Discretisations of stochastic Allen-Cahn equations

Máté Gerencsér

TU Wien

5 December 2024, Nancy Singular SPDEs, invariant measures and discrete models

Joint works with Ana Djurdjevac (FU Berlin), Helena Kremp (TU Wien), Harprit Singh (University of Edinburgh)

Main example: stochastic Allen-Cahn equation

$$
(\partial_t - \Delta)u = u - u^3 + \xi
$$

on $[0, 1] \times \mathbb{T}$, $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, where ξ is space-time white noise.

Main example: stochastic Allen-Cahn equation

$$
(\partial_t - \Delta)u = u - u^3 + \xi
$$

on $[0, 1] \times \mathbb{T}$, $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, where ξ is space-time white noise.

Some variations:

- Replace $u u^3$ by $f(u)$, where f is nice (e.g. globally Lipschitz)
- Replace $u u^3$ by $P(u)$, where P is a polynomial of odd degree with negative leading order coefficient
- Replace $\mathbb T$ by $\mathbb T^d$

$$
\mathbb{E}(\xi(t,x)\xi(t',x'))=\delta_{t=t',x=x'}.
$$

$$
\mathbb{E}(\xi(t,x)\xi(t',x'))=\delta_{t=t',x=x'}.
$$

Reference object, 1: $\xi = \partial_t \partial_x W$, where W is Brownian sheet.

$$
\mathbb{E}(\xi(t,x)\xi(t',x'))=\delta_{t=t',x=x'}.
$$

Reference object, 1: $\xi = \partial_t \partial_x W$, where W is Brownian sheet.

Reference object, 2: $\xi = \sum_{n \in \mathbb{N}} \partial_t B^n \otimes e_n$, where B^n are independent Brownian motions and e_n is an ONB of $L^2(\mathbb{T})$

$$
\mathbb{E}(\xi(t,x)\xi(t',x'))=\delta_{t=t',x=x'}.
$$

Reference object, 1: $\xi = \partial_t \partial_x W$, where W is Brownian sheet.

Reference object, 2: $\xi = \sum_{n \in \mathbb{N}} \partial_t B^n \otimes e_n$, where B^n are independent Brownian motions and e_n is an ONB of $L^2(\mathbb{T})$

Reference object, 3: The solution of the linear equation

$$
(\partial_t - \Delta)\Psi = \xi
$$

is $1/4 - \varepsilon$ -Hölder continuous in time, $1/2 - \varepsilon$ -Hölder continuous in space for any $\varepsilon > 0$. In dimensions 2 and higher Ψ itself is a distribution.

Our focus: Discretisation, error estimates.

- Spatial scheme on scale \mathcal{N}^{-1}
- Temporal scheme on scale M^{-1}
- Random variables sampled

Disclaimer:

- Will not comment on initial condition
- \bullet Will drop any ε -s in rates of convergence

[Gyöngy '99]: Approximation $v^{M,N}$ by

- **•** Finite differences in space
- **•** Finite differences in time
- \bullet Random variables from rectangular increments of W

$$
\begin{aligned} \Xi^{N,M}_{i,j}:&=\xi\Big(\big[\tfrac{i}{M},\tfrac{i+1}{M}\big]\times\big[\tfrac{j}{N},\tfrac{j+1}{N}\big]\Big)\\&=W_{\tfrac{i+1}{M},\tfrac{j+1}{N}}-W_{\tfrac{i+1}{M},\tfrac{j}{N}}-W_{\tfrac{i}{M},\tfrac{j+1}{N}}+W_{\tfrac{i}{M},\tfrac{j}{N}}. \end{aligned}
$$

[Gyöngy '99]: Approximation $v^{M,N}$ by

- **•** Finite differences in space
- **•** Finite differences in time
- \bullet Random variables from rectangular increments of W

$$
\begin{aligned} \Xi_{i,j}^{N,M} &:= \xi \left(\left[\tfrac{i}{M}, \tfrac{i+1}{M} \right] \times \left[\tfrac{j}{N}, \tfrac{j+1}{N} \right] \right) \\ &= W_{\frac{i+1}{M}, \frac{j+1}{N}} - W_{\frac{i+1}{M}, \frac{j}{N}} - W_{\frac{i}{M}, \frac{j+1}{N}} + W_{\frac{i}{M}, \frac{j}{N}}. \end{aligned}
$$

The scheme:

$$
\begin{split} &M\Big(\mathbf{v}^{N,M}\big(\frac{i+1}{M},\frac{j}{N}\big)-\mathbf{v}^{N,M}\big(\frac{i}{M},\frac{j}{N}\big)\Big)=f\Big(\mathbf{v}^{N,M}\big(\frac{i}{M},\frac{j}{N}\big)\Big)+MN\Xi_{i,j}^{N,M}\\ &+N^2\Big(\mathbf{v}^{N,M}\big(\frac{i}{M},\frac{j+1}{N}\big)+\mathbf{v}^{N,M}\big(\frac{i}{M},\frac{j-1}{N}\big)-2\mathbf{v}^{N,M}\big(\frac{i}{M},\frac{j}{N}\big)\Big) \end{split}
$$

Theorem (Gyöngy '99)

Let $p \geq 2$. If $M^{-1} < (1/2)N^{-2}$ and f is globally Lipschitz continuous, then there exists a constant C such that for all M, N

$$
\sup_{i,j}\left(\mathbb{E}\left(u\left(\frac{i}{M},\frac{j}{N}\right)-v^{N,M}\left(\frac{i}{M},\frac{j}{N}\right)\right)^p\right)^{1/p}\leq C(M^{-1/4}+N^{-1/2}).
$$

Theorem (Gyöngy '99)

Let $p \geq 2$. If $M^{-1} < (1/2)N^{-2}$ and f is globally Lipschitz continuous, then there exists a constant C such that for all M, N

$$
\sup_{i,j}\left(\mathbb{E}\left(u\left(\frac{i}{M},\frac{j}{N}\right)-v^{N,M}\left(\frac{i}{M},\frac{j}{N}\right)\right)^p\right)^{1/p}\leq C(M^{-1/4}+N^{-1/2}).
$$

Theorem (Davie-Gaines '01)

Let $R_1, \ldots R_{NM}$ be the rectangles of the grid with meshsize M^{-1} , N^{-1} . There exists a constant $c > 0$ such that for all M, N

$$
\inf_{\varphi \text{ meas.}} \left(\mathbf{E} \big(\Psi(1,0) - \varphi(\xi(R_{11}), \ldots, \xi(R_{NM}))^2 \big)^{1/2} \ge c(M^{-1/4} + N^{-1/2}).
$$

[Becker-Gess-Jentzen-Kloeden '23]

- Spectral Galerkin truncation in space
- Tamed exponential Euler scheme in time
- Random variables from the Wiener increments on each Fourier mode of the noise:

$$
B_{\frac{i+1}{M}}^k - B_{\frac{i}{M}}^k
$$

Same upper and lower bounds hold for $f(u) = u - u^3$.

Tangential analogy: For SDEs

$$
dX_t = b(X_t) dt + \sigma(X_t) dB_t
$$

For the Euler ($=$ finite difference) scheme one has

- Rate $1/2$
- This is optimal
- Also for bounded measurable *b*

Tangential analogy: For SDEs

$$
dX_t = b(X_t) dt + \sigma(X_t) dB_t
$$

For the Euler ($=$ finite difference) scheme one has

- Rate $1/2 \leftarrow$ This improves in the additive case
- This is optimal
- Also for bounded measurable $b \leftarrow$ This doesn't!

Tangential analogy: For SDEs

$$
dX_t = b(X_t) dt + \sigma(X_t) dB_t
$$

For the Euler ($=$ finite difference) scheme one has

- Rate $1/2 \leftarrow$ This improves in the additive case
- This is optimal
- Also for bounded measurable $b \leftarrow$ This doesn't!

The previous discretisations "treat additive noise as multiplicative" because the stochastic integral Ψ is approximated.

Going beyond the matching lower and upper error bounds...

...by using different samples: from $\mathcal{F}\Psi$.

Going beyond the matching lower and upper error bounds...

...by using different samples: from $\mathcal{F}\Psi$. This is

- Conjectured*: [Davie-Gaines '01], [Jentzen-Kloeden '08]
- Realistic: $\mathcal{F}\Psi(k)$ on the (temporal) grid are still Gaussian with known covariance
- Proved to provide some improvement: from temporal rate $1/4$ to 1/2 [Jentzen '11], [Wang '20]

Combining [Bréhier-Cui-Hong '18] and [Jentzen-Kloeden '08], consider:

- Spectral Galerkin truncation in space
- Splitting exponential scheme in time
- Random variables from samples of $\mathcal{F}\Psi$

Combining [Bréhier-Cui-Hong '18] and [Jentzen-Kloeden '08], consider:

- Spectral Galerkin truncation in space
- Splitting exponential scheme in time
- Random variables from samples of $\mathcal{F}\Psi$

The scheme:

$$
v^{M,N}(\frac{i+1}{M},\cdot) = \Pi_N P_{M^{-1}} \Phi\left(v^{M,N}(\frac{i}{M},\cdot)\right) + \Pi_N\left(\Psi(\frac{i+1}{M},\cdot) - P_{M^{-1}} \Psi(\frac{i}{M},\cdot)\right),
$$

where P is the heat semigroup, Π_N is the projection on the first N Fourier modes, and Φ is the solution flow of the ODE $\dot{x} = f(x)$.

Theorem (Djurdjevac-G-Kremp '24)

Let $p > 2$, let f have polynomially growing derivatives up to order 3 and bounded from above first derivative. Then there exists a constant C such that for all M, N

$$
\left(\mathbb{E}\sup_{i,j}\left(u\left(\frac{i}{M},\frac{j}{N}\right)-v^{N,M}\left(\frac{i}{M},\frac{j}{N}\right)\right)^p\right)^{1/p}\leq C(M^{-1}+N^{-1/2}).
$$

Theorem (Djurdjevac-G-Kremp '24)

Let $p > 2$, let f have polynomially growing derivatives up to order 3 and bounded from above first derivative. Then there exists a constant C such that for all M, N

$$
\left(\mathbb{E}\sup_{i,j}\left(u\left(\frac{i}{M},\frac{j}{N}\right)-v^{N,M}\left(\frac{i}{M},\frac{j}{N}\right)\right)^p\right)^{1/p}\leq C(M^{-1}+N^{-1/2}).
$$

Proposition (Djurdjevac-G-Kremp '24)

Let u be the solution with $f(x) = x$. There exists a constant $c > 0$ such that for all M, N

$$
\inf_{\varphi \text{ meas.}} \big(\mathsf{E}\big(u(1,0)-\varphi(\hat{\Psi}(\frac{1}{M},0),\ldots,\hat{\Psi}(1,N))^2\big)^{1/2}\geq c(M^{-1}+N^{-1/2}\big).
$$

$$
E_M := \Big|\int_0^T P_{T-s}\big(f(\Psi_s) - f(\Psi_{k_M(s)})\big)\,ds\Big|.
$$

Here P: heat kernel, $k_M(s)$: the last gridpoint before s. Even for $f \in \mathcal{C}_c^\infty$ nontrivial!

$$
E_M := \Big|\int_0^T P_{T-s}\big(f(\Psi_s) - f(\Psi_{k_M(s)})\big)\,ds\Big|.
$$

Here P: heat kernel, $k_M(s)$: the last gridpoint before s. Even for $f \in \mathcal{C}_c^\infty$ nontrivial!

- Triangle inequality, regularity of $\Psi: E_M \leq M^{-1/4}$
- Triangle inequality, regularity of $\mathcal{F}\Psi(k)$: $E_M \leq M^{-1/2}$

Triangle inequality misses out on cancellations!

$$
E_M := \Big|\int_0^T P_{T-s}\big(f(\Psi_s) - f(\Psi_{k_M(s)})\big)\,ds\Big|.
$$

Here P: heat kernel, $k_M(s)$: the last gridpoint before s. Even for $f \in \mathcal{C}_c^\infty$ nontrivial!

- Triangle inequality, regularity of $\Psi: E_M \leq M^{-1/4}$
- Triangle inequality, regularity of $\mathcal{F}\Psi(k)$: $E_M \leq M^{-1/2}$ Triangle inequality misses out on cancellations!
- Stochastic sewing [Lê '20]: if X is fBM with $H = 1/4$, then

$$
M^{-1} \stackrel{\text{simulations}}{\ll} \left| \int_0^T f(X_s) - f(X_{k_M(s)}) \, ds \right| \lesssim M^{-3/4}
$$

$$
E_M := \Big|\int_0^T P_{T-s}\big(f(\Psi_s) - f(\Psi_{k_M(s)})\big)\,ds\Big|.
$$

Here P: heat kernel, $k_M(s)$: the last gridpoint before s. Even for $f \in \mathcal{C}_c^\infty$ nontrivial!

- **•** Triangle inequality, regularity of Ψ : $E_M \leq M^{-1/4}$
- Triangle inequality, regularity of $\mathcal{F}\Psi(k)$: $E_M \leq M^{-1/2}$ Triangle inequality misses out on cancellations!
- Stochastic sewing [Lê '20]: if X is fBM with $H = 1/4$, then

$$
M^{-1} \stackrel{\text{simulations}}{\ll} \left| \int_0^T f(X_s) - f(X_{k_M(s)}) \, ds \right| \lesssim M^{-3/4}
$$

• second+third point: $E_M \leq M^{-1}$

Going beyond the matching lower and upper error bounds...

...by distributional topology.

Going beyond the matching lower and upper error bounds...

...by distributional topology. This is:

Well-motivated: C^{α} for $\alpha < 0$ are the natural solution spaces in higher dimensions

And the rate improves with lowering α : [Hairer '14] for mollifier approximations, [Ma-Zhu '21], [Ma-Wang-Yang '24] for discrete approximations in $d = 2$

• Promising: although Ψ is 1/4 Hölder in time one has for all $\alpha \in (-1/2, 1/2), \varepsilon > 0$

$$
\|\Psi_t - \Psi_s\|_{C^{\alpha}(\mathbb{T})} \lesssim |t-s|^{1/4-\alpha/2-\varepsilon}.
$$

Problematic: in distributional spaces u^3 is not defined (and we have no renormalisation!)

Setup and assumptions:

- Scheme exactly as in [Gyöngy '99]
- Temporal scale $\mathit{cN}^{-2}, \; \mathit{c} < 1/8,$ spatial scale $\mathit{N}^{-1}.$
- Nonlinearity $f(u) = -u^k + P(u)$, where k odd and P is polynomial of order $k - 1$.

Setup and assumptions:

- Scheme exactly as in $[Gyöngy'99]$
- Temporal scale $\mathit{cN}^{-2}, \; \mathit{c} < 1/8,$ spatial scale $\mathit{N}^{-1}.$
- Nonlinearity $f(u) = -u^k + P(u)$, where k odd and P is polynomial of order $k - 1$.

Theorem (G-Singh '22)

Let $\theta \in (-1/2, 0]$. Then there exists an almost surely finite random variable η such that for all $n \in \mathbb{N}$

$$
\sup_{i} \|u_{\frac{i}{N^2}} - v_{\frac{i}{N^2}}^N\|_{C^\theta(\mathbb{T}_N)} \leq \eta N^{-1/2+\theta}.
$$

Setup and assumptions:

- Scheme exactly as in $[Gyöngy'99]$
- Temporal scale $\mathit{cN}^{-2}, \; \mathit{c} < 1/8,$ spatial scale $\mathit{N}^{-1}.$
- Nonlinearity $f(u) = -u^k + P(u)$, where k odd and P is polynomial of order $k - 1$.

Theorem (G-Singh '22)

Let $\theta \in (-1/2, 0]$. Then there exists an almost surely finite random variable η such that for all $n \in \mathbb{N}$

$$
\sup_{i} \|u_{\frac{i}{N^2}} - v_{\frac{i}{N^2}}^N\|_{C^\theta(\mathbb{T}_N)} \leq \eta N^{-1/2+\theta}.
$$

Lower bound of order N^{-1} holds already for a fixed Fourier mode.

The rate one could expect from the general theory is

true regularity $-$ critical regularity

E.g. for
$$
\Phi_3^4
$$
: $-1/2 - (-1) = 1/2$
for $k = 7$ in 1 dimensions: $1/2 - (-1/3) = 5/6 < 1$.

The rate one could expect from the general theory is

true regularity $-$ critical regularity

E.g. for
$$
\Phi_3^4
$$
: $-1/2 - (-1) = 1/2$
for $k = 7$ in 1 dimensions: $1/2 - (-1/3) = 5/6 < 1$.

But error and solution can be considered in different spaces:

$$
||u^3 - (v^N)^3||_{C^{-1/2}} = ||(u - v^N)(u^2 + (v^N)^2)||_{C^{-1/2}}
$$

\$\leq ||u - v^N||_{C^{-1/2}} ||u^2 + (v^N)^2||_{C^{1/2}}

The rate one could expect from the general theory is

true regularity $-$ critical regularity

E.g. for
$$
\Phi_3^4
$$
: $-1/2 - (-1) = 1/2$
for $k = 7$ in 1 dimensions: $1/2 - (-1/3) = 5/6 < 1$.

But error and solution can be considered in different spaces:

$$
||u^3 - (v^N)^3||_{C^{-1/2}} = ||(u - v^N)(u^2 + (v^N)^2)||_{C^{-1/2}}
$$

\$\leq ||u - v^N||_{C^{-1/2}} ||u^2 + (v^N)^2||_{C^{1/2}}

In higher dimensions this is done on the level of the remainders (in progress with Marco Cacace)

Thank you!