108 : Exemples de parties génératrices d'un groupe. Applications.

Antoine DEQUAY

$21~{\rm septembre}~2022$

Notes

— Prof : .
— Références :
— H2G2, tome 2,
— NH2G2, tome 2,
— Calais, Éléments de théorie des groupes
— Rombaldi,
— Gourdon, Algèbre,
— Perrin.

Table des matières

1 Groupes abéliens						
	1.1	Groupes monogènes et cycliques	1			
	1.2	Groupes abéliens de type fini	1			
2	Gro	oupe symétrique	1			
	2.1	Générateurs	1			
	2.2	Sous-groupes choisis	1			
3	Gro	oupe linéaire	1			

Prépa Agreg Option D		Agreg Option D 108 : Exemples de parties génératrices d'un groupe.	Application			ns.
4	Lier	ns avec la géométrie				1
	4.1	Groupe diédral et polygones				1
	4.2	Cas des solides de Platon				2
	4.3	Hyperbole et résolution d'équation				2

→ Définition partie génératrice.

1 Groupes abéliens

Cf Rombaldi.

1.1 Groupes monogènes et cycliques

1.2 Groupes abéliens de type fini

```
+ Cf Calais.
```

→ Calais pour def torsion (8.36) et théorème général.

2 Groupe symétrique

Cf Rombaldi.

2.1 Générateurs

→ ([DEV]) Théorème de BRAUER.

2.2 Sous-groupes choisis

```
\rightsquigarrow signature, \mathcal{A}_n,
```

 \rightarrow [DEV] Paire génératrice de sous-groupes de \mathfrak{S}_n .

3 Groupe linéaire

Cf Rombaldi, Perrin, et Gourdon.

→ Transvection, dilatation, ...

4 Liens avec la géométrie

4.1 Groupe diédral et polygones

Cf CALAIS.

4.2 Cas des solides de Platon

Cf NH2G2.

4.3 Hyperbole et résolution d'équation

Cf H2G2.

 \leadsto ${\bf [DEV]}$ Équation de Pell-Fermat.