Construction of measure of fractional Φ^4_3 3 model in full subcritical regime

Paweł Duch EPFL

(based on joint work with M. Gubinelli and P. Rinaldi)

December 4, 2024

- 1. Fractional Φ^4_3 model
- 2. Idea behind the construction
- 3. Flow equation approach
- 4. Coercive estimate
- 1. Fractional Φ^4_3 model
- 2. Idea behind the construction
- 3. Flow equation approach
- 4. Coercive estimate

Constructive Euclidean quantum field theory

Given space Ω of field configurations $\phi:\mathbb{R}^d\to \mathbb{R}$ and action $S:\Omega\to \mathbb{R}$, e.g. $S(\phi) = \int_{\mathbb{R}^d}$ " $\phi(x)(\mathcal{Q}\phi)(x) + \lambda\phi(x)^4$ d*x*, $Q = 1 - \Delta$ *,*

the goal of the constructive Euclidean QFT is to make sense of the probability measure on Ω formally given by

$$
\nu(\mathrm{d}\phi) = \frac{1}{\mathcal{Z}} \exp(-S(\phi)) \prod_{x \in \mathbb{R}^d} \mathrm{d}\phi(x).
$$

Constructive Euclidean quantum field theory

Given space Ω of field configurations $\phi:\mathbb{R}^d\to \mathbb{R}$ and action $S:\Omega\to \mathbb{R}$, e.g. $S(\phi) = \int_{\mathbb{R}^d}$ " $\phi(x)(\mathcal{Q}\phi)(x) + \lambda\phi(x)^4$ d*x*, $Q = 1 - \Delta$ *,*

the goal of the constructive Euclidean QFT is to make sense of the probability measure on Ω formally given by

$$
\nu(\mathrm{d}\phi) = \frac{1}{\mathcal{Z}} \exp(-S(\phi)) \prod_{x \in \mathbb{R}^d} \mathrm{d}\phi(x).
$$

Osterwalder–Schrader axioms:

- 1. Invariance under Euclidean transformations of \mathbb{R}^d .
- 2. Reflection positivity: Let $(\theta \phi)(x_1, \ldots, x_d) = \phi(-x_1, x_2, \ldots, x_d)$. Then ż

$$
\mathcal{F}(\theta \phi) F(\phi) \nu(\mathrm{d}\phi) \geq 0
$$

for all functionals $F(\phi)$ that depend only on $\phi|_{\{x_1>0\}}.$

3. Regularity: exponential integrability.

$$
S_{\varepsilon,\tau}(\phi) = \varepsilon^d \sum_{x \in \mathbb{T}^d_{\varepsilon,\tau}} \left[\phi(x) (\mathcal{Q}_{\varepsilon} \phi)(x) + \lambda \phi(x)^4 - r_{\varepsilon,\tau} \phi(x)^2 \right], \quad \mathcal{Q}_{\varepsilon} = 1 - \Delta_{\varepsilon},
$$

$$
\nu_{\varepsilon,\tau}(\mathrm{d}\phi) = \frac{1}{\mathcal{Z}} \exp(-S_{\varepsilon,\tau}(\phi)) \prod_{x \in \mathbb{T}^d_{\varepsilon,\tau}} \mathrm{d}\phi(x).
$$

Existence of continuum and infinite volume limit and OS axioms for \varPhi_d^4 model:

- § *d* " 2: [60': Nelson, Glimm, Jaffe, Segal, Guerra, Rosen, Simon, ...],
- ▶ $d = 3$: [70': Glimm, Jaffe, Feldman, Park, Osterwalder, Magnen, Senéor, ...].

$$
S_{\varepsilon,\tau}(\phi) = \varepsilon^d \sum_{x \in \mathbb{T}^d_{\varepsilon,\tau}} \left[\phi(x) (\mathcal{Q}_{\varepsilon} \phi)(x) + \lambda \phi(x)^4 - r_{\varepsilon,\tau} \phi(x)^2 \right], \quad \mathcal{Q}_{\varepsilon} = 1 - \Delta_{\varepsilon},
$$

$$
\nu_{\varepsilon,\tau}(\mathrm{d}\phi) = \frac{1}{\mathcal{Z}} \exp(-S_{\varepsilon,\tau}(\phi)) \prod_{x \in \mathbb{T}^d_{\varepsilon,\tau}} \mathrm{d}\phi(x).
$$

Existence of continuum and infinite volume limit and OS axioms for \varPhi_d^4 model:

- § *d* " 2: [60': Nelson, Glimm, Jaffe, Segal, Guerra, Rosen, Simon, ...],
- \blacktriangleright $d = 3$: [70': Glimm, Jaffe, Feldman, Park, Osterwalder, Magnen, Senéor, ...].

Triviality of ϕ^4 model – the continuum limit does not exist or is Gaussian:

- \blacktriangleright $d = 4$: [Aizenman, Duminil-Copin (2021)],
- $d > 4$: [Aizenman (1982)], [Fröhlich (1982)].

$$
S_{\varepsilon,\tau}(\phi) = \varepsilon^d \sum_{x \in \mathbb{T}^d_{\varepsilon,\tau}} \left[\phi(x) (\mathcal{Q}_{\varepsilon} \phi)(x) + \lambda \phi(x)^4 - r_{\varepsilon,\tau} \phi(x)^2 \right], \quad \mathcal{Q}_{\varepsilon} = 1 - \Delta_{\varepsilon},
$$

$$
\nu_{\varepsilon,\tau}(\mathrm{d}\phi) = \frac{1}{\mathcal{Z}} \exp(-S_{\varepsilon,\tau}(\phi)) \prod_{x \in \mathbb{T}^d_{\varepsilon,\tau}} \mathrm{d}\phi(x).
$$

Existence of continuum and infinite volume limit and OS axioms for \varPhi_d^4 model:

- § *d* " 2: [60': Nelson, Glimm, Jaffe, Segal, Guerra, Rosen, Simon, ...],
- \blacktriangleright $d = 3$: [70': Glimm, Jaffe, Feldman, Park, Osterwalder, Magnen, Senéor, ...].

Triviality of ϕ^4 model – the continuum limit does not exist or is Gaussian:

- \blacktriangleright $d = 4$: [Aizenman, Duminil-Copin (2021)],
- $d > 4$: [Aizenman (1982)], [Fröhlich (1982)].

Several other models were constructed in $d \leq 3$.

Only very special models are expected to exist in $d = 4$.

Fractional Φ 4 ³ **model with cutoffs**

Action of fractional Φ^4_3 model with cutoffs: *S*_{ε,τ}(ϕ) = ε^3 \sum *x*PT³ *ε,τ* " *M*_{*x*}</sup> $(Q_{\varepsilon} \phi)(x) + \frac{\lambda}{2} \phi(x)^{4} - r_{\varepsilon,\tau} \phi(x)^{2}]$ \blacktriangleright $\mathbb{T}^3_{\varepsilon,\tau}$ – lattice with spacings $\varepsilon \in (0,1]$ and period $\tau \in \mathbb{N}_+$, $\blacktriangleright \mathcal{Q}_{\varepsilon} = (-\Delta_{\varepsilon})^{\sigma/2} + 1,$ \blacktriangleright $(-\Delta_{\varepsilon})^{\sigma/2}$ – fractional Laplacian of order $\sigma > 0$, § *rε,τ* – mass counterterm.

Fractional Φ 4 ³ **model with cutoffs**

Action of fractional Φ^4_3 model with cutoffs: *S*_{$\epsilon, \tau(\phi) = \epsilon^3 \sum$ [} *x*PT³ *ε,τ M*_{*x*}</sup> $(Q_{\varepsilon} \phi)(x) + \frac{\lambda}{2} \phi(x)^{4} - r_{\varepsilon,\tau} \phi(x)^{2}]$ \blacktriangleright $\mathbb{T}^3_{\varepsilon,\tau}$ – lattice with spacings $\varepsilon \in (0,1]$ and period $\tau \in \mathbb{N}_+$, $\blacktriangleright \mathcal{Q}_{\varepsilon} = (-\Delta_{\varepsilon})^{\sigma/2} + 1,$ \blacktriangleright $(-\Delta_{\varepsilon})^{\sigma/2}$ – fractional Laplacian of order $\sigma > 0$, § *rε,τ* – mass counterterm.

Measure of fractional Φ_3^4 model with cutoffs $\varepsilon \in (0,1]$, $\tau \in \mathbb{N}_+$: $\nu_{\varepsilon,\tau}(\mathrm{d}\phi) := \frac{1}{2}$ $\frac{1}{\mathcal{Z}} \exp(-S_{\varepsilon,\tau}(\phi)) \prod_{x \in \mathbb{R}^3} d\phi(x).$ $x \in T^3_{\varepsilon}$ *ε,τ*

We are interested in the limit $\varepsilon \searrow 0, \tau \to \infty$ of $\nu_{\varepsilon,\tau}$.

Concentrate on continuum limit $\nu_{\tau} = \lim_{\varepsilon \searrow 0} \nu_{\varepsilon, \tau}$ for fixed size of torus τ .

Concentrate on continuum limit $\nu_{\tau} = \lim_{\varepsilon \to 0} \nu_{\varepsilon,\tau}$ for fixed size of torus τ .

Finite regime $\sigma \in (3, \infty)$

$$
\nu_{\tau}(\mathrm{d}\phi) = Z^{-1}\exp(-V(\phi))\,\mu_{\tau}(\mathrm{d}\phi),
$$

 \blacktriangleright *μ*_τ is Gaussian measure with covariance $((-\Delta)^{\sigma/2} + 1)^{-1}$,

 \blacktriangleright $V(\phi) = \frac{\lambda}{2} \int_{\mathbb{T}_\tau^3} \phi(x)^4 \, \mathrm{d}x$ is the interaction potential.

Concentrate on continuum limit $\nu_{\tau} = \lim_{\varepsilon \to 0} \nu_{\varepsilon,\tau}$ for fixed size of torus τ .

Finite regime $\sigma \in (3, \infty)$

$$
\nu_{\tau}(\mathrm{d}\phi) = Z^{-1}\exp(-V(\phi))\,\mu_{\tau}(\mathrm{d}\phi),
$$

 \blacktriangleright *μ*_τ is Gaussian measure with covariance $((-\Delta)^{\sigma/2} + 1)^{-1}$,

 \blacktriangleright $V(\phi) = \frac{\lambda}{2} \int_{\mathbb{T}_\tau^3} \phi(x)^4 \, \mathrm{d}x$ is the interaction potential.

Wick renormalization $\sigma \in (9/4, 3]$

$$
\nu_{\tau}(\mathrm{d}\phi) = Z^{-1}\exp(-\cdot V(\phi))\,\mu_{\tau}(\mathrm{d}\phi).
$$

Concentrate on continuum limit $\nu_{\tau} = \lim_{\varepsilon \to 0} \nu_{\varepsilon,\tau}$ for fixed size of torus τ .

Finite regime $\sigma \in (3, \infty)$

$$
\nu_{\tau}(\mathrm{d}\phi) = Z^{-1}\exp(-V(\phi))\,\mu_{\tau}(\mathrm{d}\phi),
$$

 \blacktriangleright *μ*_τ is Gaussian measure with covariance $((-\Delta)^{\sigma/2} + 1)^{-1}$,

 \blacktriangleright $V(\phi) = \frac{\lambda}{2} \int_{\mathbb{T}_\tau^3} \phi(x)^4 \, \mathrm{d}x$ is the interaction potential.

Wick renormalization $\sigma \in (9/4, 3]$

$$
\nu_{\tau}(\mathrm{d}\phi) = Z^{-1}\exp(-\cdot V(\phi))\,\mu_{\tau}(\mathrm{d}\phi).
$$

Subcritical regime beyond Wick renormalization $\sigma \in (3/2, 9/4]$

Short distance behavior of interacting measure *ν^τ* similar to Gaussian measure μ_{τ} but ν_{τ} and μ_{τ} are singular [Hairer, Kusuoka, Nagoji (2024+)].

Concentrate on continuum limit $\nu_{\tau} = \lim_{\varepsilon \to 0} \nu_{\varepsilon, \tau}$ for fixed size of torus τ .

Finite regime $\sigma \in (3, \infty)$

$$
\nu_{\tau}(\mathrm{d}\phi) = Z^{-1}\exp(-V(\phi))\,\mu_{\tau}(\mathrm{d}\phi),
$$

 \blacktriangleright *μ*_τ is Gaussian measure with covariance $((-\Delta)^{\sigma/2} + 1)^{-1}$,

 \blacktriangleright $V(\phi) = \frac{\lambda}{2} \int_{\mathbb{T}_\tau^3} \phi(x)^4 \, \mathrm{d}x$ is the interaction potential.

Wick renormalization $\sigma \in (9/4, 3]$

$$
\nu_{\tau}(\mathrm{d}\phi) = Z^{-1}\exp(-\cdot V(\phi))\,\mu_{\tau}(\mathrm{d}\phi).
$$

Subcritical regime beyond Wick renormalization $\sigma \in (3/2, 9/4]$

Short distance behavior of interacting measure *ν^τ* similar to Gaussian measure μ_{τ} but ν_{τ} and μ_{τ} are singular [Hairer, Kusuoka, Nagoji (2024+)].

Critical and supercritical regime $\sigma \in (0, 3/2]$

Continuum limit $\lim_{\varepsilon \searrow 0} \nu_{\varepsilon,\tau}$ does not exist or is Gaussian [Panis (2023+)].

Main result

Recall that the measure $\nu_{\varepsilon,\tau}$ of the fractional Φ^4_3 model depends on:

- **E** lattice spacing $\varepsilon \in (0, 1]$ and size of the torus $\tau \in \mathbb{N}_+$,
- § order of fractional Laplacian *σ*, mass counterterm *rε,τ* .

Main result

Recall that the measure $\nu_{\varepsilon,\tau}$ of the fractional Φ^4_3 model depends on:

- **E** lattice spacing $\varepsilon \in (0, 1]$ and size of the torus $\tau \in \mathbb{N}_+$,
- § order of fractional Laplacian *σ*, mass counterterm *rε,τ* .

- Similar result [Esquivel, Weber $(2024+)$].
- ▶ In general uniqueness of measure not expected.
- \triangleright Non-triviality every accumulation point non-Gaussian.

1. Fractional Φ^4_3 model

2. Idea behind the construction

3. Flow equation approach

4. Coercive estimate

Idea: establish the bound below and use Prokhorov's theorem ż sup $\varepsilon \in (0,1], \tau \in \mathbb{N}_+$ $\|\phi\|_{\mathcal{B}} \nu_{\varepsilon,\tau}(\mathrm{d}\phi) < \infty.$

Idea: establish the bound below and use Prokhorov's theorem ż sup $\varepsilon \in (0,1], \tau \in \mathbb{N}_+$ $\|\phi\|_{\mathcal{B}} \nu_{\varepsilon,\tau}(\mathrm{d}\phi) < \infty.$

Langevin dynamic in finite dimension $\text{Measure } \nu(\text{d}\phi) = \exp(-2S(\phi))\text{d}\phi$ over \mathbb{R}^n is invariant under dynamic $d\phi_t = dW_t - \nabla S(\phi_t) dt$.

Dynamical fractional \varPhi_3^4 model on $\mathbb{R}\times \mathbb{T}^3_{\varepsilon,\tau}$

$$
(\partial_t + (-\Delta_{\varepsilon})^{\sigma/2} + 1)\Phi_{\varepsilon,\tau} = \xi_{\varepsilon,\tau} - \lambda \Phi_{\varepsilon,\tau}^3 + r_{\varepsilon,\tau} \Phi_{\varepsilon,\tau}
$$

- ▶ Finite-dimensional SDE in a gradient form.
- § Let *Φε,τ* be the global stationary solution.

• Then
$$
\nu_{\varepsilon,\tau} = \text{Law}(\Phi_{\varepsilon,\tau}(t,\bullet))
$$
 for all $t \in \mathbb{R}$.

▶ The following bound implies tightness

$$
\sup_{\varepsilon\in(0,1],\tau\in\mathbb{N}_+}\mathbb{E}\|\varPhi_{\varepsilon,\tau}(t,\bullet)\|_{\mathcal{B}}<\infty.
$$

§ *Φε,τ* satisfies a parabolic SPDE

$$
(\partial_t + (-\Delta_{\varepsilon})^{\sigma/2} + 1)\Phi_{\varepsilon,\tau} = \xi_{\varepsilon,\tau} - \lambda \Phi_{\varepsilon,\tau}^3 + r_{\varepsilon,\tau} \Phi_{\varepsilon,\tau}
$$

We can use some PDE tools to prove the above bound.

• Difficulty: SPDE becomes singular in the continuum limit $\varepsilon \searrow 0$.

▶ The following bound implies tightness

$$
\sup_{\varepsilon\in(0,1],\tau\in\mathbb{N}_+}\mathbb{E}\|\varPhi_{\varepsilon,\tau}(t,\bullet)\|_{\mathcal{B}}<\infty.
$$

§ *Φε,τ* satisfies a parabolic SPDE

$$
(\partial_t + (-\Delta_{\varepsilon})^{\sigma/2} + 1)\Phi_{\varepsilon,\tau} = \xi_{\varepsilon,\tau} - \lambda \Phi_{\varepsilon,\tau}^3 + r_{\varepsilon,\tau} \Phi_{\varepsilon,\tau}
$$

We can use some PDE tools to prove the above bound.

• Difficulty: SPDE becomes singular in the continuum limit $\varepsilon \searrow 0$.

Strategy

- ▶ Use flow equation approach to singular SPDEs to make sense of the equation in the continuum limit.
- Apply maximum principle to derive coercive estimate implying tightness.
- **1**. Fractional Φ^4_3 model
- 2. Idea behind the construction
- 3. Flow equation approach
- 4. Coercive estimate

$$
(\partial_t + (-\Delta)^{\sigma/2} + 1)\Phi = F[\Phi].
$$

Notation:

$$
\blacktriangleright F[\varphi] := \xi - \lambda \varphi^3 + r \, \varphi \text{ - force},
$$

- § *ξ* spacetime white noise,
- \blacktriangleright r mass counterterm.

$$
(\partial_t + (-\Delta)^{\sigma/2} + 1)\Phi = F[\Phi].
$$

Notation:

$$
\blacktriangleright F[\varphi] := \xi - \lambda \varphi^3 + r \, \varphi \text{ - force},
$$

- § *ξ* spacetime white noise,
- \blacktriangleright r mass counterterm.

Coarse-grained process

$$
\varPhi_{\mu} := J_{\mu} * \varPhi \in C^{\infty}, \qquad \mu \in (0, 1],
$$

- \blacktriangleright \varPhi solution of the dynamical fractional Φ^4_3 model,
- \blacktriangleright *J*_{*u*} smooth approximation of Dirac delta of characteristic length scale μ .

► In the limit $\varepsilon \searrow 0$ the dynamical Φ_3^4 model becomes a singular SPDE

$$
(\partial_t + (-\Delta)^{\sigma/2} + 1)\Phi = F[\Phi], \qquad F[\varphi] := \xi - \lambda \varphi^3 + r\varphi.
$$

§ **Idea:** Rewrite the equation as a certain equation that involves only the $\emph{coarse-grained process $\left(\Phi_{\mu}\right)_{\mu\in(0,1]}$}.$

► In the limit $\varepsilon \searrow 0$ the dynamical Φ_3^4 model becomes a singular SPDE

$$
(\partial_t + (-\Delta)^{\sigma/2} + 1)\Phi = F[\Phi], \qquad F[\varphi] := \xi - \lambda \varphi^3 + r\varphi.
$$

► Idea: Rewrite the equation as a certain equation that involves only the $\emph{coarse-grained process $\left(\Phi_{\mu}\right)_{\mu\in(0,1]}$}.$

$$
(\partial_t + (-\Delta)^{\sigma/2} + 1)\Phi_\mu = J_\mu * F[\Phi]
$$

Effective force

A family of functionals $F_\mu[\varphi]$ depending differentiably $\mu \in [0,1]$ such that:

- $▶$ the boundary condition $F_{\mu=0}[\varphi] = F[\varphi]$ holds,
- **▶** the remainder $ζ$ _{*µ*} := $F[Φ] F$ _{*µ*} $[Φ$ _{*µ*} $]$ is "small".

► In the limit $\varepsilon \searrow 0$ the dynamical Φ_3^4 model becomes a singular SPDE

$$
(\partial_t + (-\Delta)^{\sigma/2} + 1)\Phi = F[\Phi], \qquad F[\varphi] := \xi - \lambda \varphi^3 + r\varphi.
$$

► Idea: Rewrite the equation as a certain equation that involves only the $\emph{coarse-grained process $\left(\Phi_{\mu}\right)_{\mu\in(0,1]}$}.$

$$
(\partial_t + (-\Delta)^{\sigma/2} + 1)\Phi_\mu = J_\mu * F[\Phi]
$$

Effective force

A family of functionals $F_\mu[\varphi]$ depending differentiably $\mu \in [0,1]$ such that:

- $▶$ the boundary condition $F_{\mu=0}[\varphi] = F[\varphi]$ holds,
- **▶** the remainder $ζ$ _{*µ*} := $F[Φ] F$ _{*µ*} $[Φ$ _{*µ*} $]$ is "small".

$$
(\partial_t + (-\Delta)^{\sigma/2} + 1)\Phi_\mu = J_\mu * (F_\mu[\Phi_\mu] + \zeta_\mu)
$$

 $\frac{1}{2}$

$$
\begin{cases}\n(\partial_t + (-\Delta)^{\sigma/2} + 1)\Phi_\mu = J_\mu * (F_\mu[\Phi_\mu] + \zeta_\mu) \\
\zeta_\mu = -\int_0^\mu (H_\eta[\Phi_\eta] + DF_\eta[\Phi_\eta] \cdot (\partial_\eta G_\eta * \zeta_\eta)) d\eta\n\end{cases}
$$

Notation:

- \blacktriangleright *G* = $(\partial_t + (-\Delta)^{\sigma/2} + 1)^{-1}$ = fractional heat kernel,
- $\hat{\sigma}_n G_n := \partial_n J_n * G$ scale decomposition of the fractional heat kernel,
- \blacktriangleright *H_n*[φ] := $\partial_n F_n[\varphi] + DF_n[\varphi] \cdot (\partial_n G_n * F_n[\varphi])$ source in equation for ζ_μ .

 $\frac{1}{2}$

$$
\begin{cases}\n(\partial_t + (-\Delta)^{\sigma/2} + 1)\Phi_\mu = J_\mu * (F_\mu[\Phi_\mu] + \zeta_\mu) \\
\zeta_\mu = -\int_0^\mu (H_\eta[\Phi_\eta] + DF_\eta[\Phi_\eta] \cdot (\partial_\eta G_\eta * \zeta_\eta)) d\eta\n\end{cases}
$$

Notation:

•
$$
G = (\partial_t + (-\Delta)^{\sigma/2} + 1)^{-1}
$$
 = fractional heat kernel,

- \blacktriangleright $\partial_n G_n := \partial_n J_n * G$ scale decomposition of the fractional heat kernel,
- \blacktriangleright *H_n*[φ] := $\partial_n F_n[\varphi] + DF_n[\varphi] \cdot (\partial_n G_n * F_n[\varphi])$ source in equation for ζ_μ .

Claim: System of equations for $\mu \mapsto (\Phi_{\mu}, \zeta_{\mu})$ remains meaningful in the continuum limit $\varepsilon \searrow 0$ provided effective force $F_\mu[\varphi]$ is chosen appropriately. ▶ A natural choice for the effective force $F_\mu[\varphi]$ is to define it so that $H_{\mu}[\varphi] = 0$, i.e. the following **flow equation** is satisfied

$$
\partial_{\mu}F_{\mu}[\varphi] + DF_{\mu}[\varphi] \cdot (\partial_{\mu}G_{\mu} * F_{\mu}[\varphi]) = 0.
$$

Then the unique solution of the equation for the remainder is $\zeta_{\mu} = 0$.

▶ A natural choice for the effective force $F_\mu[\varphi]$ is to define it so that $H_u[\varphi] = 0$, i.e. the following **flow equation** is satisfied

 $\partial_{\mu}F_{\mu}[\varphi] + DF_{\mu}[\varphi] \cdot (\partial_{\mu}G_{\mu}*F_{\mu}[\varphi]) = 0.$

Then the unique solution of the equation for the remainder is $\zeta_{\mu} = 0$.

▶ Constructing an exact solution $F_\mu[\varphi]$ **of the flow equation is quite** complicated and is typically only possible if a **small parameter** is available. ▶ A natural choice for the effective force $F_\mu[\varphi]$ is to define it so that $H_{\mu}[\varphi] = 0$, i.e. the following **flow equation** is satisfied

 $\partial_{\mu}F_{\mu}[\varphi] + DF_{\mu}[\varphi] \cdot (\partial_{\mu}G_{\mu}*F_{\mu}[\varphi]) = 0.$

Then the unique solution of the equation for the remainder is $\zeta_{\mu} = 0$.

- **▶ Constructing an exact solution** $F_\mu[\varphi]$ **of the flow equation is quite** complicated and is typically only possible if a **small parameter** is available.
- ► We choose instead $F_\mu[\varphi]$ that satisfies the flow equation up to some small error term $H_u[\varphi]$.

• The force
$$
F[\varphi] = F_{\mu=0}[\varphi] = \xi - \lambda \varphi^3 + \sum_{i=1}^{i_{\sharp}} \lambda^i r^{(i)} \varphi
$$
.

- ► The force $F[\varphi] = F_{\mu=0}[\varphi] = \xi \lambda \varphi^3 + \sum_{i=1}^{i_{\sharp}}$ $\sum_{i=1}^{i_{\sharp}} \lambda^i r^{(i)} \varphi$.
- **▶ Goal:** Construct an effective force $F_\mu[\varphi]$ such that

$$
\partial_{\mu}F_{\mu}[\varphi] + DF_{\mu}[\varphi] \cdot (\partial_{\mu}G_{\mu} * F_{\mu}[\varphi]) = O(\lambda^{i_{\mathfrak{b}}+1}).
$$

- ► The force $F[\varphi] = F_{\mu=0}[\varphi] = \xi \lambda \varphi^3 + \sum_{i=1}^{i_{\sharp}}$ $\sum_{i=1}^{i_{\sharp}} \lambda^i r^{(i)} \varphi$.
- **▶ Goal:** Construct an effective force $F_\mu[\varphi]$ such that

$$
\partial_{\mu}F_{\mu}[\varphi] + DF_{\mu}[\varphi] \cdot (\partial_{\mu}G_{\mu} * F_{\mu}[\varphi]) = O(\lambda^{i_{b}+1}).
$$

▶ Multilinear ansatz for effective force

$$
F_{\mu}[\varphi](x) = \sum_{i=0}^{i_{\flat}} \lambda^i \sum_{m=0}^{3i} \int F_{\mu}^{i,m}(x; dy_1, \dots, dy_m) \varphi(y_1) \dots \varphi(y_m).
$$

- ► The force $F[\varphi] = F_{\mu=0}[\varphi] = \xi \lambda \varphi^3 + \sum_{i=1}^{i_{\sharp}}$ $\sum_{i=1}^{i_{\sharp}} \lambda^i r^{(i)} \varphi$.
- **► Goal:** Construct an effective force $F_\mu[\varphi]$ such that

$$
\partial_{\mu}F_{\mu}[\varphi] + DF_{\mu}[\varphi] \cdot (\partial_{\mu}G_{\mu} * F_{\mu}[\varphi]) = O(\lambda^{i_{b}+1}).
$$

§ Multilinear ansatz for effective force

$$
F_{\mu}[\varphi](x) = \sum_{i=0}^{i_{\flat}} \lambda^i \sum_{m=0}^{3i} \int F_{\mu}^{i,m}(x; dy_1, \dots, dy_m) \varphi(y_1) \dots \varphi(y_m).
$$

 \blacktriangleright Kernels $F^{i,m}_\mu$ satisfy **flow equation** that has a lower-triangular structure.

- ► The force $F[\varphi] = F_{\mu=0}[\varphi] = \xi \lambda \varphi^3 + \sum_{i=1}^{i_{\sharp}}$ $\sum_{i=1}^{i_{\sharp}} \lambda^i r^{(i)} \varphi$.
- **► Goal:** Construct an effective force $F_\mu[\varphi]$ such that

$$
\partial_{\mu} F_{\mu}[\varphi] + DF_{\mu}[\varphi] \cdot (\partial_{\mu} G_{\mu} * F_{\mu}[\varphi]) = O(\lambda^{i_{\mathfrak{p}}+1}).
$$

§ Multilinear ansatz for effective force

$$
F_{\mu}[\varphi](x) = \sum_{i=0}^{i_b} \lambda^i \sum_{m=0}^{3i} \int F_{\mu}^{i,m}(x; dy_1, \dots, dy_m) \varphi(y_1) \dots \varphi(y_m).
$$

- \blacktriangleright Kernels $F^{i,m}_\mu$ satisfy **flow equation** that has a lower-triangular structure.
- ▶ We construct $F_{\mu}^{i,m}$ **recursively** using the above-mentioned flow equation.
- ► The force $F[\varphi] = F_{\mu=0}[\varphi] = \xi \lambda \varphi^3 + \sum_{i=1}^{i_{\sharp}}$ $\sum_{i=1}^{i_{\sharp}} \lambda^i r^{(i)} \varphi$.
- **▶ Goal:** Construct an effective force $F_\mu[\varphi]$ such that

$$
\partial_{\mu} F_{\mu}[\varphi] + DF_{\mu}[\varphi] \cdot (\partial_{\mu} G_{\mu} * F_{\mu}[\varphi]) = O(\lambda^{i_{\mathfrak{p}}+1}).
$$

▶ Multilinear ansatz for effective force

$$
F_{\mu}[\varphi](x) = \sum_{i=0}^{i_{\flat}} \lambda^i \sum_{m=0}^{3i} \int F_{\mu}^{i,m}(x; dy_1, \dots, dy_m) \varphi(y_1) \dots \varphi(y_m).
$$

- \blacktriangleright Kernels $F^{i,m}_\mu$ satisfy **flow equation** that has a lower-triangular structure.
- ▶ We construct $F_{\mu}^{i,m}$ **recursively** using the above-mentioned flow equation.
- ▶ Finite collection of kernels $F_{\mu}^{i,m}$ plays the role of the **enhanced noise**.

▶ Recall that we want to prove a bound for the solution of stochastic quantization equation uniform in the lattice spacing *ε* and lattice size *τ* .

- ▶ Recall that we want to prove a bound for the solution of stochastic quantization equation uniform in the lattice spacing *ε* and lattice size *τ* .
- **► We study system of equations for** $\mu \mapsto (\Phi_{\mu}, \zeta_{\mu})$

$$
\begin{cases} \left(\partial_t + (-\Delta)^{\sigma/2} + 1\right) \Phi_\mu = J_\mu * \left(F_\mu[\Phi_\mu] + \zeta_\mu\right) \\ \zeta_\mu = -\int_0^\mu (H_\eta[\Phi_\eta] + \mathrm{D}F_\eta[\Phi_\eta] \cdot \left(\partial_\eta G_\eta * \zeta_\eta\right) \right) \mathrm{d}\eta \, .\end{cases}
$$

- \blacktriangleright Recall that we want to prove a bound for the solution of stochastic quantization equation uniform in the lattice spacing *ε* and lattice size *τ* .
- **► We study system of equations for** $\mu \mapsto (\Phi_{\mu}, \zeta_{\mu})$

$$
\begin{cases} \left(\partial_t + (-\Delta)^{\sigma/2} + 1\right) \Phi_\mu = J_\mu * \left(F_\mu[\Phi_\mu] + \zeta_\mu\right) \\ \zeta_\mu = -\int_0^\mu (H_\eta[\Phi_\eta] + \mathrm{D}F_\eta[\Phi_\eta] \cdot \left(\partial_\eta G_\eta * \zeta_\eta\right) \right) \mathrm{d}\eta \, . \end{cases}
$$

▶ Functionals F_{μ} , H_{μ} are expressed in terms of kernels $F_{\mu}^{i,m}$ (enhanced noise). To control F_μ, H_μ we prove bounds uniform in ε,τ for moments of $F_\mu^{i,m}.$

- \blacktriangleright Recall that we want to prove a bound for the solution of stochastic quantization equation uniform in the lattice spacing *ε* and lattice size *τ* .
- **► We study system of equations for** $\mu \mapsto (\Phi_{\mu}, \zeta_{\mu})$

$$
\begin{cases} \left(\partial_t + (-\Delta)^{\sigma/2} + 1\right) \Phi_\mu = J_\mu * \left(F_\mu[\Phi_\mu] + \zeta_\mu\right) \\ \zeta_\mu = -\int_0^\mu (H_\eta[\Phi_\eta] + \mathrm{D}F_\eta[\Phi_\eta] \cdot \left(\partial_\eta G_\eta * \zeta_\eta\right) \right) \mathrm{d}\eta \, . \end{cases}
$$

- ▶ Functionals F_{μ} , H_{μ} are expressed in terms of kernels $F_{\mu}^{i,m}$ (enhanced noise). To control F_μ, H_μ we prove bounds uniform in ε,τ for moments of $F_\mu^{i,m}.$
- \triangleright At small scales μ the effective force does not differ much from the force, which involves a cubic nonlinearity. Consequently, $J_\mu * F_\mu [\varPhi_\mu] \simeq - \lambda \varPhi^3_\mu$ and coarse-grained process *Φ^µ* satisfies cubic fractional heat equation

$$
(\partial_t + (-\Delta)^{\sigma/2} + 1)\Phi_\mu + \lambda \Phi_\mu^3 = f_\mu.
$$

- **1**. Fractional Φ^4_3 model
- 2. Idea behind the construction
- 3. Flow equation approach
- 4. Coercive estimate

Lemma

$$
\text{If } \Psi \in C^2_0(\mathbb{R} \times \mathbb{R}^d) \text{ and } f = (\partial_t + (-\Delta)^{\sigma/2})\Psi + \Psi^3, \text{ then } \|\Psi\|^3_{L^{\infty}} \leq \|f\|_{L^{\infty}}.
$$

Lemma

If
$$
\Psi \in C_0^2(\mathbb{R} \times \mathbb{R}^d)
$$
 and $f = (\partial_t + (-\Delta)^{\sigma/2})\Psi + \Psi^3$, then $\|\Psi\|_{L^\infty}^3 \leq \|f\|_{L^\infty}$.

Proof.

- ► Let $z_\star \in \mathbb{R} \times \mathbb{R}^d$ be the maximum point of \varPsi .
- \blacktriangleright $(\partial_t \Psi)(z_*) = 0$ and by positivity of kernel of $e^{s\Delta}$ and Jensen's inequality $((-\Delta)^{\sigma/2}\Psi)(z_{\star}) = C_{\sigma}\int_{0}^{\infty}$ $\int_0^\infty (\Psi(z_\star) - (\mathrm{e}^{s\Delta}\Psi)(z_\star))s^{-1-\sigma/2}\mathrm{d}s \geqslant 0.$
- ▶ Consequently, $\sup_{z \in \mathbb{R} \times \mathbb{R}^d} \Psi(z)^3 \leq \Psi(z_*)^3 \leq f(z_*) \leq \|f\|_{L^\infty}$.

To complete the proof we apply the above reasoning to $-\Psi$.

We study a system of equations for $(0, \bar{\mu}] \ni \mu \mapsto (\Phi_{\mu}, \zeta_{\mu})$

$$
\begin{cases} \left(\partial_t + (-\Delta)^{\sigma/2} + 1 \right) \Phi_\mu + \lambda \Phi_\mu^3 = f_\mu \\ \zeta_\mu = - \int_0^\mu (H_\eta[\Phi_\eta] + \mathrm{D} F_\eta[\Phi_\eta] \cdot (\partial_\eta G_\eta * \zeta_\eta)) \, \mathrm{d}\eta \, , \end{cases}
$$

where

$$
f_{\mu} = (J_{\mu} * F_{\mu}[\Phi_{\mu}] + \lambda \Phi_{\mu}^{3}) + \zeta_{\mu}.
$$

We study a system of equations for $(0, \bar{\mu}] \ni \mu \mapsto (\Phi_{\mu}, \zeta_{\mu})$

$$
\begin{cases}\n(\partial_t + (-\Delta)^{\sigma/2} + 1)\Phi_\mu + \lambda \Phi_\mu^3 = f_\mu \\
\zeta_\mu = -\int_0^\mu (H_\eta[\Phi_\eta] + DF_\eta[\Phi_\eta] \cdot (\partial_\eta G_\eta * \zeta_\eta)) d\eta\,,\n\end{cases}
$$

where

$$
f_{\mu} = (J_{\mu} * F_{\mu}[\Phi_{\mu}] + \lambda \Phi_{\mu}^{3}) + \zeta_{\mu}.
$$

Strategy of the proof of tightness

§ Apply the coercive estimate to the equation for the coarse-grained process Φ_μ to bound $|\|\mu \mapsto \varPhi_\mu \|^3_{\bar\mu}$ in terms of $|\|\mu \mapsto f_\mu \|_{\sharp,\bar\mu}$.

We study a system of equations for $(0, \bar{\mu}] \ni \mu \mapsto (\Phi_{\mu}, \zeta_{\mu})$

$$
\begin{cases} \left(\partial_t + (-\Delta)^{\sigma/2} + 1 \right) \Phi_\mu + \lambda \Phi_\mu^3 = f_\mu \\ \zeta_\mu = -\int_0^\mu (H_\eta[\Phi_\eta] + \mathrm{D}F_\eta[\Phi_\eta] \cdot (\partial_\eta G_\eta * \zeta_\eta)) \, \mathrm{d}\eta \, , \end{cases}
$$

where

$$
f_{\mu} = (J_{\mu} * F_{\mu}[\Phi_{\mu}] + \lambda \Phi_{\mu}^{3}) + \zeta_{\mu}.
$$

- § Apply the coercive estimate to the equation for the coarse-grained process Φ_μ to bound $|\|\mu \mapsto \varPhi_\mu \|^3_{\bar\mu}$ in terms of $|\|\mu \mapsto f_\mu \|_{\sharp,\bar\mu}$. \ddot{r} $\ddot{$
- $\blacktriangleright \|\|\mu \mapsto J_{\mu} * F_{\mu}[\Phi_{\mu}] + \lambda \Phi_{\mu}^{3}\|$ $\frac{1}{4,\bar{\mu}}\lesssim \bar{\mu}^{\delta}\,\|\mu\mapsto \varPhi_{\mu}\|_{\bar{\mu}}^{m}$ with finite big $m.$

We study a system of equations for $(0, \bar{\mu}] \ni \mu \mapsto (\Phi_{\mu}, \zeta_{\mu})$

$$
\begin{cases}\n(\partial_t + (-\Delta)^{\sigma/2} + 1)\Phi_\mu + \lambda \Phi_\mu^3 = f_\mu \\
\zeta_\mu = -\int_0^\mu (H_\eta[\Phi_\eta] + DF_\eta[\Phi_\eta] \cdot (\partial_\eta G_\eta * \zeta_\eta)) d\eta\,,\n\end{cases}
$$

where

$$
f_{\mu} = (J_{\mu} * F_{\mu}[\Phi_{\mu}] + \lambda \Phi_{\mu}^{3}) + \zeta_{\mu}.
$$

- § Apply the coercive estimate to the equation for the coarse-grained process Φ_μ to bound $|\|\mu \mapsto \varPhi_\mu \|^3_{\bar\mu}$ in terms of $|\|\mu \mapsto f_\mu \|_{\sharp,\bar\mu}$. \ddot{r} $\ddot{$
- $\blacktriangleright \|\|\mu \mapsto J_{\mu} * F_{\mu}[\Phi_{\mu}] + \lambda \Phi_{\mu}^{3}\|$ $\frac{1}{4,\bar{\mu}}\lesssim \bar{\mu}^{\delta}\,\|\mu\mapsto \varPhi_{\mu}\|_{\bar{\mu}}^{m}$ with finite big $m.$
- § Estimate equation for the remainder *ζ^µ* using the Gronwall lemma.

We study a system of equations for $(0, \bar{\mu}] \ni \mu \mapsto (\Phi_{\mu}, \zeta_{\mu})$

$$
\begin{cases}\n(\partial_t + (-\Delta)^{\sigma/2} + 1)\Phi_\mu + \lambda \Phi_\mu^3 = f_\mu \\
\zeta_\mu = -\int_0^\mu (H_\eta[\Phi_\eta] + DF_\eta[\Phi_\eta] \cdot (\partial_\eta G_\eta * \zeta_\eta)) d\eta\,,\n\end{cases}
$$

where

$$
f_{\mu} = (J_{\mu} * F_{\mu}[\Phi_{\mu}] + \lambda \Phi_{\mu}^{3}) + \zeta_{\mu}.
$$

- § Apply the coercive estimate to the equation for the coarse-grained process Φ_μ to bound $|\|\mu \mapsto \varPhi_\mu \|^3_{\bar\mu}$ in terms of $|\|\mu \mapsto f_\mu \|_{\sharp,\bar\mu}$. \ddot{r} $\ddot{$
- $\blacktriangleright \|\|\mu \mapsto J_{\mu} * F_{\mu}[\Phi_{\mu}] + \lambda \Phi_{\mu}^{3}\|$ $\frac{1}{4,\bar{\mu}}\lesssim \bar{\mu}^{\delta}\,\|\mu\mapsto \varPhi_{\mu}\|_{\bar{\mu}}^{m}$ with finite big $m.$
- § Estimate equation for the remainder *ζ^µ* using the Gronwall lemma.
- \triangleright Choose the terminal scale $\bar{\mu}$ random and small enough.

We study a system of equations for $(0, \bar{\mu}] \ni \mu \mapsto (\Phi_{\mu}, \zeta_{\mu})$

$$
\begin{cases}\n(\partial_t + (-\Delta)^{\sigma/2} + 1)\Phi_\mu + \lambda \Phi_\mu^3 = f_\mu \\
\zeta_\mu = -\int_0^\mu (H_\eta[\Phi_\eta] + DF_\eta[\Phi_\eta] \cdot (\partial_\eta G_\eta * \zeta_\eta)) d\eta\,,\n\end{cases}
$$

where

$$
f_{\mu} = (J_{\mu} * F_{\mu}[\Phi_{\mu}] + \lambda \Phi_{\mu}^{3}) + \zeta_{\mu}.
$$

- § Apply the coercive estimate to the equation for the coarse-grained process Φ_μ to bound $|\|\mu \mapsto \varPhi_\mu \|^3_{\bar\mu}$ in terms of $|\|\mu \mapsto f_\mu \|_{\sharp,\bar\mu}$. \ddot{r} $\ddot{$
- $\blacktriangleright \|\|\mu \mapsto J_{\mu} * F_{\mu}[\Phi_{\mu}] + \lambda \Phi_{\mu}^{3}\|$ $\frac{1}{4,\bar{\mu}}\lesssim \bar{\mu}^{\delta}\,\|\mu\mapsto \varPhi_{\mu}\|_{\bar{\mu}}^{m}$ with finite big $m.$
- § Estimate equation for the remainder *ζ^µ* using the Gronwall lemma.
- \triangleright Choose the terminal scale $\bar{\mu}$ random and small enough.
- ▶ Control moments of $\|\varPhi\|_{\mathcal{B}}$ in terms of $\|\mu\mapsto \varPhi_{\mu}\|_{\bar{\mu}}$ and $\bar{\mu}^{-1}.$
- \blacktriangleright Construction of measure of fractional Φ^4_3 model in full subcritical regime.
- ▶ Flow equation approach to singular SPDEs.
- ▶ Coercive estimate based on the maximum principle.

- ? Rotational invariance.
- ? Sine-Gordon model, Yang–Mills theory, ...