
From Java to Kotlin with Contextual Equality Saturation
Alexandre Drewery (Inria)

Supervisors: Thomas Jensen (Inria) – David Pichardie (META)

1. Motivation

New programming languages appear → need for codebase migration

Millions of line of codes to migrate + the translation must be safe

Perform automatic translation validation: increased speed and confidence

Java to Kotlin migration: compiled Java bytecodes must be equivalent

Kotlin programJava program Java Bytecode Java Bytecode
Compiled

 into
Equivalence

Checking
Compiled

 into

2. Experimentation with existing tool

Peggy [1]: a rewriting tool for Java bytecode equivalence checking

Can Peggy prove equivalence for atomic Java program + automatic Kotlin

translation with its base rewriting rules?

Program main feature Observed difference in programs Peggy-proved

Arithmetic operations Permutation of registers used and optimization Yes

Conditional structure If-statement vs If-expression Yes

Constant foldable if Optimization: removed conditional dead branch Yes

Dead code (repeated if) If-statement vs If-expression Yes

Basic loop for on int Different control flow and loop exit condition No

Loop while Permutation of registers used Yes

Increment-by-two loop for Converted into a while, permutation of registers Yes

Recursion If-statement vs If-expression Yes

Infinite while-loop Kotlin bytecode has no return instruction No

Calling another function Optimization: suppressed an useless local variable Yes

Objects, accessing field Field access is a method in Kotlin No

Uninitialized local/field Different covention on field initialization Yes

Iterating over array Permutation of registers used and operations order Yes

Challenge: the loop for structure

i n J a v a

i = i0

while (i <= f i n a l) {

loop body

increment i

}

i n K o t l i n

i = i0

i f (i <= f i n a l) {

loop body

while (i ! = f i n a l) {

increment i

loop body } }

More rewriting rules → can prove equivalence but longer proofs, worse

performances

Our idea: improving the rewriting technique with a new kind of rewriting

rules

3. Background: Equality Saturation

Peggy’s method: Equality Saturation on a term representation of programs

Initial term t + rewriting rules → set of terms equivalent to t

Iteratively apply all possible rules on growing equivalence classes of terms

The e-graph data structure [2]

Heart of Equality Saturation, from the SMT term management core

Represents simultaneously a subterm relation and an equivalence relation

on terms

Supports the powerful e-matching operation to look for pattern in the set of

terms

An example of equality saturation on arithmetical terms

*

/

a 2

E-graph for initial term div(mult(a, 2), 2)
Looks like a term tree

Each node (e-node) is in an equivalence class of

terms (e-class), edges point towards e-classes

*

/

a 2

*

/

Applying rule div(mult(A,B), C)
 mult(A, div(B, C))
This adds a new term mult(a, div(2, 2)) to the

top e-class

New e-nodes are created, e-class are merged

*

/

a 2 1

*

/

Applying rule div(A,A)
 1

Adds a new e-class and e-node for 1

and merges it with e-node div(2, 2)

*

/

a 2 1

*

/

Applying rule mult(A, 1)
 A

The e-class of a and the e-class representing

mult(a, 1) are merged

The e-node of our initial term is in the same e-class

as the e-node for a

We proved the term equivalent to a

4. Our approach: Contextual Equality Saturation

Limit of Equality Saturation : rewriting rules are local

Example: rule if (equal(A,B),A, C)
 if (equal(A,B),B, C) cannot be applied

immediately on the following e-graph:

if

+=

5 1x

6

Current solution: more rules to ”swap” if and plus → long proofs, bad

performances

In this work we introduce contextual rewriting rules: a context (boolean

pattern) + a rewriting rule

equal(A,B) ` A
 B

”We can replace A by B under a term under which context equal(A,B) is true”

5. Algorithms for Contextual Equality Saturation

Annotate each e-class with true contexts via dataflow static analysis on the

e-graph structure

Applying a contextual rewriting rule

1. E-match for e-class that has context

1. annotation + pattern

2. Add rewritten term and merge e-classes

3. Update annotations
(x=5), e3(x=5), e2

(x=5), e1

e1

if

e2 e3

+=

5 0x

4

Done: contextual equality saturation algorithms are designed

Ongoing: experimentation for comparison with state of the art

Todo: large scale translation validation

6. References

[1] R. Tate,M. Stepp, Z. Tatlock, and S. Lerner. Equality saturation: A new approach to optimization. LMCS, 7, mar 2011.

[2] M. Willsey, C. Nandi, Y. Wang, O. Flatt, Z. Tatlock, and P. Panchekha. egg: Fast and extensible equality saturation. In

Proc. of the ACM on Programming Languages, 5:1–29, jan 2021.

From Java to Kotlin with Contextual Equality Saturation POPL Student Research Contest, London alexandre.drewery@inria.fr

mailto:alexandre.drewery@inria.fr

