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Main example: stochastic Allen-Cahn equation

(∂t −∆)u = u − u3 + ξ

on [0, 1]× T, T = R/Z, where ξ is space-time white noise.

Some variations:

Replace u − u3 by f (u), where f is nice (e.g. globally
Lipschitz)

Replace u − u3 by P(u), where P is a polynomial of odd
degree with negative leading order coefficient

Replace T by Td
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The noise: ξ is the space-time white noise: a centered, Gaussian
random field with covariance

E(ξ(t, x)ξ(t ′, x ′)) = δt=t′,x=x ′ .

Reference object, 1: ξ = ∂t∂xW , where W is Brownian sheet.

Reference object, 2: ξ =
∑

n∈N ∂tB
n ⊗ en, where Bn are

independent Brownian motions and en is an ONB of L2(T)

Reference object, 3: The solution of the linear equation

(∂t −∆)Ψ = ξ

is 1/4− ε-Hölder continuous in time, 1/2− ε-Hölder continuous in
space for any ε > 0.
In dimensions 2 and higher Ψ itself is a distribution.
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Our focus: Discretisation, error estimates.

Spatial scheme on scale N−1

Temporal scheme on scale M−1

Random variables sampled

Disclaimer:

Will not comment on initial condition

Will drop any ε-s in rates of convergence



[Gyöngy ’99]: Approximation vM,N by
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Finite differences in time
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ΞN,M
i ,j : = ξ

([
i
M , i+1

M

]
×
[ j
N ,

j+1
N

])
= W i+1

M
, j+1

N
−W i+1

M
, j
N
−W i

M
, j+1

N
+W i

M
, j
N
.

The scheme:

M
(
vN,M

( i + 1

M
,
j

N

)
− vN,M

( i

M
,
j

N

))
= f

(
vN,M

( i

M
,
j

N

))
+MNΞN,M

i ,j

+ N2
(
vN,M

( i

M
,
j + 1

N

)
+ vN,M

( i

M
,
j − 1

N

)
− 2vN,M

( i

M
,
j

N

))
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Theorem (Gyöngy ’99)

Let p ≥ 2. If M−1 < (1/2)N−2 and f is globally Lipschitz
continuous, then there exists a constant C such that for all M,N

sup
i ,j
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E
(
u
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)
− vN,M

(
i
M , j

N

))p)1/p
≤ C (M−1/4 + N−1/2).

Theorem (Davie-Gaines ’01)

Let R1, . . .RNM be the rectangles of the grid with meshsize M−1,
N−1. There exists a constant c > 0 such that for all M,N

inf
φmeas.

(
E
(
Ψ(1, 0)−φ(ξ(R11), . . . , ξ(RNM))2

)1/2 ≥ c(M−1/4+N−1/2).
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[Becker-Gess-Jentzen-Kloeden ’23]

Spectral Galerkin truncation in space

Tamed exponential Euler scheme in time

Random variables from the Wiener increments on each Fourier
mode of the noise:

Bk
i+1
M

− Bk
i
M

Same upper and lower bounds hold for f (u) = u − u3.



[Butkovsky-Dareiotis-G. ’23]: The theorem of [Gyöngy ’99] holds
verbatim even if f is just a bounded measurable function.

Tangential analogy: For SDEs

dXt = b(Xt) dt + σ(Xt) dBt

For the Euler (=finite difference) scheme one has

Rate 1/2

← This improves in the additive case

This is optimal

Also for bounded measurable b

← This doesn’t!

The previous discretisations “treat additive noise as multiplicative”
because the stochastic integral Ψ is approximated.
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verbatim even if f is just a bounded measurable function.

Tangential analogy: For SDEs

dXt = b(Xt) dt + σ(Xt) dBt

For the Euler (=finite difference) scheme one has

Rate 1/2

← This improves in the additive case

This is optimal

Also for bounded measurable b

← This doesn’t!

The previous discretisations “treat additive noise as multiplicative”
because the stochastic integral Ψ is approximated.



[Butkovsky-Dareiotis-G. ’23]: The theorem of [Gyöngy ’99] holds
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Going beyond the matching lower and upper error bounds...

...by using different samples: from FΨ.

This is

Conjectured*: [Davie-Gaines ’01], [Jentzen-Kloeden ’08]

Realistic: FΨ(k) on the (temporal) grid are still Gaussian
with known covariance

Proved to provide some improvement: from temporal rate 1/4
to 1/2 [Jentzen ’11], [Wang ’20]
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Combining [Bréhier-Cui-Hong ’18] and [Jentzen-Kloeden ’08],
consider:

Spectral Galerkin truncation in space

Splitting exponential scheme in time

Random variables from samples of FΨ

The scheme:
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where P is the heat semigroup, ΠN is the projection on the first N
Fourier modes, and Φ is the solution flow of the ODE ẋ = f (x).
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Theorem (Djurdjevac-G-Kremp ’24)

Let p ≥ 2, let f have polynomially growing derivatives up to order
3 and bounded from above first derivative. Then there exists a
constant C such that for all M,N(
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))p)1/p
≤ C (M−1 + N−1/2).

Proposition (Djurdjevac-G-Kremp ’24)

Let u be the solution with f (x) = x. There exists a constant c > 0
such that for all M,N

inf
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The bottleneck is the quadrature error

EM :=
∣∣∣ ∫ T

0
PT−s

(
f (Ψs)− f (ΨkM(s))

)
ds
∣∣∣.

Here P: heat kernel, kM(s): the last gridpoint before s. Even for
f ∈ C∞

c nontrivial!

Triangle inequality, regularity of Ψ: EM ≲ M−1/4

Triangle inequality, regularity of FΨ(k): EM ≲ M−1/2

Triangle inequality misses out on cancellations!

Stochastic sewing [Lê ’20]: if X is fBM with H = 1/4, then

M−1 simulations
≪

∣∣∣ ∫ T

0
f (Xs)− f (XkM(s)) ds

∣∣∣ ≲ M−3/4

second+third point: EM ≲ M−1
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Going beyond the matching lower and upper error bounds...

...by distributional topology.

This is:

Well-motivated: Cα for α < 0 are the natural solution spaces
in higher dimensions

And the rate improves with lowering α: [Hairer ’14] for
mollifier approximations, [Ma-Zhu ’21], [Ma-Wang-Yang ’24]
for discrete approximations in d = 2

Promising: although Ψ is 1/4 Hölder in time one has for all
α ∈ (−1/2, 1/2), ε > 0

∥Ψt −Ψs∥Cα(T) ≲ |t − s|1/4−α/2−ε.

Problematic: in distributional spaces u3 is not defined (and we
have no renormalisation!)
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Setup and assumptions:

Scheme exactly as in [Gyöngy ’99]

Temporal scale cN−2, c < 1/8, spatial scale N−1.

Nonlinearity f (u) = −uk + P(u), where k odd and P is
polynomial of order k − 1.

Theorem (G-Singh ’22)

Let θ ∈ (−1/2, 0]. Then there exists an almost surely finite
random variable η such that for all n ∈ N

sup
i
∥u i

N2
− vNi

N2
∥Cθ(TN)

≤ ηN−1/2+θ.

Lower bound of order N−1 holds already for a fixed Fourier mode.
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The rate one could expect from the general theory is

true regularity − critical regularity

E.g. for Φ4
3: −1/2− (−1) = 1/2

for k = 7 in 1 dimensions: 1/2− (−1/3) = 5/6 < 1.

But error and solution can be considered in different spaces:

∥u3 − (vN)3∥C−1/2 = ∥(u − vN)(u2 + (vN)2)∥C−1/2

≲ ∥u − vN∥C−1/2∥u2 + (vN)2∥C1/2

In higher dimensions this is done on the level of the remainders (in
progress with Marco Cacace)
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Thank you!


