Indécidabilité de la validité au premier ordre

Antoine DEQUAY

$21~{\rm septembre}~2022$

Notes

- Prof : Nicolas Markey.
- Leçon : 914, 924.
- Références :
 - LE BARBENCHON.

Théorème 1 On définit le problème :

```
\begin{array}{lll} ^{1} & \text{VALIDFO} \\ ^{2} & \text{Entr\'ee} \ : \ \varphi \ \text{une formule close du premier ordre} \, . \\ ^{3} & \text{Sortie} \ : \ \text{True si} \ \varphi \ \text{est valide} \, , \ \text{False sinon} \, . \end{array}
```

Ce problème est indécidable.

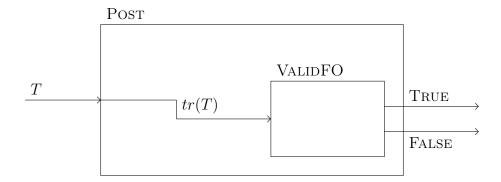
Preuve. Pour prouver l'indécidabilité de VALIDFO, on va réduire POST (sans ε), que l'on sait indécidable, à VALIDFO, où POST (sans ε) est le problème suivant :

```
POST

2 Entrée : \Sigma un alphabet fini et un ensemble fini de tuiles (u_i, v_i)_i à valeurs dans \Sigma^* \setminus \{\varepsilon\}.

3 Sortie : True s'il existe i_1, \ldots, i_p tels que u_{i_1} \ldots u_{i_p} = v_{i_1} \ldots v_{i_p}.
```

On cherche donc à exhiber un fonction tr, calculable, qui prends en entrée une instance de Post et la traduit en une instance de Validfo telle que Validfo(tr(T)) = Post(T) pour tout T instance de Post; on le résume graphiquement :



Soit T une instance de Post. Sans perte de généralité, on peut supposer que $\Sigma = \{a, b\}$. On se donne alors la signature $S = \{F, P\}$, avec $F = \{\varepsilon(0), a(1), b(1)\}$ les fonctions (précisées ici avec leur arité) et $P = \{p(2)\}$ l'ensemble des prédicats.

On écrira, pour $(u_1, \ldots, u_n) \in \Sigma^n$, $u_1 u_2 \ldots u_n(\cdot) = u_n(\ldots u_2(u_1(\cdot)) \ldots)$ et on pose (à expliquer en direct) :

$$tr(T) = \varphi \longrightarrow \psi$$

avec

$$\varphi := p(\varepsilon, \varepsilon) \wedge \bigwedge_{i=1}^{n} (\forall x \forall y p(x, y) \longrightarrow p(u_i(x), v_i(y)))$$

et

$$\psi = \exists x \left(p(a(x), a(x)) \lor p(b(x), b(x)) \right)$$

Explications sémantiques en direct : "p(x,y) est vrai si et seulement si $\begin{bmatrix} x \\ y \end{bmatrix}$ existe", où

$$\begin{vmatrix} u_1 \dots u_n \\ v_1 \dots v_n \end{vmatrix} := \begin{vmatrix} u_1 \\ v_1 \end{vmatrix} \cdots \begin{vmatrix} u_n \\ v_n \end{vmatrix} .$$

Montrons que la fonction de traduction remplit bien son rôle. Soit T une instance de Post, supposons donc tr(T) valide, et montrons que Post(T) = TRUE.

On se donne le modèle suivant :

- de domaine $\mathcal{D}_{\mathcal{M}} = \Sigma^*$,
- $-\varepsilon^{\mathcal{M}}$ correspond au mot vide sur Σ ,

$$- u^{\mathcal{M}}(\cdot) : \begin{pmatrix} \Sigma^* & \longrightarrow & \Sigma^* \\ x & \longrightarrow & xu \end{pmatrix} \text{ pour } u \in \{a, b\},$$

$$-p^{\mathcal{M}}(\cdot,\cdot): \left(\begin{array}{ccc} (\Sigma^*)^2 & \longrightarrow & \{0,1\} \\ (x,y) & \longrightarrow & \begin{cases} 1 & \text{si} & x \\ y & y \end{cases} \text{ existe,} \\ 0 & \text{sinon.} \end{array}\right)$$

Montrons que $\mathcal{M} \models \varphi$.

On a bien $\mathcal{M} \models p(\varepsilon, \varepsilon)$, car sans prendre de tuiles, on a bien accès à $\boxed{\varepsilon}$.

Soit $(u,v) \in \Sigma^*$ tel que $\mathcal{M} \begin{bmatrix} x := u \\ y := v \end{bmatrix} \models p(x,y)$. Par définition de $p^{\mathcal{M}}$, on a accès à

 $\llbracket 1, n \rrbracket, \mathcal{M} \left[\begin{array}{c} x := u \\ y := v \end{array} \right] \models p(u_i(x), v_i(y)).$ Il vient donc bien $\mathcal{M} \models \varphi$.

La formule tr(T) étant valide, pour tout modèle \mathcal{M} , on a $\mathcal{M} \models (\varphi \longrightarrow \psi)$. Ainsi, $\mathcal{M} \models \psi$. Par symétrie en a et b, on peut supposer que $\mathcal{M} \models \exists xp(a(x),a(x))$. Il existe donc $\alpha \in \Sigma^*$ tel que $\mathcal{M} \begin{bmatrix} x := \alpha \end{bmatrix} \models p(a(x),a(x))$, on a donc accès à $\begin{bmatrix} \alpha a \\ \alpha a \end{bmatrix}$, avec $\alpha a \neq \varepsilon$, donc T est bien une instance positive de Post!

Soit maintenant T une instance positive de POST, montrons que tr(T) est valide. Soit $(i_j)_{j\in [\![1,m]\!]}$ tel que $u_{i_1}\ldots u_{i_m}=v_{i_1}\ldots v_{i_m}$. On note, pour $k\in [\![1,m]\!]$ et $w\in \{u,v\},\ w^{(k)}=w_{i_1}\ldots w_{i_k}$.

Soit \mathcal{M} un modèle. Si $\mathcal{M} \not\models \varphi$, alors $\mathcal{M} \models (\varphi \longrightarrow \psi)$. Supposons $\mathcal{M} \models \varphi$, et montrons que $\mathcal{M} \models \psi$.

Montrons pour cela par récurrence sur $k \in [0, m]$ que $\mathcal{M}\begin{bmatrix} x := u^{(k)}(\varepsilon) \\ y := v^{(k)}(\varepsilon) \end{bmatrix} \models p(x, y)$. Pour

 $k = 0, \mathcal{M} \models p(\varepsilon, \varepsilon) \text{ car } \mathcal{M} \models \varphi.$

Soit $k \in [0, m-1]$, on suppose qu'on a $\mathcal{M} \begin{bmatrix} x := u^{(k)}(\varepsilon) \\ y := v^{(k)}(\varepsilon) \end{bmatrix} \models p(x, y)$, montrons que

$$\mathcal{M} \left[\begin{array}{l} x := u^{(k+1)}(\varepsilon) \\ y := v^{(k+1)}(\varepsilon) \end{array} \right] \models p(x,y)$$

Comme $\mathcal{M} \models \varphi$, en particulier, pour $i \in [1, n], \mathcal{M} \models \forall x \forall y (p(x, y) \longrightarrow p(u_i(x), v_i(y)), \text{ donc}$ $\mathcal{M} \models \forall x \forall y (p(x, y) \longrightarrow p(u_{i_{k+1}}(x), v_{i_{k+1}}(y)). \text{ Ainsi,}$

$$\mathcal{M} \left[\begin{array}{c} x := u^{(k)}(\varepsilon) \\ y := v^{(k)}(\varepsilon) \end{array} \right] \models \left(p(x,y) \longrightarrow p(u_{i_{k+1}}(x), v_{i_{k+1}}(y)) \right)$$

et

$$\mathcal{M} \left[\begin{array}{c} x := u^{(k)}(\varepsilon) \\ y := v^{(k)}(\varepsilon) \end{array} \right] \models p(x, y)$$

donc

$$\mathcal{M}\left[\begin{array}{c} x := u^{(k)}(\varepsilon) \\ y := v^{(k)}(\varepsilon) \end{array}\right] \models p(u_{i_{k+1}}(x), v_{i_{k+1}}(y))$$

donc

$$\mathcal{M} \left[\begin{array}{l} x := u^{(k+1)}(\varepsilon) \\ y := v^{(k+1)}(\varepsilon) \end{array} \right] \models p(x,y)$$

Sans perte de généralité, on peut écrire : $u^{(m)} = \widetilde{u}a = v^{(m)} = \widetilde{v}a$, et on a

$$\mathcal{M} \left[\begin{array}{l} x := u^{(m)}(\varepsilon) \\ y := v^{(m)}(\varepsilon) \end{array} \right] \models p(x, y)$$

Ainsi,

$$\mathcal{M} \left[\begin{array}{c} x := \widetilde{u}a(\varepsilon) \\ y := \widetilde{u}a(\varepsilon) \end{array} \right] \models p(x,y)$$

Ce qui se traduit par

$$\mathcal{M} \left[x := \widetilde{u}(\varepsilon) \right] \models p(a(x), a(x))$$

Donc $\mathcal{M} \models \psi$. Ainsi, $\mathcal{M} \models (\varphi \longrightarrow \psi)$, donc tr(T) est valide.

Il reste à remarquer que $tr(\cdot)$ est calculable (comme suite d'opérations finie sur un ensemble fini). On a bien réduit POST à VALIDFO. La décidabilité de VALIDFO induirait donc la décidabilité de POST, que l'on sait indécidable; donc VALIDFO est indécidable.