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Aim: study scaling limits of evolving interfaces

(see [Giacomin,Lebowitz,Presutti] or Funaki’s

St-Flour Lectures)

Equilibrium: Gibbs measure, RW model for in-

terface: V ∈ C2(R) even

Sn = X1 + · · ·+Xn, (Xi)i IID

Xi ∼
1

Z
exp(−V (r)) dr, 0 < c− < V ′′ < c+ <∞

E[Xi] = 0, E[X2
i ] = 1

Then the interface is {(n, Sn) : n ≤ N + 1}
conditioned on

{S1, . . . , SN ≥ 0, S0 = SN+1 = 0}



We call µ+N the law:

µ+N(dϕ) =
1

Z+
N

1(ϕ≥0) e
−
∑
i V (ϕi+1−ϕi) dϕ

with ϕ0 = ϕN+1 = 0.

Under Brownian rescaling:

Yt =
1√
N
S⌊Nt⌋ =⇒ et

where e is the normalized Brownian excursion.

Notation:

νN := Y ◦ µ+N =⇒ ν

law of e



Natural reversible dynamics: ϕt ∈ RN+,

(∂ϕ)i := ϕi+1 − ϕi, (∂∗ϕ)i := ϕi − ϕi−1

dϕi =
1

2
{∂V ′(∂∗ϕ)}i dt+ dwi+ dli

ϕ0(t) = ϕN+1(t) = 0,

ϕi ≥ 0, dli ≥ 0,
∫ ∞

0
ϕi(t) dli(t) = 0

∃! stationary ϕ. Funaki-Olla [SPA 01]:

ΦN(t, x) :=
1√
N

∑
i

ϕx(N
2t) 1

[i−1
N , iN )

(x)

=⇒ ΦN → unique stationary solution of ...



Nualart and Pardoux [PTRF 92]: ∃!(u, η):



∂u

∂t
=

1

2

∂2u

∂x2
+ Ẇ + η(t, x)

u(0, x) = u0(x), x ∈ [0,1]

u(t,0) = u(t,1) = 0, t ≥ 0

u ≥ 0, dη ≥ 0,
∫
u dη = 0

• Ẇ space-time white noise

• η is a reflecting measure on R+ × [0,1]

Existence: by penalization

ε > 0 :
∂uε

∂t
=

1

2

∂2uε

∂x2
+ Ẇ +

(uε)−

ε

Then uε ↑ u uniformly as ε ↓ 0.



Results on the contact set {(t, x) : u(t, x)}.

New proof of Funaki-Olla’s result, based on

three main properties:

1. trivial convergence of Dirichlet forms

2. uniform strong Feller property for ΦN :

|PNt F (Φ)− PNt F (Φ′)| ≤
∥F∥∞
t1/2

∥Φ−Φ′∥L2(0,1)

PNt F (Φ) := EΦ[F (ΦN(t))]

3. convergence of integration by parts formu-

lae (IbPF) for νN to IbPF for ν



Reflecting Brownian Motion:

dX = dB+ dL,

X ≥ 0, dL ≥ 0,
∫ ∞

0
X dL = 0

associated to the Dirichlet form:

D(φ,ψ) =
1

2

∫ ∞

0
φ′ψ′ dx.

Informally: Lt =
1

2

∫ t
0
δ0(Xs) ds. IbPF:

∫ ∞

0
φ′ dx = −φ(0) = −δ0(φ), φ ∈ C1

c (R)

The Dirac Delta is the Revuz measure of L.



Back to interfaces: now we want the dynamics

to be conservative, i.e.∑
i

ϕi(t) =
∑
i

ϕi(0) ∀t ≥ 0

(constant droplet volume). The natural dy-

namics is:

dϕ = −
1

2
∂∂∗{∂V ′(∂∗ϕ) dt+ dli}+ ∂dw

ϕ0(t) = ϕN+1(t) = 0,

ϕi ≥ 0, dli ≥ 0,
∫ ∞

0
ϕi(t) dli(t) = 0

∃! stationary ϕ after fixing the droplet volume.

ΦN(t, x) :=
1√
N

∑
i

ϕx(N
4t) 1

[i−1
N , iN )

(x)

ΦN → unique stationary solution of ...



Stochastic Cahn-Hilliard equation: (joint with

A.Debussche)

∂u

∂t
= −

1

2

∂2

∂x2

(
∂2u

∂x2
+ η(t, x)

)
+

∂

∂x
Ẇ

u(t,0) = u(t,1) = 0,

∂3u(t,0) = ∂3u(t,1) = 0,

u ≥ 0, dη ≥ 0,
∫
u dη = 0

Difficulty even for existence: try penalization

∂uϵ

∂t
= −

1

2

∂2

∂x2

(
∂2uϵ

∂x2
+

(uϵ)−

ϵ

)
+

∂

∂x
Ẇ

no monotonicity; tightness trivial known only

for stationary solutions

the 1.-2.-3. proof above gives convergence of

the semigroups and Strong Feller for the limit,

and this is enough to conclude



Also, the 1.-2.-3. proof gives convergence of

the stationary interface.

at present, we have a problem with unique-

ness for CH: we expect pathwise uniqueness

(easy with different boundary conditions, diffi-

cult here because the mass of η is expected to

be +∞)

the Cahn-Hilliard equation is a gradient system

in H−1(0,1): in this norm localization works

very badly



Last model: at equilibrium we have pinning,

i.e. the interface gets a reward ϵ > 0 every

time it touches the wall. the measure is µ+ϵ,N ,

the Brownian rescaling νϵ,N

by tuning ϵ, we have a phase transition (joint

with Deuschel, Giacomin):

• ϵ > ϵc: convergence to flat interface ≡ 0

• ϵ < ϵc: νϵ,N =⇒ ν (as if ϵ = 0)

• ϵ = ϵc: νϵ,N =⇒ law of reflecting Brownian

bridge



The natural dynamics has sticky reflection:

dϕi = 1(ϕi(t)>0)

[
1

2
{∂V ′(∂∗ϕ)}i dt+ dwi

]

+
1

2ϵ
1(ϕi(t)=0) dt

ϕ0(t) = ϕN+1(t) = 0,

∃ stationary ϕ (unique?).

ΦN(t, x) :=
1√
N

∑
i

ϕx(N
2t) 1

[i−1
N , iN )

(x)

at ϵ = ϵc, =⇒ ΦN → unique stationary solution

of ...





∂u

∂t
=

1

2

∂2u

∂x2
+ Ẇ− :

∣∣∣∣∂u∂x
∣∣∣∣2: η(t, x)

u(0, x) = u0(x), x ∈ [0,1]

u(t,0) = u(t,1) = 0, t ≥ 0

u ≥ 0, dη ≥ 0,
∫
u dη = 0

:
∣∣∣∣∂u∂x

∣∣∣∣2:= lim
ϵ

[∣∣∣∣∂uϵ∂x

∣∣∣∣2 − Cϵ

]
This renormalized term reminds of the KPZ

equation, but this one has reversible solutions!

Done: IbPF for the reflecting Brownian motion


