On reversible solutions of SPDEs
PIMS 4/7/2005

Aim: study scaling limits of evolving interfaces
(see [Giacomin,Lebowitz,Presutti] or Funaki's
St-Flour Lectures)

Equilibrium: Gibbs measure, RW model for in-
terface: V € C2(R) even

Sn=X14+ -+ Xn, (Xi); 1D

1
X; ~ ~ exp(=V(r))dr, O<c_ < V"< cy < 00

E[X;] =0, E[X7]=1

Then the interface is {(n,Sp) : n < N + 1}
conditioned on

{Sl,...,SNZO, SQZSN_|_1=O}



We call u]"\} the law:
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Under Brownian rescaling:

1
Y; = —SLNtJ _— €t

v N
where e is the normalized Brownian excursion.
Notation:

UN :=Yo,u]_|\_, —— Vv

law of e



Natural reversible dynamics: ¢; € RY,

(00); := pjp1 — ¢, (07P); = ; — di_1

dp; = %{av’(a*qs)}i dt + dw; + dl;

I\

¢o(t) = dn41(t) =0,

$; >0, dl; >0, /OOO 6:(t) dl:(t) = 0

\

3! stationary ¢. Funaki-Olla [SPA 01]:
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—= ¥ — unique stationary solution of ...



Nualart and Pardoux [PTRF 92]: 3'(u,n):

([ Ou 10%u :
— = g4 W t

) u(0,z) = ug(x), =« € [0,1]

w(t,0) =u(t,1) =0, ¢t>0

u>0, dp>0, [udn=20

\

e W space-time white noise
e 1 is a reflecting measure on R} x [0, 1]

Existence: by penalization

Oue 102u, : (ueg)™
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Then us T v uniformly as € | O.




Results on the contact set {(t,z) : u(t,z)}.

New proof of Funaki-Olla’s result, based on
three main properties:

1. trivial convergence of Dirichlet forms

2. uniform strong Feller property for ®y:

N N £
[P F(®) — P F(P)] < tl/go | — |20 1)

PN F(®) := Eo[F(Pn(1))]

3. convergence of integration by parts formu-
lae (IbPF) for vy to IbPF for v



Reflecting Brownian Motion:

dX = dB + dL,

@)
X >0, dL>O0, /OXszo

associated to the Dirichlet form:

1 o0 / /
D(, ) =5/O o'y da.

1 rt
Informally: L; = 5/0 5o(Xs) ds. IbPF:

/OOO ¢ dz = —p(0) = —5p(¢p), p € Ca(R)

The Dirac Delta is the Revuz measure of L.



Back to interfaces: now we want the dynamics
to be conservative, i.e.

Zcb?:(t) = Z¢i(o) vVt >0

(constant droplet volume). The natural dy-
namics is:

f dp = — % 8O {OV' (0% ¢) dt + dI;} + Hdw

N\

¢o(t) = on41() =0,

$; >0, dl; >0, /OOO 6:(t) dl:(t) = O

\

d! stationary ¢ after fixing the droplet volume.

On(t2) == =Y (N 1y 4 (@)

i—1l 4
N °N

P — unique stationary solution of ...



Stochastic Cahn-Hilliard equation: (joint with
A.Debussche)

(0 1 92 (6% o .
= ( +n(t, az)) + W
oz

ot 20z2

w(t,0) = u(t,1) = 0,

7\

93u(t,0) = 83u(t,1) = 0,

>0, dp>0, [udp=0

Difficulty even for existence: try penalization
out 1 82 [92u¢ u®
— T 59,2 2 +( . + W
ot 20z ox € ox

Nno monotonicity; tightness trivial known only
for stationary solutions

the 1.-2.-3. proof above gives convergence of
the semigroups and Strong Feller for the limit,
and this is enough to conclude



Also, the 1.-2.-3. proof gives convergence of
the stationary interface.

at present, we have a problem with unique-
ness for CH: we expect pathwise uniqueness
(easy with different boundary conditions, diffi-
cult here because the mass of n is expected to
be +00)

the Cahn-Hilliard equation is a gradient system
in H—1(0,1): in this norm localization works
very badly



Last model: at equilibrium we have pinning,

i.e. the interface gets a reward ¢ > 0 every

time it touches the wall. the measure is uj'N,

the Brownian rescaling v, y

by tuning ¢, we have a phase transition (joint
with Deuschel, Giacomin):

® ¢ > ¢.. convergence to flat interface =0
o c<ecl vy =>v (asif e=0)

® c = ec: Ve y = law oOf reflecting Brownian
bridge



The natural dynamics has sticky reflection:

(

1
dp; = 1(4.(4)>0) 5{3‘//(3*@}2‘ dt + dw;

{ 1
50 L(gi(1)=0) 9t

| 90(t) = on41(t) =0,

3 stationary ¢ (unique?).

1—1
N
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at € = ¢¢, = Py — unique stationary solution
of ...
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u(0,2) = ug(x), x€][0,1]

w(t,0) =u(t,1) =0, ¢t>0

| v >0, dn >0, [udn =20
2 2
; %| — 1im |24 — C.
ox € ox

This renormalized term reminds of the KPZ
equation, but this one has reversible solutions!

Done: IbPF for the reflecting Brownian motion



