Construction of measure of fractional Φ_3^4 model in full subcritical regime

Paweł Duch EPFL

(based on joint work with M. Gubinelli and P. Rinaldi)

December 4, 2024

- 1. Fractional Φ_3^4 model
- 2. Idea behind the construction
- 3. Flow equation approach
- 4. Coercive estimate

- 1. Fractional Φ_3^4 model
- 2. Idea behind the construction
- 3. Flow equation approach
- 4. Coercive estimate

Constructive Euclidean quantum field theory

Given space Ω of field configurations $\phi : \mathbb{R}^d \to \mathbb{R}$ and action $S : \Omega \to \mathbb{R}$, e.g. $S(\phi) = \int_{\mathbb{R}^d} \left[\phi(x)(\mathcal{Q}\phi)(x) + \lambda \phi(x)^4 \right] \mathrm{d}x, \qquad \mathcal{Q} = 1 - \Delta,$

the goal of the constructive Euclidean QFT is to make sense of the probability measure on Ω formally given by

$$\nu(\mathrm{d}\phi) = \frac{1}{\mathcal{Z}} \exp(-S(\phi)) \prod_{x \in \mathbb{R}^d} \mathrm{d}\phi(x).$$

Constructive Euclidean quantum field theory

Given space Ω of field configurations $\phi : \mathbb{R}^d \to \mathbb{R}$ and action $S : \Omega \to \mathbb{R}$, e.g. $S(\phi) = \int_{\mathbb{R}^d} \left[\phi(x)(\mathcal{Q}\phi)(x) + \lambda \phi(x)^4 \right] \mathrm{d}x, \qquad \mathcal{Q} = 1 - \Delta,$

the goal of the constructive Euclidean QFT is to make sense of the probability measure on Ω formally given by

$$\nu(\mathrm{d}\phi) = \frac{1}{\mathcal{Z}} \exp(-S(\phi)) \prod_{x \in \mathbb{R}^d} \mathrm{d}\phi(x).$$

Osterwalder–Schrader axioms:

- 1. Invariance under Euclidean transformations of \mathbb{R}^d .
- 2. Reflection positivity: Let $(\theta \phi)(x_1, \ldots, x_d) = \phi(-x_1, x_2, \ldots, x_d)$. Then

$$\overline{F(\theta\phi)}F(\phi)\nu(\mathrm{d}\phi) \ge 0$$

for all functionals $F(\phi)$ that depend only on $\phi|_{\{x_1>0\}}$.

3. Regularity: exponential integrability.

$$S_{\varepsilon,\tau}(\phi) = \varepsilon^d \sum_{x \in \mathbb{T}^d_{\varepsilon,\tau}} \left[\phi(x)(\mathcal{Q}_{\varepsilon}\phi)(x) + \lambda\phi(x)^4 - r_{\varepsilon,\tau}\phi(x)^2 \right], \quad \mathcal{Q}_{\varepsilon} = 1 - \Delta_{\varepsilon},$$
$$\nu_{\varepsilon,\tau}(\mathrm{d}\phi) = \frac{1}{\mathcal{Z}} \exp(-S_{\varepsilon,\tau}(\phi)) \prod_{x \in \mathbb{T}^d_{\varepsilon,\tau}} \mathrm{d}\phi(x).$$

Existence of continuum and infinite volume limit and OS axioms for Φ_d^4 model:

- ▶ d = 2: [60': Nelson, Glimm, Jaffe, Segal, Guerra, Rosen, Simon, ...],
- ▶ d = 3: [70': Glimm, Jaffe, Feldman, Park, Osterwalder, Magnen, Senéor, ...].

$$S_{\varepsilon,\tau}(\phi) = \varepsilon^d \sum_{x \in \mathbb{T}^d_{\varepsilon,\tau}} \left[\phi(x)(\mathcal{Q}_{\varepsilon}\phi)(x) + \lambda\phi(x)^4 - r_{\varepsilon,\tau}\phi(x)^2 \right], \quad \mathcal{Q}_{\varepsilon} = 1 - \Delta_{\varepsilon},$$
$$\nu_{\varepsilon,\tau}(\mathrm{d}\phi) = \frac{1}{\mathcal{Z}} \exp(-S_{\varepsilon,\tau}(\phi)) \prod_{x \in \mathbb{T}^d_{\varepsilon,\tau}} \mathrm{d}\phi(x).$$

Existence of continuum and infinite volume limit and OS axioms for Φ_d^4 model:

- ▶ d = 2: [60': Nelson, Glimm, Jaffe, Segal, Guerra, Rosen, Simon, ...],
- ▶ d = 3: [70': Glimm, Jaffe, Feldman, Park, Osterwalder, Magnen, Senéor, ...].

Triviality of ϕ^4 model – the continuum limit does not exist or is Gaussian:

- ▶ *d* = 4: [Aizenman, Duminil-Copin (2021)],
- ▶ *d* > 4: [Aizenman (1982)], [Fröhlich (1982)].

$$S_{\varepsilon,\tau}(\phi) = \varepsilon^d \sum_{x \in \mathbb{T}^d_{\varepsilon,\tau}} \left[\phi(x)(\mathcal{Q}_{\varepsilon}\phi)(x) + \lambda\phi(x)^4 - r_{\varepsilon,\tau}\phi(x)^2 \right], \quad \mathcal{Q}_{\varepsilon} = 1 - \Delta_{\varepsilon},$$
$$\nu_{\varepsilon,\tau}(\mathrm{d}\phi) = \frac{1}{\mathcal{Z}} \exp(-S_{\varepsilon,\tau}(\phi)) \prod_{x \in \mathbb{T}^d_{\varepsilon,\tau}} \mathrm{d}\phi(x).$$

Existence of continuum and infinite volume limit and OS axioms for Φ_d^4 model:

- ▶ d = 2: [60': Nelson, Glimm, Jaffe, Segal, Guerra, Rosen, Simon, ...],
- ▶ d = 3: [70': Glimm, Jaffe, Feldman, Park, Osterwalder, Magnen, Senéor, ...].

Triviality of ϕ^4 model – the continuum limit does not exist or is Gaussian:

- d = 4: [Aizenman, Duminil-Copin (2021)],
- ▶ *d* > 4: [Aizenman (1982)], [Fröhlich (1982)].

Several other models were constructed in $d \leq 3$. Only very special models are expected to exist in d = 4.

Fractional Φ_3^4 model with cutoffs

Action of fractional Φ_3^4 model with cutoffs: $S_{\varepsilon,\tau}(\phi) = \varepsilon^3 \sum_{x \in \mathbb{T}^3_{\varepsilon,\tau}} \left[\phi(x) (\mathcal{Q}_{\varepsilon} \phi)(x) + \frac{\lambda}{2} \phi(x)^4 - r_{\varepsilon,\tau} \phi(x)^2 \right]$ • $\mathbb{T}^3_{\varepsilon,\tau}$ - lattice with spacings $\varepsilon \in (0, 1]$ and period $\tau \in \mathbb{N}_+$, • $\mathcal{Q}_{\varepsilon} = (-\Delta_{\varepsilon})^{\sigma/2} + 1$, • $(-\Delta_{\varepsilon})^{\sigma/2}$ - fractional Laplacian of order $\sigma > 0$, • $r_{\varepsilon,\tau}$ - mass counterterm.

Fractional Φ_3^4 model with cutoffs

Action of fractional Φ_3^4 model with cutoffs: $S_{\varepsilon,\tau}(\phi) = \varepsilon^3 \sum_{x \in \mathbb{T}^3_{\varepsilon,\tau}} \left[\phi(x)(\mathcal{Q}_{\varepsilon}\phi)(x) + \frac{\lambda}{2}\phi(x)^4 - r_{\varepsilon,\tau}\phi(x)^2 \right]$ • $\mathbb{T}^3_{\varepsilon,\tau}$ - lattice with spacings $\varepsilon \in (0, 1]$ and period $\tau \in \mathbb{N}_+$, • $\mathcal{Q}_{\varepsilon} = (-\Delta_{\varepsilon})^{\sigma/2} + 1$, • $(-\Delta_{\varepsilon})^{\sigma/2}$ - fractional Laplacian of order $\sigma > 0$, • $r_{\varepsilon,\tau}$ - mass counterterm.

Measure of fractional Φ_3^4 model with cutoffs $\varepsilon \in (0, 1]$, $\tau \in \mathbb{N}_+$: $\nu_{\varepsilon, \tau}(\mathrm{d}\phi) := \frac{1}{\mathcal{Z}} \exp(-S_{\varepsilon, \tau}(\phi)) \prod_{x \in \mathbb{T}^3_{\varepsilon, \tau}} \mathrm{d}\phi(x).$ We are interested in the limit $\varepsilon \searrow 0, \tau \to \infty$ of $\nu_{\varepsilon, \tau}$.

Concentrate on continuum limit $\nu_{\tau} = \lim_{\varepsilon \searrow 0} \nu_{\varepsilon,\tau}$ for fixed size of torus τ .

Concentrate on continuum limit $\nu_{\tau} = \lim_{\varepsilon \searrow 0} \nu_{\varepsilon,\tau}$ for fixed size of torus τ .

Finite regime $\sigma \in (3, \infty)$

$$\nu_{\tau}(\mathrm{d}\phi) = Z^{-1} \exp(-V(\phi)) \,\mu_{\tau}(\mathrm{d}\phi),$$

• $\mu_{ au}$ is Gaussian measure with covariance $((-\Delta)^{\sigma/2}+1)^{-1}$,

• $V(\phi) = \frac{\lambda}{2} \int_{\mathbb{T}^3_{\tau}} \phi(x)^4 \, \mathrm{d}x$ is the interaction potential.

Concentrate on continuum limit $\nu_{\tau} = \lim_{\varepsilon \searrow 0} \nu_{\varepsilon,\tau}$ for fixed size of torus τ .

Finite regime $\sigma \in (3, \infty)$

$$\nu_{\tau}(\mathrm{d}\phi) = Z^{-1} \exp(-V(\phi)) \,\mu_{\tau}(\mathrm{d}\phi),$$

• $\mu_{ au}$ is Gaussian measure with covariance $((-\Delta)^{\sigma/2}+1)^{-1}$,

• $V(\phi) = \frac{\lambda}{2} \int_{\mathbb{T}^3_{\tau}} \phi(x)^4 \, \mathrm{d}x$ is the interaction potential.

Wick renormalization $\sigma \in (9/4, 3]$

$$\nu_{\tau}(\mathrm{d}\phi) = Z^{-1} \exp(-:V(\phi):) \mu_{\tau}(\mathrm{d}\phi).$$

Concentrate on continuum limit $\nu_{\tau} = \lim_{\varepsilon \searrow 0} \nu_{\varepsilon,\tau}$ for fixed size of torus τ .

Finite regime $\sigma \in (3, \infty)$

$$\nu_{\tau}(\mathrm{d}\phi) = Z^{-1} \exp(-V(\phi)) \,\mu_{\tau}(\mathrm{d}\phi),$$

• $\mu_{ au}$ is Gaussian measure with covariance $((-\Delta)^{\sigma/2}+1)^{-1}$,

• $V(\phi) = \frac{\lambda}{2} \int_{\mathbb{T}^3_{\tau}} \phi(x)^4 \, \mathrm{d}x$ is the interaction potential.

Wick renormalization $\sigma \in (9/4, 3]$

$$\nu_{\tau}(\mathrm{d}\phi) = Z^{-1} \exp(-:V(\phi):) \mu_{\tau}(\mathrm{d}\phi).$$

Subcritical regime beyond Wick renormalization $\sigma \in (3/2, 9/4]$

Short distance behavior of interacting measure ν_{τ} similar to Gaussian measure μ_{τ} but ν_{τ} and μ_{τ} are singular [Hairer, Kusuoka, Nagoji (2024+)].

Concentrate on continuum limit $\nu_{\tau} = \lim_{\varepsilon \searrow 0} \nu_{\varepsilon,\tau}$ for fixed size of torus τ .

Finite regime $\sigma \in (3, \infty)$

$$\nu_{\tau}(\mathrm{d}\phi) = Z^{-1} \exp(-V(\phi)) \,\mu_{\tau}(\mathrm{d}\phi),$$

• $\mu_{ au}$ is Gaussian measure with covariance $((-\Delta)^{\sigma/2}+1)^{-1}$,

• $V(\phi) = \frac{\lambda}{2} \int_{\mathbb{T}^3_{\tau}} \phi(x)^4 \, \mathrm{d}x$ is the interaction potential.

Wick renormalization $\sigma \in (9/4, 3]$

$$\nu_{\tau}(\mathrm{d}\phi) = Z^{-1} \exp(-:V(\phi):) \mu_{\tau}(\mathrm{d}\phi).$$

Subcritical regime beyond Wick renormalization $\sigma \in (3/2, 9/4]$

Short distance behavior of interacting measure ν_{τ} similar to Gaussian measure μ_{τ} but ν_{τ} and μ_{τ} are singular [Hairer, Kusuoka, Nagoji (2024+)].

Critical and supercritical regime $\sigma \in (0, 3/2]$

Continuum limit $\lim_{\varepsilon \searrow 0} \nu_{\varepsilon,\tau}$ does not exist or is Gaussian [Panis (2023+)].

Main result

Recall that the measure $\nu_{\varepsilon,\tau}$ of the fractional Φ_3^4 model depends on:

- ▶ lattice spacing $\varepsilon \in (0,1]$ and size of the torus $\tau \in \mathbb{N}_+$,
- order of fractional Laplacian σ , mass counterterm $r_{\varepsilon,\tau}$.

Main result

Recall that the measure $\nu_{\varepsilon,\tau}$ of the fractional Φ_3^4 model depends on:

- ▶ lattice spacing $\varepsilon \in (0,1]$ and size of the torus $\tau \in \mathbb{N}_+$,
- order of fractional Laplacian σ , mass counterterm $r_{\varepsilon,\tau}$.

- Similar result [Esquivel, Weber (2024+)].
- In general uniqueness of measure not expected.
- Non-triviality every accumulation point non-Gaussian.

1. Fractional Φ_3^4 model

2. Idea behind the construction

3. Flow equation approach

4. Coercive estimate

Idea: establish the bound below and use Prokhorov's theorem $\sup_{\varepsilon\in(0,1],\tau\in\mathbb{N}_+}\int\|\phi\|_{\mathcal{B}}\,\nu_{\varepsilon,\tau}(\mathrm{d}\phi)<\infty.$

Idea: establish the bound below and use Prokhorov's theorem $\sup_{\varepsilon\in(0,1],\tau\in\mathbb{N}_+}\int\|\phi\|_{\mathcal{B}}\,\nu_{\varepsilon,\tau}(\mathrm{d}\phi)<\infty.$

Langevin dynamic in finite dimension Measure $\nu(d\phi) = \exp(-2S(\phi))d\phi$ over \mathbb{R}^n is invariant under dynamic $d\phi_t = dW_t - \nabla S(\phi_t) dt.$

Dynamical fractional Φ_3^4 model on $\mathbb{R} \times \mathbb{T}^3_{\varepsilon,\tau}$ $(\partial_t + (-\Delta_{\varepsilon})^{\sigma/2} + 1) \Phi_{\varepsilon,\tau} = \xi_{\varepsilon,\tau} - \lambda \Phi^3_{\varepsilon,\tau} + r_{\varepsilon,\tau} \Phi_{\varepsilon,\tau}$

- Finite-dimensional SDE in a gradient form.
- Let $\Phi_{\varepsilon,\tau}$ be the global stationary solution.

• Then
$$\nu_{\varepsilon,\tau} = \operatorname{Law}(\Phi_{\varepsilon,\tau}(t, \bullet))$$
 for all $t \in \mathbb{R}$.

The following bound implies tightness

$$\sup_{\varepsilon \in (0,1], \tau \in \mathbb{N}_+} \mathbb{E} \| \varPhi_{\varepsilon,\tau}(t, \bullet) \|_{\mathcal{B}} < \infty.$$

• $\Phi_{\varepsilon,\tau}$ satisfies a parabolic SPDE

$$\left(\partial_t + (-\Delta_{\varepsilon})^{\sigma/2} + 1 \right) \Phi_{\varepsilon,\tau} = \xi_{\varepsilon,\tau} - \lambda \Phi_{\varepsilon,\tau}^3 + r_{\varepsilon,\tau} \, \Phi_{\varepsilon,\tau}$$

We can use some PDE tools to prove the above bound.

• Difficulty: SPDE becomes singular in the continuum limit $\varepsilon \searrow 0$.

The following bound implies tightness

$$\sup_{\varepsilon \in (0,1], \tau \in \mathbb{N}_+} \mathbb{E} \| \Phi_{\varepsilon,\tau}(t, \bullet) \|_{\mathcal{B}} < \infty.$$

• $\varPhi_{arepsilon, au}$ satisfies a parabolic SPDE

$$\left(\partial_t + (-\Delta_{\varepsilon})^{\sigma/2} + 1\right) \Phi_{\varepsilon,\tau} = \xi_{\varepsilon,\tau} - \lambda \Phi_{\varepsilon,\tau}^3 + r_{\varepsilon,\tau} \, \Phi_{\varepsilon,\tau}$$

We can use some PDE tools to prove the above bound.

• Difficulty: SPDE becomes singular in the continuum limit $\varepsilon \searrow 0$.

Strategy

- Use flow equation approach to singular SPDEs to make sense of the equation in the continuum limit.
- Apply maximum principle to derive coercive estimate implying tightness.

- **1**. Fractional Φ_3^4 model
- 2. Idea behind the construction
- 3. Flow equation approach
- 4. Coercive estimate

Stochastic quantization equation and coarse-grained process

Dynamical fractional Φ_3^4 model

$$\left(\partial_t + (-\Delta)^{\sigma/2} + 1\right)\Phi = F[\Phi].$$

Notation:

•
$$F[\varphi] := \xi - \lambda \varphi^3 + r \varphi$$
 - force,

- ξ spacetime white noise,
- ▶ *r* − mass counterterm.

Dynamical fractional Φ_3^4 model

$$\left(\partial_t + (-\Delta)^{\sigma/2} + 1\right)\Phi = F[\Phi].$$

Notation:

•
$$F[\varphi] := \xi - \lambda \varphi^3 + r \varphi$$
 - force,

- ξ spacetime white noise,
- r mass counterterm.

Coarse-grained process

$$\Phi_{\boldsymbol{\mu}} := J_{\boldsymbol{\mu}} \ast \Phi \in C^{\infty}, \qquad \boldsymbol{\mu} \in (0, 1],$$

- \varPhi solution of the dynamical fractional Φ_3^4 model,
- J_{μ} smooth approximation of Dirac delta of characteristic length scale μ .

Effective force

 \blacktriangleright In the limit $\varepsilon\searrow 0$ the dynamical Φ_3^4 model becomes a singular SPDE

$$(\partial_t + (-\Delta)^{\sigma/2} + 1)\Phi = F[\Phi], \qquad F[\varphi] := \xi - \lambda \varphi^3 + r \varphi.$$

Idea: Rewrite the equation as a certain equation that involves only the coarse-grained process (𝒫_µ)_{µ∈(0,1]}.

Effective force

- In the limit $\varepsilon\searrow 0$ the dynamical Φ_3^4 model becomes a singular SPDE

$$(\partial_t + (-\Delta)^{\sigma/2} + 1)\Phi = F[\Phi], \qquad F[\varphi] := \xi - \lambda \varphi^3 + r \varphi$$

Idea: Rewrite the equation as a certain equation that involves only the coarse-grained process (Φ_µ)_{µ∈(0,1]}.

$$\left(\partial_t + (-\Delta)^{\sigma/2} + 1\right) \Phi_{\mu} = J_{\mu} * F[\Phi]$$

Effective force

A family of functionals $F_{\mu}[\varphi]$ depending differentiably $\mu \in [0,1]$ such that:

- the boundary condition $F_{\mu=0}[\varphi] = F[\varphi]$ holds,
- the remainder $\zeta_{\mu} := F[\Phi] F_{\mu}[\Phi_{\mu}]$ is "small".

Effective force

- In the limit $\varepsilon\searrow 0$ the dynamical Φ_3^4 model becomes a singular SPDE

$$(\partial_t + (-\Delta)^{\sigma/2} + 1)\Phi = F[\Phi], \qquad F[\varphi] := \xi - \lambda \varphi^3 + r \varphi$$

Idea: Rewrite the equation as a certain equation that involves only the coarse-grained process (Φ_µ)_{µ∈(0,1]}.

$$\left(\partial_t + (-\Delta)^{\sigma/2} + 1\right) \Phi_{\mu} = J_{\mu} * F[\Phi]$$

Effective force

A family of functionals $F_{\mu}[\varphi]$ depending differentiably $\mu \in [0,1]$ such that:

- the boundary condition $F_{\mu=0}[\varphi] = F[\varphi]$ holds,
- the remainder $\zeta_{\mu} := F[\Phi] F_{\mu}[\Phi_{\mu}]$ is "small".

$$\left(\partial_t + (-\Delta)^{\sigma/2} + 1\right) \Phi_{\mu} = J_{\mu} * \left(F_{\mu}[\Phi_{\mu}] + \zeta_{\mu}\right)$$

$$\begin{cases} \left(\partial_t + (-\Delta)^{\sigma/2} + 1\right) \Phi_{\mu} = J_{\mu} * \left(F_{\mu}[\Phi_{\mu}] + \zeta_{\mu}\right) \\ \zeta_{\mu} = -\int_{0}^{\mu} (H_{\eta}[\Phi_{\eta}] + \mathrm{D}F_{\eta}[\Phi_{\eta}] \cdot (\partial_{\eta}G_{\eta} * \zeta_{\eta})) \,\mathrm{d}\eta \end{cases}$$

Notation:

- $G = (\partial_t + (-\Delta)^{\sigma/2} + 1)^{-1} =$ fractional heat kernel,
- ▶ $\partial_\eta G_\eta := \partial_\eta J_\eta * G$ scale decomposition of the fractional heat kernel,
- $\blacktriangleright H_{\eta}[\varphi] := \partial_{\eta}F_{\eta}[\varphi] + \mathrm{D}F_{\eta}[\varphi] \cdot (\partial_{\eta}G_{\eta} * F_{\eta}[\varphi]) \text{source in equation for } \zeta_{\mu}.$

$$\begin{cases} \left(\partial_t + (-\Delta)^{\sigma/2} + 1\right) \Phi_{\mu} = J_{\mu} * \left(F_{\mu}[\Phi_{\mu}] + \zeta_{\mu}\right) \\ \zeta_{\mu} = -\int_{0}^{\mu} (H_{\eta}[\Phi_{\eta}] + \mathrm{D}F_{\eta}[\Phi_{\eta}] \cdot (\partial_{\eta}G_{\eta} * \zeta_{\eta})) \,\mathrm{d}\eta \end{cases}$$

Notation:

•
$$G = (\partial_t + (-\Delta)^{\sigma/2} + 1)^{-1} =$$
 fractional heat kernel,

- $\partial_\eta G_\eta := \partial_\eta J_\eta * G$ scale decomposition of the fractional heat kernel,
- $\blacktriangleright H_{\eta}[\varphi] := \partial_{\eta}F_{\eta}[\varphi] + \mathrm{D}F_{\eta}[\varphi] \cdot (\partial_{\eta}G_{\eta} * F_{\eta}[\varphi]) \text{source in equation for } \zeta_{\mu}.$

Claim: System of equations for $\mu \mapsto (\Phi_{\mu}, \zeta_{\mu})$ remains meaningful in the continuum limit $\varepsilon \searrow 0$ provided effective force $F_{\mu}[\varphi]$ is chosen appropriately.

Flow equation

• A natural choice for the effective force $F_{\mu}[\varphi]$ is to define it so that $H_{\mu}[\varphi] = 0$, i.e. the following **flow equation** is satisfied

 $\partial_{\boldsymbol{\mu}} F_{\boldsymbol{\mu}}[\varphi] + \mathbf{D} F_{\boldsymbol{\mu}}[\varphi] \cdot (\partial_{\boldsymbol{\mu}} G_{\boldsymbol{\mu}} * F_{\boldsymbol{\mu}}[\varphi]) = 0.$

Then the unique solution of the equation for the remainder is $\zeta_{\mu} = 0$.

A natural choice for the effective force F_μ[φ] is to define it so that H_μ[φ] = 0, i.e. the following flow equation is satisfied

 $\partial_{\mu}F_{\mu}[\varphi] + \mathrm{D}F_{\mu}[\varphi] \cdot (\partial_{\mu}G_{\mu} * F_{\mu}[\varphi]) = 0.$

Then the unique solution of the equation for the remainder is $\zeta_{\mu} = 0$.

Constructing an exact solution F_μ[φ] of the flow equation is quite complicated and is typically only possible if a small parameter is available. A natural choice for the effective force F_μ[φ] is to define it so that H_μ[φ] = 0, i.e. the following flow equation is satisfied

 $\partial_{\mu}F_{\mu}[\varphi] + \mathrm{D}F_{\mu}[\varphi] \cdot (\partial_{\mu}G_{\mu} * F_{\mu}[\varphi]) = 0.$

Then the unique solution of the equation for the remainder is $\zeta_{\mu} = 0$.

- Constructing an exact solution F_μ[φ] of the flow equation is quite complicated and is typically only possible if a small parameter is available.
- We choose instead $F_{\mu}[\varphi]$ that satisfies the flow equation up to some small error term $H_{\mu}[\varphi]$.

Construction of effective force

• The force
$$F[\varphi] = F_{\mu=0}[\varphi] = \xi - \lambda \varphi^3 + \sum_{i=1}^{i_{\sharp}} \lambda^i r^{(i)} \varphi$$
.

Construction of effective force

- The force $F[\varphi] = F_{\mu=0}[\varphi] = \xi \lambda \varphi^3 + \sum_{i=1}^{i_{\sharp}} \lambda^i r^{(i)} \varphi$.
- **Goal:** Construct an effective force $F_{\mu}[\varphi]$ such that

$$\partial_{\mu}F_{\mu}[\varphi] + \mathrm{D}F_{\mu}[\varphi] \cdot (\partial_{\mu}G_{\mu} * F_{\mu}[\varphi]) = O(\lambda^{i_{\flat}+1}).$$

- The force $F[\varphi] = F_{\mu=0}[\varphi] = \xi \lambda \varphi^3 + \sum_{i=1}^{i_{\sharp}} \lambda^i r^{(i)} \varphi$.
- **Goal:** Construct an effective force $F_{\mu}[\varphi]$ such that

$$\partial_{\mu}F_{\mu}[\varphi] + \mathrm{D}F_{\mu}[\varphi] \cdot (\partial_{\mu}G_{\mu} * F_{\mu}[\varphi]) = O(\lambda^{i_{\flat}+1}).$$

$$F_{\boldsymbol{\mu}}[\varphi](x) = \sum_{i=0}^{i_{\flat}} \lambda^{i} \sum_{m=0}^{3i} \int F_{\boldsymbol{\mu}}^{i,m}(x; \mathrm{d}y_{1}, \dots, \mathrm{d}y_{m}) \varphi(y_{1}) \dots \varphi(y_{m}).$$

- The force $F[\varphi] = F_{\mu=0}[\varphi] = \xi \lambda \varphi^3 + \sum_{i=1}^{i_{\sharp}} \lambda^i r^{(i)} \varphi$.
- **Goal:** Construct an effective force $F_{\mu}[\varphi]$ such that

$$\partial_{\mu}F_{\mu}[\varphi] + \mathrm{D}F_{\mu}[\varphi] \cdot (\partial_{\mu}G_{\mu} * F_{\mu}[\varphi]) = O(\lambda^{i_{\flat}+1}).$$

$$F_{\boldsymbol{\mu}}[\varphi](x) = \sum_{i=0}^{i_{\flat}} \lambda^{i} \sum_{m=0}^{3i} \int F_{\boldsymbol{\mu}}^{i,m}(x; \mathrm{d}y_{1}, \dots, \mathrm{d}y_{m}) \varphi(y_{1}) \dots \varphi(y_{m}).$$

• Kernels $F^{i,m}_{\mu}$ satisfy flow equation that has a lower-triangular structure.

- The force $F[\varphi] = F_{\mu=0}[\varphi] = \xi \lambda \varphi^3 + \sum_{i=1}^{i_{\sharp}} \lambda^i r^{(i)} \varphi$.
- **Goal:** Construct an effective force $F_{\mu}[\varphi]$ such that

$$\partial_{\mu}F_{\mu}[\varphi] + \mathrm{D}F_{\mu}[\varphi] \cdot (\partial_{\mu}G_{\mu} * F_{\mu}[\varphi]) = O(\lambda^{i_{\flat}+1}).$$

$$F_{\boldsymbol{\mu}}[\varphi](x) = \sum_{i=0}^{i_{\flat}} \lambda^{i} \sum_{m=0}^{3i} \int F_{\boldsymbol{\mu}}^{i,m}(x; \mathrm{d}y_{1}, \dots, \mathrm{d}y_{m}) \varphi(y_{1}) \dots \varphi(y_{m}).$$

- Kernels $F^{i,m}_{\mu}$ satisfy flow equation that has a lower-triangular structure.
- We construct $F_{\mu}^{i,m}$ recursively using the above-mentioned flow equation.

- The force $F[\varphi] = F_{\mu=0}[\varphi] = \xi \lambda \varphi^3 + \sum_{i=1}^{i_{\sharp}} \lambda^i r^{(i)} \varphi$.
- **Goal:** Construct an effective force $F_{\mu}[\varphi]$ such that

$$\partial_{\mu}F_{\mu}[\varphi] + \mathrm{D}F_{\mu}[\varphi] \cdot (\partial_{\mu}G_{\mu} * F_{\mu}[\varphi]) = O(\lambda^{i_{\flat}+1}).$$

$$F_{\boldsymbol{\mu}}[\varphi](x) = \sum_{i=0}^{i_{\flat}} \lambda^{i} \sum_{m=0}^{3i} \int F_{\boldsymbol{\mu}}^{i,m}(x; \mathrm{d}y_{1}, \dots, \mathrm{d}y_{m}) \varphi(y_{1}) \dots \varphi(y_{m}).$$

- Kernels $F^{i,m}_{\mu}$ satisfy flow equation that has a lower-triangular structure.
- We construct $F^{i,m}_{\mu}$ recursively using the above-mentioned flow equation.
- Finite collection of kernels $F^{i,m}_{\mu}$ plays the role of the **enhanced noise**.

Analysis of effective equation

Recall that we want to prove a bound for the solution of stochastic quantization equation uniform in the lattice spacing ε and lattice size τ.

- Recall that we want to prove a bound for the solution of stochastic quantization equation uniform in the lattice spacing ε and lattice size τ.
- We study system of equations for $\mu \mapsto (\Phi_{\mu}, \zeta_{\mu})$

$$\begin{cases} \left(\partial_t + (-\Delta)^{\sigma/2} + 1\right) \varPhi_{\mu} = J_{\mu} * \left(F_{\mu}[\varPhi_{\mu}] + \zeta_{\mu}\right) \\ \zeta_{\mu} = -\int_{0}^{\mu} (H_{\eta}[\varPhi_{\eta}] + \mathrm{D}F_{\eta}[\varPhi_{\eta}] \cdot (\partial_{\eta}G_{\eta} * \zeta_{\eta})) \,\mathrm{d}\eta \,. \end{cases}$$

- Recall that we want to prove a bound for the solution of stochastic quantization equation uniform in the lattice spacing ε and lattice size τ .
- We study system of equations for $\mu \mapsto (\Phi_{\mu}, \zeta_{\mu})$

$$\begin{cases} \left(\partial_t + (-\Delta)^{\sigma/2} + 1\right) \Phi_{\mu} = J_{\mu} * \left(F_{\mu}[\Phi_{\mu}] + \zeta_{\mu}\right) \\ \zeta_{\mu} = -\int_{0}^{\mu} (H_{\eta}[\Phi_{\eta}] + \mathrm{D}F_{\eta}[\Phi_{\eta}] \cdot (\partial_{\eta}G_{\eta} * \zeta_{\eta})) \,\mathrm{d}\eta \,. \end{cases}$$

 Functionals F_μ, H_μ are expressed in terms of kernels F^{i,m}_μ (enhanced noise). To control F_μ, H_μ we prove bounds uniform in ε, τ for moments of F^{i,m}_μ.

- Recall that we want to prove a bound for the solution of stochastic quantization equation uniform in the lattice spacing ε and lattice size τ .
- We study system of equations for $\mu \mapsto (\Phi_{\mu}, \zeta_{\mu})$

$$\begin{cases} \left(\partial_t + (-\Delta)^{\sigma/2} + 1\right) \Phi_{\mu} = J_{\mu} * \left(F_{\mu}[\Phi_{\mu}] + \zeta_{\mu}\right) \\ \zeta_{\mu} = -\int_{0}^{\mu} (H_{\eta}[\Phi_{\eta}] + \mathrm{D}F_{\eta}[\Phi_{\eta}] \cdot (\partial_{\eta}G_{\eta} * \zeta_{\eta})) \,\mathrm{d}\eta \,. \end{cases}$$

- Functionals F_μ, H_μ are expressed in terms of kernels F^{i,m}_μ (enhanced noise). To control F_μ, H_μ we prove bounds uniform in ε, τ for moments of F^{i,m}_μ.
- At small scales μ the effective force does not differ much from the force, which involves a cubic nonlinearity. Consequently, $J_{\mu} * F_{\mu}[\Phi_{\mu}] \simeq -\lambda \Phi_{\mu}^{3}$ and coarse-grained process Φ_{μ} satisfies cubic fractional heat equation

$$\left(\partial_t + (-\Delta)^{\sigma/2} + 1\right)\Phi_{\mu} + \lambda\Phi_{\mu}^3 = f_{\mu}.$$

- **1**. Fractional Φ_3^4 model
- 2. Idea behind the construction
- 3. Flow equation approach
- 4. Coercive estimate

Lemma

If
$$\Psi \in C_0^2(\mathbb{R} \times \mathbb{R}^d)$$
 and $f = (\partial_t + (-\Delta)^{\sigma/2})\Psi + \Psi^3$, then $\|\Psi\|_{L^{\infty}}^3 \leqslant \|f\|_{L^{\infty}}$.

Lemma

If
$$\Psi \in C_0^2(\mathbb{R} \times \mathbb{R}^d)$$
 and $f = (\partial_t + (-\Delta)^{\sigma/2})\Psi + \Psi^3$, then $\|\Psi\|_{L^\infty}^3 \leqslant \|f\|_{L^\infty}$.

Proof.

- Let $z_{\star} \in \mathbb{R} \times \mathbb{R}^d$ be the maximum point of Ψ .
- ► $(\partial_t \Psi)(z_\star) = 0$ and by positivity of kernel of $e^{s\Delta}$ and Jensen's inequality $((-\Delta)^{\sigma/2}\Psi)(z_\star) = C_\sigma \int_0^\infty (\Psi(z_\star) - (e^{s\Delta}\Psi)(z_\star))s^{-1-\sigma/2} ds \ge 0.$
- Consequently, $\sup_{z \in \mathbb{R} \times \mathbb{R}^d} \Psi(z)^3 \leq \Psi(z_\star)^3 \leq f(z_\star) \leq \|f\|_{L^\infty}$.

To complete the proof we apply the above reasoning to $-\Psi$.

We study a system of equations for $(0, \overline{\mu}] \ni \mu \mapsto (\Phi_{\mu}, \zeta_{\mu})$

$$\begin{cases} \left(\partial_t + (-\Delta)^{\sigma/2} + 1\right) \Phi_{\mu} + \lambda \Phi_{\mu}^3 = f_{\mu} \\ \zeta_{\mu} = -\int_0^{\mu} (H_{\eta}[\Phi_{\eta}] + \mathrm{D}F_{\eta}[\Phi_{\eta}] \cdot (\partial_{\eta}G_{\eta} * \zeta_{\eta})) \,\mathrm{d}\eta \,, \end{cases}$$

where

$$f_{\boldsymbol{\mu}} = (J_{\boldsymbol{\mu}} * F_{\boldsymbol{\mu}}[\Phi_{\boldsymbol{\mu}}] + \lambda \Phi_{\boldsymbol{\mu}}^3) + \zeta_{\boldsymbol{\mu}}.$$

We study a system of equations for $(0, \overline{\mu}] \ni \mu \mapsto (\Phi_{\mu}, \zeta_{\mu})$

$$\begin{cases} \left(\partial_t + (-\Delta)^{\sigma/2} + 1\right) \varPhi_{\mu} + \lambda \varPhi_{\mu}^3 = f_{\mu} \\ \zeta_{\mu} = -\int_0^{\mu} (H_{\eta}[\varPhi_{\eta}] + \mathrm{D}F_{\eta}[\varPhi_{\eta}] \cdot (\partial_{\eta}G_{\eta} * \zeta_{\eta})) \,\mathrm{d}\eta \,, \end{cases}$$

where

$$f_{\boldsymbol{\mu}} = (J_{\boldsymbol{\mu}} * F_{\boldsymbol{\mu}}[\Phi_{\boldsymbol{\mu}}] + \lambda \Phi_{\boldsymbol{\mu}}^3) + \zeta_{\boldsymbol{\mu}}.$$

Strategy of the proof of tightness

• Apply the coercive estimate to the equation for the coarse-grained process Φ_{μ} to bound $\||\mu \mapsto \Phi_{\mu}||_{\overline{\mu}}^{3}$ in terms of $\||\mu \mapsto f_{\mu}||_{\sharp,\overline{\mu}}$.

We study a system of equations for $(0, \overline{\mu}] \ni \mu \mapsto (\Phi_{\mu}, \zeta_{\mu})$

$$\begin{cases} \left(\partial_t + (-\Delta)^{\sigma/2} + 1\right) \varPhi_{\mu} + \lambda \varPhi_{\mu}^3 = f_{\mu} \\ \zeta_{\mu} = -\int_0^{\mu} (H_{\eta}[\varPhi_{\eta}] + \mathrm{D}F_{\eta}[\varPhi_{\eta}] \cdot (\partial_{\eta}G_{\eta} * \zeta_{\eta})) \,\mathrm{d}\eta \,, \end{cases}$$

where

$$f_{\mu} = (J_{\mu} * F_{\mu}[\Phi_{\mu}] + \lambda \Phi_{\mu}^3) + \zeta_{\mu}.$$

Strategy of the proof of tightness

• Apply the coercive estimate to the equation for the coarse-grained process Φ_{μ} to bound $\||\mu \mapsto \Phi_{\mu}||_{\overline{\mu}}^{3}$ in terms of $\||\mu \mapsto f_{\mu}||_{\sharp,\overline{\mu}}$.

$$\blacktriangleright \ \left\| \left| \mu \mapsto J_{\mu} * F_{\mu}[\Phi_{\mu}] + \lambda \Phi_{\mu}^{3} \right| \right\|_{\sharp,\bar{\mu}} \lesssim \bar{\mu}^{\delta} \left\| \left| \mu \mapsto \Phi_{\mu} \right| \right\|_{\bar{\mu}}^{m} \text{ with finite big } m.$$

We study a system of equations for $(0, \overline{\mu}] \ni \mu \mapsto (\Phi_{\mu}, \zeta_{\mu})$

$$\begin{cases} \left(\partial_t + (-\Delta)^{\sigma/2} + 1\right) \varPhi_{\mu} + \lambda \varPhi_{\mu}^3 = f_{\mu} \\ \zeta_{\mu} = -\int_0^{\mu} (H_{\eta}[\varPhi_{\eta}] + \mathrm{D}F_{\eta}[\varPhi_{\eta}] \cdot (\partial_{\eta}G_{\eta} * \zeta_{\eta})) \,\mathrm{d}\eta \,, \end{cases}$$

where

$$f_{\boldsymbol{\mu}} = (J_{\boldsymbol{\mu}} * F_{\boldsymbol{\mu}}[\Phi_{\boldsymbol{\mu}}] + \lambda \Phi_{\boldsymbol{\mu}}^3) + \zeta_{\boldsymbol{\mu}}.$$

Strategy of the proof of tightness

- Apply the coercive estimate to the equation for the coarse-grained process Φ_{μ} to bound $\||\mu \mapsto \Phi_{\mu}||_{\overline{\mu}}^{3}$ in terms of $\||\mu \mapsto f_{\mu}||_{\sharp,\overline{\mu}}$.
- $\blacktriangleright \ \left\| \mu \mapsto J_{\mu} * F_{\mu}[\Phi_{\mu}] + \lambda \Phi_{\mu}^{3} \right\|_{\sharp, \overline{\mu}} \lesssim \overline{\mu}^{\delta} \left\| \mu \mapsto \Phi_{\mu} \right\|_{\overline{\mu}}^{m} \text{ with finite big } m.$
- Estimate equation for the remainder ζ_{μ} using the Gronwall lemma.

We study a system of equations for $(0, \overline{\mu}] \ni \mu \mapsto (\Phi_{\mu}, \zeta_{\mu})$

$$\begin{cases} \left(\partial_t + (-\Delta)^{\sigma/2} + 1\right) \varPhi_{\mu} + \lambda \varPhi_{\mu}^3 = f_{\mu} \\ \zeta_{\mu} = -\int_0^{\mu} (H_{\eta}[\varPhi_{\eta}] + \mathrm{D}F_{\eta}[\varPhi_{\eta}] \cdot (\partial_{\eta}G_{\eta} * \zeta_{\eta})) \,\mathrm{d}\eta \,, \end{cases}$$

where

$$f_{\boldsymbol{\mu}} = (J_{\boldsymbol{\mu}} * F_{\boldsymbol{\mu}}[\Phi_{\boldsymbol{\mu}}] + \lambda \Phi_{\boldsymbol{\mu}}^3) + \zeta_{\boldsymbol{\mu}}.$$

Strategy of the proof of tightness

- Apply the coercive estimate to the equation for the coarse-grained process Φ_{μ} to bound $\||\mu \mapsto \Phi_{\mu}||_{\overline{\mu}}^{3}$ in terms of $\||\mu \mapsto f_{\mu}||_{\sharp,\overline{\mu}}$.
- $\blacktriangleright \ \left\| \mu \mapsto J_{\mu} * F_{\mu}[\Phi_{\mu}] + \lambda \Phi_{\mu}^{3} \right\|_{\sharp,\bar{\mu}} \lesssim \bar{\mu}^{\delta} \left\| \mu \mapsto \Phi_{\mu} \right\|_{\bar{\mu}}^{m} \text{ with finite big } m.$
- Estimate equation for the remainder ζ_{μ} using the Gronwall lemma.
- Choose the terminal scale $\bar{\mu}$ random and small enough.

We study a system of equations for $(0, \overline{\mu}] \ni \mu \mapsto (\Phi_{\mu}, \zeta_{\mu})$

$$\begin{cases} \left(\partial_t + (-\Delta)^{\sigma/2} + 1\right) \varPhi_{\mu} + \lambda \varPhi_{\mu}^3 = f_{\mu} \\ \zeta_{\mu} = -\int_0^{\mu} (H_{\eta}[\varPhi_{\eta}] + \mathrm{D}F_{\eta}[\varPhi_{\eta}] \cdot (\partial_{\eta}G_{\eta} * \zeta_{\eta})) \,\mathrm{d}\eta \,, \end{cases}$$

where

$$f_{\boldsymbol{\mu}} = (J_{\boldsymbol{\mu}} * F_{\boldsymbol{\mu}}[\Phi_{\boldsymbol{\mu}}] + \lambda \Phi_{\boldsymbol{\mu}}^3) + \zeta_{\boldsymbol{\mu}}.$$

Strategy of the proof of tightness

- Apply the coercive estimate to the equation for the coarse-grained process Φ_{μ} to bound $\||\mu \mapsto \Phi_{\mu}||_{\overline{\mu}}^{3}$ in terms of $\||\mu \mapsto f_{\mu}||_{\sharp,\overline{\mu}}$.
- $\blacktriangleright \ \left\| \mu \mapsto J_{\mu} * F_{\mu}[\Phi_{\mu}] + \lambda \Phi_{\mu}^{3} \right\|_{\sharp,\bar{\mu}} \lesssim \bar{\mu}^{\delta} \left\| \mu \mapsto \Phi_{\mu} \right\|_{\bar{\mu}}^{m} \text{ with finite big } m.$
- Estimate equation for the remainder ζ_{μ} using the Gronwall lemma.
- Choose the terminal scale $\bar{\mu}$ random and small enough.
- Control moments of $\|\Phi\|_{\mathcal{B}}$ in terms of $\|\mu \mapsto \Phi_{\mu}\|_{\bar{\mu}}$ and $\bar{\mu}^{-1}$.

- Construction of measure of fractional Φ_3^4 model in full subcritical regime.
- Flow equation approach to singular SPDEs.
- Coercive estimate based on the maximum principle.

- ? Rotational invariance.
- ? Sine-Gordon model, Yang-Mills theory, ...