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Some variations:
@ Replace u — u® by f(u), where f is nice (e.g. globally
Lipschitz)
@ Replace u — u® by P(u), where P is a polynomial of odd
degree with negative leading order coefficient
@ Replace T by T9
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The noise: & is the space-time white noise: a centered, Gaussian
random field with covariance

E({(t, X)g(t/, X/)) = 5t=t’,x:x"

Reference object, 1: £ = 0;:0xW, where W is Brownian sheet.

Reference object, 2: { =) . 0:B" ® e,, where B" are
independent Brownian motions and e, is an ONB of L2(T)

Reference object, 3: The solution of the linear equation
(0 — AW =¢

is 1/4 — e-Holder continuous in time, 1/2 — e-Hdlder continuous in
space for any € > 0.
In dimensions 2 and higher W itself is a distribution.



Our focus: Discretisation, error estimates.
@ Spatial scheme on scale N1
@ Temporal scheme on scale M~!

@ Random variables sampled

Disclaimer:
@ Will not comment on initial condition

@ Will drop any e-s in rates of convergence
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Theorem (Gydngy '99)
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Let p>2. If M~! < (1/2)N=2 and f is globally Lipschitz
continuous, then there exists a constant C such that for all M, N
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Theorem (Davie-Gaines '01)

Let R1,...Rnm be the rectangles of the grid with meshsize M~1,
N~=L. There exists a constant ¢ > 0 such that for all M, N

inf (E(W(1,0)—p(&(Ru1), ..., E(Rwm))?) ™ > c(M~ Y44 N—1/2),

(p meas.




[Becker-Gess-Jentzen-Kloeden '23]
@ Spectral Galerkin truncation in space
@ Tamed exponential Euler scheme in time
@ Random variables from the Wiener increments on each Fourier
mode of the noise:
Bk, — B%
M M

Same upper and lower bounds hold for f(u) = u — u3.
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[Butkovsky-Dareiotis-G. '23]: The theorem of [Gyongy '99] holds
verbatim even if f is just a bounded measurable function.

Tangential analogy: For SDEs
dX: = b(X¢) dt + o(X;) dB:

For the Euler (=finite difference) scheme one has
@ Rate 1/2 < This improves in the additive case
@ This is optimal
@ Also for bounded measurable b < This doesn’t!

The previous discretisations “treat additive noise as multiplicative”
because the stochastic integral W is approximated.



Going beyond the matching lower and upper error bounds...

...by using different samples: from FW.



Going beyond the matching lower and upper error bounds...

...by using different samples: from FW. This is
e Conjectured*. [Davie-Gaines '01], [Jentzen-Kloeden '08]

@ Realistic: FW(k) on the (temporal) grid are still Gaussian
with known covariance

@ Proved to provide some improvement: from temporal rate 1/4
to 1/2 [Jentzen '11], [Wang '20]
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consider:

@ Spectral Galerkin truncation in space
@ Splitting exponential scheme in time
@ Random variables from samples of FW

The scheme:
VM’N(%, ) = nNPMm(vMuN(ﬁ', ))
1 )
(- P v )

where P is the heat semigroup, Iy is the projection on the first N
Fourier modes, and @ is the solution flow of the ODE x = f(x).



Theorem (Djurdjevac-G-Kremp '24)

Let p > 2, let f have polynomially growing derivatives up to order
3 and bounded from above first derivative. Then there exists a
constant C such that for all M, N
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Theorem (Djurdjevac-G-Kremp '24)

Let p > 2, let f have polynomially growing derivatives up to order
3 and bounded from above first derivative. Then there exists a
constant C such that for all M, N

Esup (u(d4) ="M (i d))) 7 < cmt 4 1),
( up(u( j) v M( J))P> /P /

.

Proposition (Djurdjevac-G-Kremp '24)

Let u be the solution with f(x) = x. There exists a constant ¢ > 0
such that for all M, N

,0),.. ., W (L, N))D) 2 > (M TN,

/-

inf (E(u(L,0)—p(¥(

(p meas.

.
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The bottleneck is the quadrature error

‘/ Prs(F(Ws) = F(Wh(e))) ds].

Here P: heat kernel, kp(s): the last gridpoint before s. Even for
f € C2° nontrivial!

e Triangle inequality, regularity of W: Eyy < M~1/4
o Triangle inequality, regularity of FW(k): Epy < M~1/2

Triangle inequality misses out on cancellations!

@ Stochastic sewing [L& '20]: if X is fBM with H = 1/4, then

‘/ $) = f(Xigy(s)) ds| 5 M

@ second+third point: Epy < M1
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Going beyond the matching lower and upper error bounds...

...by distributional topology. This is:
o Well-motivated: C* for o < 0 are the natural solution spaces
in higher dimensions

And the rate improves with lowering «: [Hairer '14] for
mollifier approximations, [Ma-Zhu '21], [Ma-Wang-Yang '24]
for discrete approximations in d = 2

@ Promising: although W is 1/4 Holder in time one has for all
a€(-1/2,1/2),e >0

IWe = Wl camy S [t —sV/4/27=,

o Problematic: in distributional spaces u* is not defined (and we
have no renormalisation!)
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Theorem (G-Singh '22)

Let 6 € (—1/2,0]. Then there exists an almost surely finite
random variable n such that for all n € N

SN ~1/2+6
SL;PHlfﬁ VﬁHCG(T,\,)SnN :

Lower bound of order N~1 holds already for a fixed Fourier mode.
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true regularity — critical regularity

E.g. for &% —1/2—(-1)=1/2
for k =7 in 1 dimensions: 1/2 —(—1/3) =5/6 < 1.

But error and solution can be considered in different spaces:

lu® = (VP llc-rr2 = ll(u = vM)(@® + (VN)?)ll c-rr2

Sllu—=vMlcaplle® + (M)l

In higher dimensions this is done on the level of the remainders (in
progress with Marco Cacace)



Thank you!



