$\sum_{|i| \le N} \omega_j k_j \pm \omega_i , \quad i > N .$$
 (6)

called 1st-Melnikov condition.

• Polynomials with two large indexes

$$\sum_{|j| \le N} \omega_j k_j \pm \omega_i \pm \omega_\ell , \quad i, \ell > N .$$
(7)

called 2nd-Melnikov condition.

Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators	Higher dimension	Abstract Theorem 0000	Open Problems 000				
Small o	Small denominators									

• Polynomials with one large index

$$\sum_{|i| \le N} \omega_j k_j \pm \omega_i , \quad i > N .$$
 (6)

called 1st-Melnikov condition.

• Polynomials with two large indexes

L

$$\sum_{|j| \le N} \omega_j k_j \pm \omega_i \pm \omega_\ell , \quad i, \ell > N .$$
(7)

called 2nd-Melnikov condition.

In d = 1 the 1st and 2nd-Melnikov conditions typically hold due to

$$\omega_j \sim j^{
ho} \ , \quad
ho \ge 1$$

(see below for the reason).

Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems 000				
Small o	Small denominators									

• Polynomials with one large index

$$\sum_{|i| \le N} \omega_j k_j \pm \omega_i , \quad i > N .$$
 (6)

called 1st-Melnikov condition.

• Polynomials with two large indexes

L

$$\sum_{|j| \le N} \omega_j k_j \pm \omega_i \pm \omega_\ell , \quad i, \ell > N .$$
(7)

called 2nd-Melnikov condition.

In d = 1 the 1st and 2nd-Melnikov conditions typically hold due to

$$\omega_j \sim j^{
ho} \ , \quad
ho \ge 1$$

(see below for the reason).

This is also true in some particular higher dimensional situations (Zoll Manifolds and so on).

Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators 00000	Higher dimension	Abstract Theorem	Open Problems 000
Table o	of Conte	ents				

1 Introduction

2 Main result

3 Birkhoff normal form

PDEs: fight the small denominators

5 Higher dimension

6 Abstract Theorem

Open Problems

Know		mu 2 nd onis	sada			
Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	0000	00000000	00000		0000	000

By Weyl law the eigenvalues of the Lapalcian $\lambda_j \sim j^{2/d}$ in NLKG

$$\omega_j = \sqrt{\lambda_j + m} \sim j^{1/d}$$

Introduction 000	Main result 0000	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension ○●○○○○○○	Abstract Theorem	Open Problems 000
		and				

Know your enemy: 2^{na} episode.

By Weyl law the eigenvalues of the Lapalcian $\lambda_j \sim j^{2/d}$ in NLKG

$$\omega_j = \sqrt{\lambda_j + m} \sim j^{1/d}$$

and tyically $\omega_j - \omega_i$ is dense on \mathbb{R} . The second Melnikov condition is violated, but we can do weaker normal form.

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	0000	00000000	00000	00●00000		000

Eliminate what you can

Fix the order of normalization *r*, assume $\omega \cdot k \neq 0 \ \forall k \in \mathbb{Z}^{\infty}$.

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	0000	00000000	00000		0000	000

Eliminate what you can

Fix the order of normalization *r*, assume $\omega \cdot k \neq 0 \ \forall k \in \mathbb{Z}^{\infty}$.

- Fix a cutoff N and split high and low mode z = (z[≤], z[⊥]), eliminate from the perturbation
 - Terms involving only low modes *which are non resonant*: you need the 0th-Melnikov condition; proceed!

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	0000	00000000	00000	00●00000	0000	000

Eliminate what you can

Fix the order of normalization *r*, assume $\omega \cdot k \neq 0 \ \forall k \in \mathbb{Z}^{\infty}$.

- Fix a cutoff N and split high and low mode $z = (z^{\leq}, z^{\perp})$, eliminate from the perturbation
 - Terms involving only low modes *which are non resonant*: you need the 0th-Melnikov condition; proceed!
 - Terms linear in z^{\perp} . You have to control small denominators of the form

$$\sum_{i=1}^{N} k_i \omega_i \pm \omega_\ell \,\,, \quad \ell > N$$
Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	0000	00000000	00000	00●00000	0000	000

Fix the order of normalization *r*, assume $\omega \cdot k \neq 0 \ \forall k \in \mathbb{Z}^{\infty}$.

- Fix a cutoff N and split high and low mode $z = (z^{\leq}, z^{\perp})$, eliminate from the perturbation
 - Terms involving only low modes *which are non resonant*: you need the 0th-Melnikov condition; proceed!
 - Terms linear in z^{\perp} . You have to control small denominators of the form

$$\sum_{i=1}^{N} k_i \omega_i \pm \omega_\ell \,\,, \quad \ell > N$$

$$\left|\sum_{i=1}^{N} k_{i}\omega_{i}\right| \geq \frac{\gamma}{N^{\tau}} \quad \Longrightarrow \quad \left|\sum_{i=1}^{N} k_{i}\omega_{i} \pm \omega_{\ell}\right| \geq \frac{\gamma'}{N^{\tau'}}$$

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	0000	00000000	00000		0000	000

Fix the order of normalization *r*, assume $\omega \cdot k \neq 0 \ \forall k \in \mathbb{Z}^{\infty}$.

- Fix a cutoff N and split high and low mode $z = (z^{\leq}, z^{\perp})$, eliminate from the perturbation
 - Terms involving only low modes *which are non resonant*: you need the 0th-Melnikov condition; proceed!
 - Terms linear in z^{\perp} . You have to control small denominators of the form

$$\sum_{i=1}^{N} k_i \omega_i \pm \omega_\ell , \quad \ell > N$$

$$\left|\sum_{i=1}^{N} k_{i}\omega_{i}\right| \geq \frac{\gamma}{N^{\tau}} \implies \left|\sum_{i=1}^{N} k_{i}\omega_{i} \pm \omega_{\ell}\right| \geq \frac{\gamma'}{N^{\tau'}}$$

Indeed, with $\omega_j\simeq j^
ho$, ho>0 one has

$$\omega_{\ell} - \left|\sum_{i=1}^{N} k_{i} \omega_{i}\right| \geq \ell^{\rho} - \left|\sum_{i=1}^{N} k_{i} \omega_{i}\right| \geq \ell^{\rho} - |k| \sup_{j \leq N} \omega_{j} \geq \ell^{\rho} - rN^{\rho}$$

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	0000	00000000	00000	00●00000	0000	000

Fix the order of normalization *r*, assume $\omega \cdot k \neq 0 \ \forall k \in \mathbb{Z}^{\infty}$.

- Fix a cutoff N and split high and low mode $z = (z^{\leq}, z^{\perp})$, eliminate from the perturbation
 - Terms involving only low modes *which are non resonant*: you need the 0th-Melnikov condition; proceed!
 - Terms linear in z[⊥]. You have to control small denominators of the form

$$\sum_{i=1}^{N} k_i \omega_i \pm \omega_\ell , \quad \ell > N$$

$$\left|\sum_{i=1}^{N} k_{i} \omega_{i}\right| \geq \frac{\gamma}{N^{\tau}} \quad \Longrightarrow \quad \left|\sum_{i=1}^{N} k_{i} \omega_{i} \pm \omega_{\ell}\right| \geq \frac{\gamma'}{N^{\tau'}}$$

Indeed, with $\omega_j \simeq j^{
ho}$, ho > 0 one has

$$\omega_{\ell} - \left|\sum_{i=1}^{N} k_{i} \omega_{i}\right| \geq \ell^{\rho} - \left|\sum_{i=1}^{N} k_{i} \omega_{i}\right| \geq \ell^{\rho} - |k| \sup_{j \leq N} \omega_{j} \geq \ell^{\rho} - rN^{\rho}$$

so the inequality is authomatic for $\ell > 2r^{1/\rho}N$. For smaller values apply the estimate with $N' = 2r^{1/\rho}N$;

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	0000	00000000	00000	00●00000	0000	000

Fix the order of normalization *r*, assume $\omega \cdot k \neq 0 \ \forall k \in \mathbb{Z}^{\infty}$.

- Fix a cutoff N and split high and low mode $z = (z^{\leq}, z^{\perp})$, eliminate from the perturbation
 - Terms involving only low modes *which are non resonant*: you need the 0th-Melnikov condition; proceed!
 - Terms linear in z[⊥]. You have to control small denominators of the form

$$\sum_{i=1}^{N} k_i \omega_i \pm \omega_\ell , \quad \ell > N$$

$$\left|\sum_{i=1}^{N} k_{i} \omega_{i}\right| \geq \frac{\gamma}{N^{\tau}} \quad \Longrightarrow \quad \left|\sum_{i=1}^{N} k_{i} \omega_{i} \pm \omega_{\ell}\right| \geq \frac{\gamma'}{N^{\tau'}}$$

Indeed, with $\omega_j \simeq j^{
ho}$, ho > 0 one has

$$\omega_{\ell} - \left|\sum_{i=1}^{N} k_{i} \omega_{i}\right| \geq \ell^{\rho} - \left|\sum_{i=1}^{N} k_{i} \omega_{i}\right| \geq \ell^{\rho} - |k| \sup_{j \leq N} \omega_{j} \geq \ell^{\rho} - rN^{\rho}$$

so the inequality is authomatic for $\ell > 2r^{1/\rho}N$. For smaller values apply the estimate with $N' = 2r^{1/\rho}N$; proceed!

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	0000	00000000	00000	000●0000	0000	000

• Eliminate terms quadratic in high modes involving quantities of the form $z_j z_\ell$ and $\overline{z}_j \overline{z}_\ell$. You have to consider small denominators of the form

$$\sum_{i=1}^{N} k_i \omega_i \pm (\omega_j + \omega_\ell) , \quad j > \ell > N :$$

Introduction 000	Main result 0000	Birkhoff normal form	PDEs: fight the small denominators 00000	Higher dimension 000€0000	Abstract Theorem	Open Problems 000

• Eliminate terms quadratic in high modes involving quantities of the form $z_j z_\ell$ and $\bar{z}_j \bar{z}_\ell$. You have to consider small denominators of the form

$$\sum_{i=1}^{N} k_i \omega_i \pm (\omega_j + \omega_\ell) , \quad j > \ell > N :$$

same mechanism as above

$$\left|\sum_{i=1}^{N} k_{i}\omega_{i}\right| \geq \frac{\gamma}{N^{\tau}} \implies \left|\sum_{i=1}^{N} k_{i}\omega_{i} \pm (\omega_{j} + \omega_{\ell})\right| \geq \frac{\gamma'}{N^{\tau'}}$$

Introduction 000	Main result 0000	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension 000●0000	Abstract Theorem 0000	Open Problems 000

• Eliminate terms quadratic in high modes involving quantities of the form $z_j z_\ell$ and $\bar{z}_j \bar{z}_\ell$. You have to consider small denominators of the form

$$\sum_{i=1}^{N} k_i \omega_i \pm (\omega_j + \omega_\ell) , \quad j > \ell > N :$$

same mechanism as above

$$\left|\sum_{i=1}^{N} k_{i}\omega_{i}\right| \geq \frac{\gamma}{N^{\tau}} \implies \left|\sum_{i=1}^{N} k_{i}\omega_{i} \pm (\omega_{j} + \omega_{\ell})\right| \geq \frac{\gamma'}{N^{\tau'}}$$

Indeed, with $\omega_j \simeq j^{
ho}$ one has

$$(\omega_{\ell}+\omega_{j})-\left|\sum_{i=1}^{N}k_{i}\omega_{i}
ight|\geq 2\ell^{
ho}-\left|\sum_{i=1}^{N}k_{i}\omega_{i}
ight|\geq 2\ell^{
ho}-|k|\sup_{j\leq N}\omega_{j}\geq 2\ell^{
ho}-rN^{
ho}$$

so the inequality is authomatic for $\ell > r^{1/\rho}N$. For smaller values apply the estimate with $N' = r^{1/\rho}N$; proceed!

Nothing	g more						
Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators	Higher dimension 0000€000	Abstract Theorem 0000	Open Problems 000	

• Can you eliminate terms quadratic in high modes involving quantities of the form $z_j \bar{z}_l$?

Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators 00000	Higher dimension 000000000	Abstract Theorem	Open Problems 000			
Nothin	Nothing more								

 Can you eliminate terms quadratic in high modes involving quantities of the form z_j z_l? You have to consider small denominators of the form

$$\sum_{i=1}^{N} k_i \omega_i \pm (\omega_j - \omega_\ell) , \quad j > \ell > N ,$$

but $\omega_j - \omega_\ell$ is typically dense on \mathbb{R} ;

Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators 00000	Higher dimension 000000000	Abstract Theorem	Open Problems 000			
Nothin	Nothing more								

• Can you eliminate terms quadratic in high modes involving quantities of the form $z_j \bar{z}_\ell$? You have to consider small denominators of the form

$$\sum_{i=1}^{N} k_i \omega_i \pm (\omega_j - \omega_\ell) , \quad j > \ell > N ,$$

but $\omega_j - \omega_\ell$ is typically dense on \mathbb{R} ; stop here!

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	0000	00000000	00000	00000●00	0000	000

A very weak normal form

Lemma

For any r and any s_0 large enough there exists a canonical transformation conjugating to

$$H_2 + Z_0 + Z_2 + R$$
,

with Z_k homogeneous of degree k in z^{\perp} and in normal form:

Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators	Higher dimension 00000●00	Abstract Theorem	Open Problems

A very weak normal form

Lemma

For any r and any s_0 large enough there exists a canonical transformation conjugating to

$$H_2+Z_0+Z_2+R ,$$

with Z_k homogeneous of degree k in z^{\perp} and in normal form: $\left\{|z_j|^2; Z_0\right\} = 0$, $\forall |j| \le N$ and $\left\{\sum_{|j|>N} |z_j|^2; Z_0\right\} = 0$

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problem
000	0000	00000000	00000	00000●00		000

A very weak normal form

Lemma

For any r and any s_0 large enough there exists a canonical transformation conjugating to

$$H_2+Z_0+Z_2+R ,$$

with Z_k homogeneous of degree k in z^{\perp} and in normal form: $\left\{|z_j|^2; Z_0\right\} = 0$, $\forall |j| \leq N$ and $\left\{\sum_{|j|>N} |z_j|^2; Z_0\right\} = 0$ and $\|X_R(z)\| = \mathcal{O}(\|z\|^{r+2}).$

Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators 00000	Higher dimension 000000000	Abstract Theorem 0000	Open Problems 000	
Dynamical consequence:							

Hamiltonian in normal form: $H = H_2 + Z_0 + Z_2 + R$

Dynam	ical con	sequence:				
Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators	Higher dimension 000000●0	Abstract Theorem	Open Problems 000

Hamiltonian in normal form: $H = H_2 + Z_0 + Z_2 + R$ Write the equation as a system

$$\begin{cases} \dot{z}^{\leq} = X_{H_2}(z^{\leq}) + X_{Z_0}(z^{\leq}) + \Pi^{\leq} X_{Z_2}(z) + \Pi^{\leq} X_R(z) ,\\ \dot{z}^{\perp} = X_{H_2}(z^{\perp}) + \Pi^{\perp} X_{Z_2}(z) + \Pi^{\perp} X_R(z) . \end{cases}$$
(8)

Dynam	ical con	sequence:				
Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators 00000	Higher dimension 000000000	Abstract Theorem 0000	Open Problems 000

Hamiltonian in normal form: $H = H_2 + Z_0 + Z_2 + R$ Write the equation as a system

$$\begin{cases} \dot{z}^{\leq} = X_{H_2}(z^{\leq}) + X_{Z_0}(z^{\leq}) + \Pi^{\leq} X_{Z_2}(z) + \Pi^{\leq} X_R(z) ,\\ \dot{z}^{\perp} = X_{H_2}(z^{\perp}) + \Pi^{\perp} X_{Z_2}(z) + \Pi^{\perp} X_R(z) . \end{cases}$$
(8)

or

$$\begin{cases} \dot{z}^{\leq} = X_{H_2}(z^{\leq}) + X_{Z_0}(z^{\leq}) + \Pi^{\leq} X_{Z_2}(z) + \Pi^{\leq} X_R(z), \\ \dot{z}^{\perp} = \Lambda z^{\perp} + A_1(z^{\leq}) z^{\perp} + \Pi^{\perp} X_R(z). \end{cases}$$
(9)

Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators 00000	Higher dimension 000000●0	Abstract Theorem	Open Problems 000
Dynam	ical con	sequence:				

Hamiltonian in normal form: $H = H_2 + Z_0 + Z_2 + R$ Write the equation as a system

$$\begin{cases} \dot{z}^{\leq} = X_{H_2}(z^{\leq}) + X_{Z_0}(z^{\leq}) + \Pi^{\leq} X_{Z_2}(z) + \Pi^{\leq} X_R(z), \\ \dot{z}^{\perp} = X_{H_2}(z^{\perp}) + \Pi^{\perp} X_{Z_2}(z) + \Pi^{\perp} X_R(z). \end{cases}$$
(8)

or

$$\begin{cases} \dot{z}^{\leq} = X_{H_2}(z^{\leq}) + X_{Z_0}(z^{\leq}) + \Pi^{\leq} X_{Z_2}(z) + \Pi^{\leq} X_R(z), \\ \dot{z}^{\perp} = \Lambda z^{\perp} + A_1(z^{\leq}) z^{\perp} + \Pi^{\perp} X_R(z). \end{cases}$$
(9)

Dynamics of high modes

$$\dot{z}^{\perp} = A z^{\perp} + \Pi^{\perp} X_R(z) \,. \tag{10}$$

with $A := \Lambda + A_1(z^{\leq})$, skewsymmetric $A = -A^*$.

roduction Main result Birkhoff normal form PDEs: fight the small deno 00 0000 0000000 000000 Higher dimension 0000000● Abstract Theorer

Open Problems

The main computation

Denote
$$D := \sqrt{1 - \Delta}$$
 so that $||z||_{s_0}^2 = ||D^{s_0}z||_0^2$. Denote also $\langle z; w \rangle := \sum_j \bar{z}_j w_j$
Compute

$$\begin{split} & \frac{d}{dt} \left\| z^{\perp} \right\|_{s_0}^2 = \langle D^{s_0} \dot{z}^{\perp}; D^{s_0} z^{\perp} \rangle + \langle D^{s_0} z^{\perp}; D^{s_0} \dot{z}^{\perp} \rangle \\ & = 2Re \langle D^{s_0} \dot{z}^{\perp}; D^{s_0} z^{\perp} \rangle = 2Re \langle D^{s_0} A z^{\perp}; D^{s_0} z^{\perp} \rangle \end{split}$$

Higher dimension 0000000●

The main computation

Denote
$$D := \sqrt{1 - \Delta}$$
 so that $||z||_{s_0}^2 = ||D^{s_0}z||_0^2$. Denote also $\langle z; w \rangle := \sum_j \bar{z}_j w_j$
Compute

$$\begin{aligned} \frac{d}{dt} \left\| z^{\perp} \right\|_{s_0}^2 &= \langle D^{s_0} \dot{z}^{\perp}; D^{s_0} z^{\perp} \rangle + \langle D^{s_0} z^{\perp}; D^{s_0} \dot{z}^{\perp} \rangle \\ &= 2Re \langle D^{s_0} \dot{z}^{\perp}; D^{s_0} z^{\perp} \rangle = 2Re \langle D^{s_0} A z^{\perp}; D^{s_0} z^{\perp} \rangle \\ &= 2Re \langle AD^{s_0} z^{\perp}; D^{s_0} z^{\perp} \rangle + 2Re \langle [D^{s_0}; A] z^{\perp}; D^{s_0} z^{\perp} \rangle \\ &= 2Re \langle [D^{s_0}; A] z^{\perp}; D^{s_0} z^{\perp} \rangle \end{aligned}$$

ntroduction Main result Birkhoff normal form PDEs: fight the small denominators Hig 000 0000 0000000 000000 00000

Higher dimension 0000000● Abstract Theorem

Open Problems 000

The main computation

Denote
$$D := \sqrt{1-\Delta}$$
 so that $||z||_{s_0}^2 = ||D^{s_0}z||_0^2$. Denote also $\langle z; w \rangle := \sum_j \bar{z}_j w_j$
Compute

$$\begin{aligned} \frac{d}{dt} \left\| z^{\perp} \right\|_{s_0}^2 &= \langle D^{s_0} \dot{z}^{\perp}; D^{s_0} z^{\perp} \rangle + \langle D^{s_0} z^{\perp}; D^{s_0} \dot{z}^{\perp} \rangle \\ &= 2Re \langle D^{s_0} \dot{z}^{\perp}; D^{s_0} z^{\perp} \rangle = 2Re \langle D^{s_0} A z^{\perp}; D^{s_0} z^{\perp} \rangle \\ &= 2Re \langle AD^{s_0} z^{\perp}; D^{s_0} z^{\perp} \rangle + 2Re \langle [D^{s_0}; A] z^{\perp}; D^{s_0} z^{\perp} \rangle \\ &= 2Re \langle [D^{s_0}; A] z^{\perp}; D^{s_0} z^{\perp} \rangle \end{aligned}$$

 $[D^{s_0}; A] = [D^{s_0}; A + A_1] = [D^{s_0}; A_1] \Longrightarrow \left\| [D^{s_0}; A_1] z^{\perp} \right\|_0 \preceq \left\| z^{\perp} \right\|_{s_0 - 1}$

roduction Main result Birkhoff normal form PDEs: fight the small denominators

Higher dimension 0000000● Abstract Theorem

Open Problems

The main computation

Denote
$$D := \sqrt{1-\Delta}$$
 so that $||z||_{s_0}^2 = ||D^{s_0}z||_0^2$. Denote also $\langle z; w \rangle := \sum_j \bar{z}_j w_j$
Compute

$$\begin{aligned} \frac{d}{dt} \left\| z^{\perp} \right\|_{s_0}^2 &= \langle D^{s_0} \dot{z}^{\perp}; D^{s_0} z^{\perp} \rangle + \langle D^{s_0} z^{\perp}; D^{s_0} \dot{z}^{\perp} \rangle \\ &= 2Re \langle D^{s_0} \dot{z}^{\perp}; D^{s_0} z^{\perp} \rangle = 2Re \langle D^{s_0} A z^{\perp}; D^{s_0} z^{\perp} \rangle \\ &= 2Re \langle AD^{s_0} z^{\perp}; D^{s_0} z^{\perp} \rangle + 2Re \langle [D^{s_0}; A] z^{\perp}; D^{s_0} z^{\perp} \rangle \\ &= 2Re \langle [D^{s_0}; A] z^{\perp}; D^{s_0} z^{\perp} \rangle \end{aligned}$$

 $[D^{s_0}; A] = [D^{s_0}; A + A_1] = [D^{s_0}; A_1] \Longrightarrow \|[D^{s_0}; A_1]z^{\perp}\|_0 \preceq \|z^{\perp}\|_{s_0-1}$

$$\begin{split} \frac{d}{dt} \left\| z^{\perp} \right\|_{s_0}^2 &\preceq \left\| z^{\perp} \right\|_{s_0-1} \left\| z^{\perp} \right\|_{s_0} \leq \left\| z^{\perp} \right\|_0^{\frac{1}{s_0}} \left\| z^{\perp} \right\|_{s_0}^{1-\frac{1}{s_0}} \left\| z^{\perp} \right\|_{s_0} \\ & \leq \left\| z_0^{\perp} \right\|_0^{\frac{1}{s_0}} \left\| z^{\perp} \right\|_{s_0}^{2-\frac{1}{s_0}} \leq \frac{\left\| z_0^{\perp} \right\|_s^{\frac{1}{s_0}}}{N^{s/s_0}} \left\| z^{\perp} \right\|_{s_0}^{2-\frac{1}{s_0}} \ll 1 \end{split}$$

Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators 00000	Higher dimension	Abstract Theorem ●000	Open Problems 000
Table o	of Conte	ents				

1 Introduction

2 Main result

3 Birkhoff normal form

PDEs: fight the small denominators

5 Higher dimension

6 Abstract Theorem

Open Problems

Introduction 000	Main result 0000	Birkhoff normal form	PDEs: fight the small denominators 00000	Higher dimension	Abstract Theorem 0●00	Open Problems 000

$$H = H_2 + P$$
, $P = O(|z|^3)$, $H_2 = \sum_{j \ge 1} \omega_j |z_j|^2$.

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	0000	00000000	00000	00000000	0●00	000

$$H = H_2 + P$$
, $P = O(|z|^3)$, $H_2 = \sum_{j \ge 1} \omega_j |z_j|^2$.

Assumptions

- Frequencies:
 - Weyl law: $\exists \beta > 0$: $\# \{ j : \omega_j < \lambda \} \sim \lambda^{\beta}$
 - Clustering (corollary of Weyl law) Exists a sequence of disjont orderd segments [a_n, b_n] with a_n ~ n, b_n ~ n s.t.

$$\bigcup_{j} \left\{ \omega_{j}^{1/\alpha} \right\} \subset \bigcup_{n} [a_{n}, b_{n}] ,$$

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	0000	00000000	00000	00000000	0●00	000

$$H = H_2 + P$$
, $P = O(|z|^3)$, $H_2 = \sum_{j \ge 1} \omega_j |z_j|^2$.

Assumptions

- Frequencies:
 - Weyl law: $\exists \beta > 0$: $\# \{ j : \omega_j < \lambda \} \sim \lambda^{\beta}$
 - Clustering (corollary of Weyl law) Exists a sequence of disjont orderd segments [a_n, b_n] with a_n ~ n, b_n ~ n s.t.

$$\bigcup_{j} \left\{ \omega_{j}^{1/\alpha} \right\} \subset \bigcup_{n} [a_{n}, b_{n}] ,$$

Define $C_n := \left\{ j : \omega_j^{1/\alpha} \in [a_n, b_n] \right\}$

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
	0000	0000000	00000	0000000	0000	

$$H = H_2 + P$$
, $P = O(|z|^3)$, $H_2 = \sum_{j \ge 1} \omega_j |z_j|^2$.

Assumptions

- Frequencies:
 - Weyl law: $\exists \beta > 0$: $\# \{ j : \omega_j < \lambda \} \sim \lambda^{\beta}$
 - Clustering (corollary of Weyl law) Exists a sequence of disjont orderd segments [a_n, b_n] with a_n ~ n, b_n ~ n s.t.

$$\bigcup_{j} \left\{ \omega_{j}^{1/\alpha} \right\} \subset \bigcup_{n} [a_{n}, b_{n}] ,$$

Define $C_n := \left\{ j : \omega_j^{1/\alpha} \in [a_n, b_n] \right\}$

Nonresonance condition:

for all $r\geq 1$, there exists au>0 such that $orall j\in \mathbb{N}^r$, $orall \sigma\in\{-1,1\}^r$

$$\text{if } \exists k \in \mathbb{N}, \quad \sum_{i \text{ s.t. } j_i \in \mathcal{C}_k} \sigma_i \neq 0 \quad \text{then} \quad |\sigma_1 \omega_{j_1} + \cdots + \sigma_q \omega_{j_q}| \geq \frac{\gamma}{|\max j_i|^{\tau}},$$

000	0000	0000000	00000	00000000	0000	000	
Assumptions on P							

• Tame estimate: Assume that the vector field of P is smooth and tame: there exists s_0 and $\mathcal{U} \subset H^{s_0}$ bounded, s.t. $\forall s$ large enough $X_P \in C^{\infty}(\mathcal{U} \cap H^s; H^s)$ and

$$\|X_P(z)\|_{H^s} \preceq \|z\|_{H^s}$$
, $\forall z \in H^s \cap \mathcal{U}$

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems	
000	0000	00000000	00000	00000000	00●0	000	
Assumptions on P							

• Tame estimate: Assume that the vector field of P is smooth and tame: there exists s_0 and $\mathcal{U} \subset H^{s_0}$ bounded, s.t. $\forall s$ large enough $X_P \in C^{\infty}(\mathcal{U} \cap H^s; H^s)$ and

$$\|X_P(z)\|_{H^s} \preceq \|z\|_{H^s}$$
, $\forall z \in H^s \cap \mathcal{U}$

• Multilinear estimate (following Delort-Szeftel). Denote

 $\Pi_n := \text{projector on span} \{ e_j : j \in \mathcal{C}_n \}$

Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators 00000	Higher dimension	Abstract Theorem 00●0	Open Problems 000		
Assumptions on P								

• Tame estimate: Assume that the vector field of P is smooth and tame: there exists s_0 and $\mathcal{U} \subset H^{s_0}$ bounded, s.t. $\forall s$ large enough $X_P \in C^{\infty}(\mathcal{U} \cap H^s; H^s)$ and

$$\|X_P(z)\|_{H^s} \preceq \|z\|_{H^s}$$
, $\forall z \in H^s \cap \mathcal{U}$

• Multilinear estimate (following Delort-Szeftel). Denote

 $\Pi_n := \text{projector on span} \{ e_j : j \in \mathcal{C}_n \}$

We assume that forall choices of $z^{(k)}$ s.t. $z^{(k)} = \prod_k z^{(k)}$, one has

$$\left| \mathrm{d}^{q} P(0)(z^{(1)}, \cdots, z^{(q)}) \right| \lesssim \frac{(k_{3}^{\star})^{\nu+n}(k_{4}^{\star})^{\nu} \cdots (k_{q}^{\star})^{\nu}}{(k_{1}^{\star} - k_{2}^{\star} + k_{3}^{\star})^{n}} \prod_{\ell=1}^{q} \| z^{(\ell)} \|_{\ell^{2}}.$$

where k_i^* is the decreasing reordering of k_j

Introduction 000	Main result 0000	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension 00000000	Abstract Theorem 000●	Open Problems 000

Abstract Theorem

Theorem db+Bernier+Grebert+Imekratz (2025)

For all $r \ge 1$, $s \gg 1$, $\exists \varepsilon_0$ s.t. $\forall z^{(0)} \in H^s$ with $\varepsilon := \|z^{(0)}\|_{H^s} \le \varepsilon_0$, there exists a unique solution

$$z \in C^0((-\varepsilon^{-r},\varepsilon^{-r});H^s) \cap C^1((-\varepsilon^{-r},\varepsilon^{-r});H^{s-\frac{1}{\beta}})$$

Furthermore, as long as $|t| \leq \varepsilon^{-r}$, one has $||u(t)||_{H^{s_0}} \lesssim \varepsilon$.

Introduction	Main result	Birkhoff normal form	PDEs: fight the small denominators	Higher dimension	Abstract Theorem	Open Problems
000	0000	00000000	00000		000●	000

Abstract Theorem

Theorem db+Bernier+Grebert+Imekratz (2025)

For all $r \ge 1$, $s \gg 1$, $\exists \varepsilon_0$ s.t. $\forall z^{(0)} \in H^s$ with $\varepsilon := \|z^{(0)}\|_{H^s} \le \varepsilon_0$, there exists a unique solution

$$z \in C^0((-\varepsilon^{-r},\varepsilon^{-r});H^s) \cap C^1((-\varepsilon^{-r},\varepsilon^{-r});H^{s-\frac{1}{\beta}})$$

Furthermore, as long as $|t| \leq \varepsilon^{-r}$, one has $||u(t)||_{H^{s_0}} \lesssim \varepsilon$.

Other examples: stability H^s of the ground state of NLS in arbitray manifolds, Klein Gordon type equation on \mathbb{R}^d with a quadratic potential.

Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators 00000	Higher dimension	Abstract Theorem	Open Problems ●00			
Table of Contents									

1 Introduction

2 Main result

Birkhoff normal form

PDEs: fight the small denominators

5 Higher dimension

6 Abstract Theorem

Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators 00000	Higher dimension	Abstract Theorem	Open Problems O●O			
Onon I	Open Broblems								

Quasilinear problems

• it is known how to prove almost global existence in 1-d both for the case of semilinear and quasilinear perturbations (Berti-Maspero-Murgante 2024)

Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators 00000	Higher dimension	Abstract Theorem	Open Problems O●O		
Open Broblems								

- Quasilinear problems
 - it is known how to prove almost global existence in 1-d both for the case of semilinear and quasilinear perturbations (Berti-Maspero-Murgante 2024)
 - Nothing is known in higher dimensions

Introduction 000	Main result 0000	Birkhoff normal form	PDEs: fight the small denominators 00000	Higher dimension	Abstract Theorem 0000	Open Problems O●O		
Open Broblems								

- Quasilinear problems
 - it is known how to prove almost global existence in 1-d both for the case of semilinear and quasilinear perturbations (Berti-Maspero-Murgante 2024)
 - Nothing is known in higher dimensions
- Domains with boundary
 - Essentially nothing is known.

Introduction 000	Main result 0000	Birkhoff normal form 00000000	PDEs: fight the small denominators 00000	Higher dimension	Abstract Theorem	Open Problems O●O		
Open Problems								

• Quasilinear problems

- it is known how to prove almost global existence in 1-d both for the case of semilinear and quasilinear perturbations (Berti-Maspero-Murgante 2024)
- Nothing is known in higher dimensions
- Domains with boundary
 - Essentially nothing is known.
 - For the smoothness of solutions there are compatibility conditions which are different in the linear and in the nonlinear case: It is difficult to consider the nonlinear case as a perturbation of the linear one.
| Introduction
000 | Main result
0000 | Birkhoff normal form
00000000 | PDEs: fight the small denominators
00000 | Higher dimension | Abstract Theorem | Open Problems
00● |
|---------------------|---------------------|----------------------------------|---|------------------|------------------|----------------------|
| | | | | | | |
| THANKS | | | | | | |

THANK YOU