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CACTUS GROUPS, TWIN GROUPS, AND RIGHT-ANGLED ARTIN GROUPS

PAOLO BELLINGERI, HUGO CHEMIN, AND VICTORIA LEBED

ABSTRACT. Cactus groups J, are currently attracting considerable interest from diverse mathematical
communities. This work explores their relations to right-angled Coxeter groups, and in particular twin
groups Tw, and Mostovoy’s Gauss diagram groups D,,, which are better understood. Concretely, we
construct an injective group 1-cocycle from J, to Dy, and show that Tw, (and its k-leaf generalisations)
inject into J,. As a corollary, we solve the word problem for cactus groups, determine their torsion
(which is only even) and center (which is trivial), and answer the same questions for pure cactus groups,
PJ,. In addition, we yield a 1-relator presentation of the first non-abelian pure cactus group PJs. Our
tools come mainly from combinatorial group theory.

1. INTRODUCTION

Cactus groups appeared under the name of quasibraid groups in the study of the mosaic operad; this
latter governs the moduli space of configurations of smooth points on punctured stable real algebraic
curves of genus zero [Dev99, EHKR10, KW19]. They were immediately generalised to other Coxeter
types, and renamed mock reflection groups [DJS03].

It was later realised that the same groups control coboundary categories, just as braid groups control
braided categories [HK06a]. That paper launched the term cactus groups, inspired by the Opuntia-
cactus-like form of the moduli spaces above. Coboundary categories were designed to study the crystals
of finite-dimensional reductive Lie algebras and, more generally, the representations of coboundary Hopf
algebras.

Cactus groups also appear in the context of hives and octahedron recurrence [KTW04, HK06b].
Together with their generalisations to other Coxeter types, they have become a recurrent tool in
representation theory [Bonl6, Los19, CGP20].

Concretely, the cactus group J, is defined by its generators! Sp,q» Where 1 < p < ¢ < n, and relations

8123,q =1, (j1)
Sp.qSmyr = Smyspg if [p,ql N [m, 7] =0, (j2)
Sp.qSmyr = Sptq—rpt+q-mSpg i [m, 7] C[p,ql. (i3)

The generator s, , can be diagrammatically represented as the braid on n strands where the strands
p, p+1, ..., qintersect at one common point, and reverse their order after that point. The relations
are depicted in Fig. 1. Here and below the diagrams are drawn from left to right, in order to match
the order of generators in a word representing a cactus. These diagrams make one think of cacti once
again—saguaros these time. For this reason we will often call cacti the elements of J,, and use the
term leaf number for the parameter ¢ — p + 1 of the generator s, ,.

One should handle such diagrams with care: the braid relation sj 2523512 = 52,351,252,3 from Fig. 2,
natural in braid and knot theories (where it corresponds to the Reidemeister III move), does not hold
in cactus groups.

The closure of such braids yields cactus doodles, i.e. curves with self-intersections [MR22].

Date: 15th September 2022.
2020 Mathematics Subject Classification. 20F55, 20F36, 57K12, 20F10 .
Key words and phrases. Braid groups, twin groups, cactus groups, right-angled Coxeter groups, pure cactus groups,
virtual braid groups, torsion, word problem, normal form, group 1-cocycle.
lWe should have written Sp,q;n here. However, we systematically drop the subscript n since it is always clear from the
context. The same is done for the maps s and d, and for the Gauss diagrams 77 below.
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FiGURE 1. Three types of relations in cactus groups
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FIGURE 2. The braid relation, false in cactus groups

Looking at how such braids permute their strands, one obtains a group morphism
s: Jn — Sp,
spg— (1,2,...,p—1,g,q—1,...,p+1,p, ¢+ 1,¢+2,...,n).

The kernel of this map is the pure cactus group P.J,, sometimes denoted as I';,+1. It is the fundamental
group of the real locus of the Deligne-Mumford compactification Mg ,,41 of the moduli space of rational
curves with n 4+ 1 marked points [Dev99]. This explains why these groups are particularly interesting.

Our braid-like diagrams can be read in another way: label the strands from 1 (top) to n (bottom),
and then at each multiple point write down the set of the labels of the intersecting strands. This yields
a set-theoretic map

d: J, = Dy.

Here D,, is the Gauss diagram group from [Mos19]2. Concretely, it has one generator 77 for each subset
I of {1,2,...,n} of size > 2, and the relations are

7-12 =1, (dl)
rry =71y if INJ=0 or ICJ. (d2)

It is a right-angled Coxeter group (RACG), that is, it is generated by idempotents with only commutation
relations between them. Its elements will be called Gauss diagrams, since they are related to the Gauss
diagrams from virtual knot theory.

The map d is not a group morphism. In Section 2, we explain that it is a group 1-cocycle, injective by
a theorem from [Mos19] (see also [Yu22] for a proof for other Coxeter types). However, its restriction
to the pure part PJ, becomes a group morphism.

The “reading” maps s and d can be assembled into a single injective group morphism

p=dxs:J,— D, xS,

The semi-direct product on the right can be seen as the wvirtual cactus group, where any, not necessarily
neighboring, collection of strands can come together (using the S, part) and form a multi-strand
intersection (using the D,, part). Note that, contrary to the usual approach to virtuality in similar
settings [BSV19, KNS21], in D,, x S,, a diagram 77 € D,, and a permutation o € S,, do commute when
o permutes elements from I only.

In Section 2, we use the map d to reduce the word problem in J,, to its much easier analogue in the
RACG D,,, and describe an efficient solution.

2In [Mos19], the D,, were simply called diagram groups. Following a suggestion of Mostovoy, we use a more precise
term, in order to avoid confusion with Guba and Sapir’s diagram groups.



CACTUS AND TWIN GROUPS 3

Similarly, in Section 3 we work on the D,, side to study certain subgroups of .J,. Concretely, given
some 2 < i < j < n, consider the group Ji/ defined by the generators Sp,q> Where 1 < p < ¢ <n and
i < q—p+1<j, and the cactus relations (j1)-(j3). In other words, we keep only those generators
whose leaf number is between i and j. The groups Tw, = J>? appeared as Grothendieck cartographical
groups in [Voe90]; further as twin groups in [Kho97], as a diagrammatic description of the motion of n
points on the plane without triple collisions, but also as a tool to study doodles (closed plane curves
without triple intersections, see [FT79]); later under the name of flat braids [Mer99] and planar braids
[MRM20]; and finally under the name of traids in physics literature [HK20]. By definition, the twin
groups are RACGs, just like any group J&*. As other RACG families, they appear in several contexts
such as topological robotics [GLMRM21]. Our first results is

Theorem A. For all 2 < i < j <mn, the natural maps
T = I,
Sp,q 7 Spgq

are injective.

Thus cactus groups contain twin groups and their higher-leaf analogues. This result is actually
established for a wider class of partial presentations of .J,. It can also be seen as the braid-like
counterpart of the recent proof that the space of doodles embeds into that of cactus doodles [MR22].

We further exploit the injectiveness of d in Section 4 to study the torsion and the center of J, and
PJ,. We prove

Theorem B. The cactus groups J, have no odd torsion. Moreover, for any k they contain torsion of
order 2% provided that n is big enough.

Theorem C. The pure cactus groups PJ, is torsionless.

This last result can also be obtained topologically, by interpreting P.J, as the fundamental group
of an aspherical manifold [EHKR10]. Our proof, of combinatorial nature, has the advantage of being
elementary and self-contained.

Theorem D. The groups J, and PJ, are centerless whenever n > 2 and n > 3 respectively.

We have seen that the cactus group J,, contains several important RACGs (T'w,, and more generally
all the J4%). In the opposite direction, it injects (non-homomorphically) into the RACG D,,. In some
sense, it can be thought of as a deformation of a RACG, where some commutation relations are deformed
to commutation-conjugation relations. In fact, it can be seen as the Coxeter-like finite quotient, in the
sense of [LV19], of the structure group of a partial solution to the Yang—Baxter equation, in the sense of
[Cho21]. It inherits some properties of the RACG D,,, but loses others: for instance, it has less center
(the center of D,, is (712, n) =~ Z2) and more torsion (D), has torsion of order 2 but not of order 4).

Finally, in Appendix A we yield a (complicated) one-relator presentation for the first interesting pure
cactus group PJs. In particular, it confirms the absence of torsion in this group.

Acknowledgements. The authors are grateful to Neha Nanda and John Guaschi for their help
with GAP computations and fruitful conversations, and to Jacob Mostovoy for helpful discussions and
remarks.

2. WORD PROBLEM FOR CACTUS GROUPS

Recall that, given a cactus diagram t representing a cactus ¢ € J,, the Gauss diagram d(c) € D,
is constructed as follows: label the left endpoints of the strands of ¢ from 1 (top) to n (bottom); at
each crossing reverse the order of the strands, and hence of the labels; at the ¢th crossing write down
the ()unordered) set I; of the labels of the intersecting strands; finally, multiply the generators of D,,
corresponding to these label sets from left to right, setting d(c) = 77,77, - - -. See Fig. 3 for an example®.

3Here and below we write Tab,... ) for simplicity.

yoes
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O R
w DO

T1,2 T1,3,4 79,34
FIGURE 3. A cactus ¢ with s(c) = (4312) and d(c) = T1271,3.472,34

Theorem 2.1 ([Mos19, Yu22]). The above procedure yields a well-defined injective map
d: J, — D,,.
This is a consequence of the following two lemmas, which we will also need below.
Notation 2.2. Let FJ, (resp., F'D,,) be the free group on the generators s, , (resp., 7).

The above procedure defines a map
d: FJ, = FD,,

which is clearly injective, but not surjective for n > 2 (for instance, 71 3 is not in its image). A careful
comparison of the relations defining J, and D,, yields

Lemma 2.3. (a) If a word w' € FJ, is obtained from w € FJ, by applying a relation of type (j1)
(resp., (j2) or (j3)), then d(w') € FD,, is obtained from d(w) € FD,, by applying a relation of type (d1)
(resp., (d2)).

(b) Conversely, if a word v' € FD,, is obtained from some d(w) € FD,, by applying an annihilation
relation 72 ~» 1 (resp., a commutation relation (d2)), then v' = d(w') for the word w' € FJ,, obtained
from w by applying a corresponding relation of type (j1) (resp., (j2) or (j3)).

In other words, both commutation and commutation-conjugation relations for cacti are translated by
commutation relations for Gauss diagrams.

Note that the statement (b) is false for creation relations 1 ~+ 72, since these latter can lead outside
of the image of d.

The following result is standard in the theory of RACGs:

Lemma 2.4. Let G be a RACG, and w a word in the standard generators (called letters) representing
an element g € G. Consider the following procedure: as long as w contains two copies of the same letterl
separated by letters commuting with [, move one copy towards the other by commutation, then annihilate
them by applying 1?> ~» 1; repeat. The result of this procedure is independent, up to commutation in G,
of the choice of the annihilated couples and of the choice of the word w representing g.

In particular, one can transform any two words representing the same element of a RACG into the
same word without ever applying the creation relation.

These two lemmas immediately imply that d induces an injective map d: J,, — D,,.

In fact, the second lemma yields more. Choose any order on the set of generators of a RACG G, and
extend it lexicographically to the words in these generators. Since by Lemma 2.4 all minimal-length
representatives of an element g of a RACG G are equivalent up to commutation, the minimal word
among such representatives yields an easily computable normal form on G. According to Lemma 2.3,
this normal form can be pulled back from D, to J,. This gives a solution to the word problem in J,,
which we summarise as follows:

Proposition 2.5. Let w € FJ, be a word representing a cactus ¢ € J,. Consider the following
procedure: if w contains two letters | and ' such that I' can be (conjugation-)commuted all the way to
(according to the rules (j2)-(j3)) and in the process becomes [, then do this (conjugation-)commutation
and annihilate 1l (according to the rule (j1)); repeat as long as possible. The result is the empty word if
and only if the cactus c is trivial.
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This procedure has a nice diagrammatic interpretation if one works with i-leaf cacti only (that is,
with elements from J%"). It then consists in bigon killing, as illustrated in Fig. 4.

[c] [cl

FIGURE 4. Bigon killing; here ¢ is any cactus from J>3, and ¢ is any cactus from Js’ 3

Definition 2.6. A word w € F'J, is called irreducible if it contains no two letters that can be
(conjugation-)commuted together and annihilated.

Pulling back form D,, to J, the results of Lemma 2.4, one sees that all irreducible representatives of
a cactus ¢ € J,, are related by (conjugation-)commutation. In particular, they have the same length,
which is minimal for representatives of c.

Remark 2.7. The conjugacy problem in J, is much more delicate. In particular, conjugation may
shorten even very simple irreducible words. The word s3 4512514536 € Jg illustrates this phenomenon:
55,6534  (53,451,251,453,6) * 53,4556 = 55,651,251,453,653,455,6 = 55,651,453,453,655,653,4

= 85,651,453,655,655,653,4 = 51,455,653,653,4
= 51,453,653,453,4 = 51,453,6-
We finish this section with a remark on the nature of the map d. It is not a group morphism: for
example, applied to the cactus from Fig. 3, it yields 7 271,347 3 4, Whereas a group morphism would

have given 71 272 3 471,2.3. However, it is not so far from being one. It is in fact a group 1-cocycle, that
is, it satisfies the twisted compatibility relation

d(Clcg) = d(Cl) Cld(CQ), Cc1,C2 € Jn,

where the left group action of J, on D,, is induced from the label-permuting S,,-action on D,: ¢ = S(C)t,
with ¢ € J,, t € D,. In the example from Fig. 3, we obtain

2134) (4132)

d(s1,252,451,3) = T1,2 ( T2,3,4 T1,2,3 = T1,271,3,472,3,4-

Note that, restricted to the pure part P.J,, the map d becomes a group morphism, since s(c) = Id
for a pure cactus c.

3. TWIN GROUPS ARE SUBGROUPS OF CACTUS GROUPS

Consider a group G = (S | R) defined by a set of generators S and a set of relations R. For any
subset of generators I C S, one can extract from R all the relations Ry involving the generators from [
only. This defines a new group Gy := (I | Ry), with the obvious map

tr: Gr — G,
g—g forallgel.
Such maps will be called ¢-type maps in what follows. They need not be injective.

Definition 3.1. A subset of generators [ is called complete if the above map ¢ is injective.

Example 3.2. In a RACG or a RAAG with its standard presentation, any generator subset is complete.
It follows from Lemma 2.4 and its analogue for RAAGs.

Example 3.3. All generator subsets are complete in braid and symmetric groups with their standard
presentations as well.
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This is actually true for more general Artin—Tits and Coxeter groups.

Example 3.4. In the virtual braid group G = V B3 with its classical generators 1,02 and virtual
generators 71, 72 and the usual relations, the set I = {01, 71,72} is not complete. Indeed, since there
are no relations relating o; only to the 7’s, Gt is the direct product G; = Z x S3, and it includes two
distinct elements

01T1T2017T27T101 and T1T2017T27T101T1T2017271,

sent by ¢; to the same element 010901 = 090109 of G, since g9 = 179017271 in G.
Cactus groups provide some more interesting counterexamples:

Example 3.5. In the cactus group G = Jy with its usual presentation, there are no relations involving
only s12 and sy 4, except for idempotence relations. Thus, for I = {s; 2,514}, one gets Gy = Zy * Zs.
However, in G these generators satisfy the relation

81,251,451,251,4 = S1,451,251,451,2,
which expresses the commutation of s; 2 and s34 = 51451,251,4-

In the example above, one should add the generator s34 = 514512514 to make the set [ = {s1.2, 3174}
complete. We will now prove that this is the only possible completeness defect in cactus groups. More
precisely, a generator subset is complete al long as it is stable by certain conjugations.

Definition 3.6. A collection C of sub-intervals of the integer interval [1,n] is called symmetric if
together with any two nested sub-intervals [m,r] C [p, ¢] it contains the sub-interval [p+q—r,p+q—m],
symmetric to [m,r] with respect to the middle of [p, g].

Theorem 3.7. For any symmetric collection C of sub-intervals of [1,n], the family {s;|I € C} of
generators of the cactus group J, (with its standard presentation) is complete.

Before giving a proof, let us describe several important particular cases.
Corollary 3.8. The group J, can be viewed as a subgroup of Jyyr, via the map spq — Spq-

Corollary 3.9. The twin group Tw, can be viewed as a subgroup of the cactus group J,, via the map
Spp+1 = Spp+1-
More generally, given some 2 < ¢ < j < n, the sub-interval collection
Cij={lpd|1<p<qg=<n,i<q-—p+1=<j}
is clearly symmetric. Theorem 3.7 thus applies to the group J%/ defined by the generators Sp,q» Where

[p,q] € Ci;, and the cactus relations (j1)-(j3). In other words, in J5’ we keep only those generators
whose leaf number is between i and j. We get

Corollary 3.10. The group Ji can be viewed as a subgroup of J,,, via the map Sp.q ™ Spq-

Proof of Theorem 3.7. Take a symmetric collection C of sub-intervals of [1,n]. Consider a word w € FJ,
which contains only generators s; with I € C, and which represents the trivial element in J,. We
need to show that it also represents the trivial element in (.J,);. According to Proposition 2.5, the
word w can be turned into the trivial word by applying commutation, commutation-conjugation and
annihilation relations. But all these relation are also available in the group (J,,); in fact, the symmetry
condition on I was imposed precisely to preserve all commutation-conjugation relations from .J, in
(Jn)1- O

Remark 3.11. If one is interested in the i-leaf group J&¢ only (for instance, the twin group Tw, = J>?2),
then in the arguments above the Gauss diagram group D,, can be replaced with a smaller RACG.
Concretely, consider the width i Gauss diagram group D! generated by the idempotents 7; for all
i-element subsets I of {1,2,...,n}, which commute if the corresponding subsets are disjoint. The
symmetric group S, still acts on such subsets I, and hence on D! . Consider the following eraser map:
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i Jyn — D! xSy,

Spq 1 ifq—p+1<i,
Sp.q (T[p,q]a 5(8p,q)) ifqg—p+1=i,
5pg = (1,5(5p,q)) ifqg—p+1>i.

Going through the defining relations (j1)-(j3) of .J,,, one checks that this map is well defined. Now, in
the diagram below, the rectangle and the square clearly commute:

J—— J, —~ D, xS, —/—— D,

q 1

it € i ™ i
J}, In D! xS, —— Dp.

Here we abusively use the same notation ¢ for all (-type maps, and the same notation m; for all
(set-theoretic) projections onto the first component of a semi-direct product. Then the injectivity of
the total map of the first line implies the injectivity for the second line. In other words, we obtain an
injective group 1-cocycle J — Di.

In the same vein, the symmetric group S,, above can be replaced with the subgroup S! generated by
all the size i flops s(spq). It would be interesting to understand the structure of these permutation
subgroups.

The eraser map from the above remark admits the following variation:
€t Iy — J0T,
Spq 1 ifg—p+1<i,
Sp.q = Sp.g ifg—p+12>a.

In other words, it erases all generators with leaf number < 4. A quick direct verification shows that
it is well defined and surjective; the map ¢;: J,™ — Jp, Spq > Spq, 18 its section (cf. Corollary 3.10).

) ' )
The subgroup J>i~! <% J,,, and hence its normal closure ((J>*~1)), is by construction in the kernel of
€;. We will now prove that this is the whole kernel. In particular, this yields the following semi-direct
decompositions of the cactus groups:

I 22 ((TRh)) s T,

Proposition 3.12. The maps above define the following split exact sequence:

/ €4
0 — ((J21y Ly g, —— Jin 0.

L
Proof. It remains to prove that any cactus ¢ in the kernel of the eraser map ¢; lies in fact in the normal
closure ((J2%~1)). Take a word w € F.J, representing c. Since ¢ € Ker(e;), one can erase all the
letters from w with leaf number < i, and then (permutation-)commute together and annihilate pairs of
remaining letters, in well-chosen order, until the word becomes empty, as explained in Proposition 2.5.
Now, this (permutation-)commutation and annihilation can still be performed when the “small” letters
are not erased: to move a letter [ over a small letter m (or its conjugate), simply replace m by its
I-conjugate, since Im = (Iml)l and ml = I(Iml). When the process stops, one is left with a product of
conjugates of small letters representing c. O

One can push the above arguments slightly further and show that, for any 2 < ¢ <:<j <5 < mn,
JuJ can be viewed as a subgroup of Jfl/’j/, via the map s, 4 +— sp 4. This defines a functor from the poset
of integer sub-intervals of [1,n] to the category of subgroups of J,,. Moreover, for any 2 <4’ <i < j <n,
one has the decomposition

T = () 0 T

A possible application of these constructions is the filtration

(22 < T2 a
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with RACG quotients
Jo ) T2~ g~ 7,
T2l ((J2n=2)y o~ grebn=l o 70w T if n > 3.

However, understanding the structure of the next piece, ((J2"2)), seems difficult even for n = 4.

Remark 3.13. In this section, we have seen that .J, contains many RACG subgroups. It would be
interesting to find out whether all RACGs can be realised inside cactus groups. For instance, a tedious
direct verification shows that one can include any RACG with < 5 generators into a (sufficiently big)
cactus group by sending each generator to a generator (as usual for the standard presentation), except
for the “pentagon” group

(91,95 | Vi, g7 =1 and gigis1 = gi+19:)-
Here gg is identified with g;.

4. TORSION AND CENTER OF CACTUS GROUPS

Many basic group-theoretic questions are easy to answer for a RACG G. For instance,

(1) Its center Z(G) is generated by all its friendly generators (that is, the generators of G commuting
with all other generators). Thus Z(G) ~ Zg , [ being the number of the friendly generators of G.

(2) The only torsion G has is of order 2. More precisely, 2-torsion elements are the conjugates of
products of pairwise commuting generators.

In particular, for the Gauss diagram group D,,, we have the center
Z(Dp) = (T12,..n) = L,

and a big 2-torsion part, without any other torsion.

The aim of this section is to determine the center and the torsion of the cactus group J, and its pure
part PJ,. Our main tool is the connection between .J, and the RACG D,,. Curiously, the answers are
close to but different from those for D,,.

Theorem 4.1. The cactus group J, is centerless whenever n > 2.

In the case n = 2, we have Jo ~ Zy, and PJs is trivial. We will no longer mention this case in what
follows.

Proof. Let w € FJ, be a word representing a non-trivial central element ¢ € J,. It can be assumed
to be of minimal length among representatives of non-trivial central elements. We will show that the
Gauss diagram d(c) is then central in D,,. As recalled above, this would imply d(c) = 712, or 1.
Since d is injective and c non-trivial, this means ¢ = s1,. But the generator s, does not commute
with s12 when n > 2, since

d(s1,0n51,2) = T1.2,.nTan—1 7 T1.2,..nT1,2 = T12T1,2,..n = A(51,251,n)-

Thus there are no non-trivial central elements in .J,,.
Take a generator s, , of J,,. Since c¢sp 4 = sp 4¢, Lemmas 2.3 and 2.4 leave us with two options.
Option 1: The words ws, 4 and s, qw are irreducible. Then s, ;w can be transformed to ws, 4 by
commutation and commutation-conjugation relations only. In particular, a letter [ in s, ,w can be
(conjugation-)commuted to the end of the word and yield the letter s 4.

Case 1: The letter [ is the initial letter s, , of s, ,w. At the level of Gauss diagrams, this means
that all letters in the word d(w) € FD,, commute with *)s, , in D,,.

Case 2: The letter [ is from the word w. This means that (conjugation-)commutation can
transform w into w'sy 4. But then wsy 4 = w'sp ¢5pq = W' in J,, and the word ws,, 4 is no longer
minimal.
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Option 2: The words ws), ; and s, qw are reducible (simultaneously, since all minimal representatives
of a cactus have the same length). Recalling that the word w is minimal, and looking what this means
for ws,, 4 on the D, side, one concludes that we are in the situation of the Case 2 above: a letter !’
can be (conjugation-)commuted to the end of w, so that w becomes w'sy ;. But the same argument
applied to sp qw shows that a letter [ can be (conjugation-)commuted to the beginning of w, so that w
becomes s, qw”. Again, two cases are possible.

Case 1: The letters I’ and I” occupy the same position in w. At the level of Gauss diagrams, this
means that all letters in the word E(w) € F'D,, commute with S(C)sp,q in D,

Case 2: The letters I’ and ! occupy different positions in w. Then (conjugation-)commutation
can transform w into s, qusp 4. The relation ws,, = s, qw implies us, , = s, 4u in Jy,, hence
W = SpqUSp g = USp¢Spq = U in J,. We get a shorter word u representing the same cactus as w,
which contradicts the minimality of w.

Since these arguments work for any letter s, 4, one concludes that the diagram d(c) € D,, represented
by the word d(w) € FD,, is central, as claimed. O

Theorem 4.2. The pure cactus subgroup PJy has trivial centralizer in J, whenever n > 3. In particular,
its center is trivial.

The exceptional case n = 3 can be treated by hand. We have
J3 ~ F CQ X ZQ,

where the free Coxeter subgroup (s1,2,s2,3) =~ F'C5 is generated by the 2-leaf cacti, and the generator
s1,3 of the Zy part acts on the F'Cy by permuting sq 2 and s 3. Further,

PJg = <a = 81’2827381’281,3> ~ Z,

and its centralizer in J3 is
CJ3 (PJ3) = <b = 817281’3> ~ 7.
Note that a = b3. See Appendix A for more detail.

Proof. Let w € F'J,, be a word representing a non-trivial element ¢ € J,, commuting with every pure
cactus. It can be assumed of minimal length among such words.

Any generator s, , with leaf number > 2 can be transformed into a pure cactus by attaching some
2-leaf generators:

5p,g = Sp,gSp1,p1+1Spa,patl T

since neighbouring transpositions generate the symmetric group S,,. This can be done in multiple ways;
any choice will work for us. The commuting relation ¢§, , = 5, ¢ can be analysed along the lines of the
proof of Theorem 4.1. One concludes that all letters in the word d(w) € FD,, commute with *()s,, , in
D,,. Thus all letters in d(w) are almost friendly, that is, commute with all the 7; of size |I| > 2.

Let us now prove that 712 ., is the only almost friendly generator of D,, when n > 3. Indeed, given
a proper subset I & {1,2,...,n} of size > 2, one can replace one of its elements with another element
from {1,2,...,n}, and get a subset I’ of size > 2 such that 77 and 7;» do not commute in D,,. For a
subset of size 2 the argument is similar, except that one replaces an element with two new ones; there
is enough place for it in {1,2,...,n} since n > 3.

Thus the centralizer of PJ,, can contain only the d-preimage sy, of 712 ,. But this element does
not commute with s1 3512523512 € PJ,, since

d(s1,n51,351,252,351,2) = T1.2,... n”Tn—2,n—1,nTn—2,n—1Tn—2,nTn—1,n, and
d(51,351,252,351,251,n) = T1,2,3T2,3T1,3T1,2T1,2,...n. = T1,2,....nT1,2,372,37T1,3T1,2

are distinct in D,, when n > 3. O



10 PAOLO BELLINGERI, HUGO CHEMIN, AND VICTORIA LEBED

Theorem 4.3. The cactus group J, has no odd torsion.

Proof. Fix an odd prime p. Among non-trivial p-torsion elements in J, (if they exist), choose an
element ¢ with the shortest possible representative w. According to Proposition 2.5, the triviality of ¢”
implies that in the word w? a letter [ can be (conjugation-)commuted to the right towards a letter I, so
that the two get annihilated.

Case 1: The letters [ and I” occupy different positions in the gth and ¢’th copies of w respectively.
We have ¢ < ¢’ since w is irreducible. One can assume [ to be in the last position, and I’ in the
first position (otherwise the letters of w should be (conjugation-)commuted accordingly). Remove
the first letter of w and put it to the end; let w’ be the resulting word. It represents a non-trivial
p-torsion element ¢’ € J,, (which is a conjugate of ¢). The word w'P is obtained from wP by
moving the first letter to the end. In w'P, the letters [ and I’ can still be (conjugation-)commuted
together and annihilated. The letter [ remains in the gth copy of w’, whereas the letter I’
is now in the (¢’ — 1)st copy. They are still in different positions in their respective copies.
Repeating this argument, one gets a non-trivial p-torsion element represented by a word @ with
an annihilation possibility inside @ (case ¢ = ¢’), hence with a representative shorter than w.
This contradicts the minimality of w.

Case 2: The letters [ and I’ occupy the same position 4 in different copies of w. Consider the word

2—

d(w?) = d(w) d(w) “d(w) ... ¥ d(w),

where ¢t = s(c). Then the letters of d(wP) € FD,, corresponding to the p copies of the ith
letter [ from w are 7, 'r, t2’7’, . 7. Since p is prime, the permutation ¢ is of order p or 1
(as tP = s(c)P = s(cP) = s(1) = 1d). In its orbit containing 7, two elements, corresponding to [
and !’ in w?, can be commuted together and annihilated, thus coincide. The p letters in d(w?)
corresponding to [ are thus all identical, and can be commuted all through the word d(wP).
Since the word d(wP) represents the trivial Gauss diagram, it contains an even number of copies
of the letter 7, and thus at least one copy different from the p copies mentioned above; here we

used that p is odd for the first time in this proof. Thus 7 appears at least twice in one of the

words d(w), ‘d(w), Yd(w),..., ¥ 'd(w), where its two occurrences can be moved together and
annihilated. This contradicts the minimality of w. O

Theorem 4.4. The cactus group Jyr has torsion of order 2F.
Proof. Consider the cacti defined inductively by
t1 = 81,2,
to = 81,2814,
U1 = g5y ghtr.

The cactus t;, is defined in the group J,, whenever n > 2*. Let us prove by induction that ¢ is of
order 2%. For k = 1, this is just the idempotence of 51,2. To move from k to k£ + 1, observe that

tz—l—l = (tk81?2k+1)2 = tk(5172k+1tk81’2k+1) = tkt;{:
In the word ), := 51 gk+11151 gr+1, the first letter s, or+1 can be conjugate-commuted all the way to the
right and annihilated with the last letter. In the resulting word, the indices of all letters are > 2F.

Thus the cactus 5 and its conjugate ¢ commute. Since both are of order 2F by assumption, so is their
product ti+1. Hence the order of ¢, is 28+, g

Theorem 4.5. The pure cactus group PJ, is torsionless.

Proof. By Theorem 4.3, it is sufficient to show that PJ, has no 2-torsion. Assume that there is
some. Among non-trivial 2-torsion elements in P.J,, choose an element ¢ with the shortest possible
representative w. Following the proof of Theorem 4.3, one concludes that d(w) is a product of pairwise
commuting generators. In particular, one can reorganise the word w by (conjugation-)commutation
into a word w’ so that the leaf number of its letters never increases from left to right. Let s, , be the
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first letter of w. Viewing s(c) as a permutation on the set {1,2,...,n}, let us trace what it does to the
element p. First, s(sp4) sends p to position g. The next letter whose associated permutation moves
this element has to be of the form s, , with p’ > p, due to the pairwise commutativity of the letters of
d(w'). The next letter moving this element is s, » with ¢’ < ¢, and so on. We observe a retracting
ping-pong-like trajectory. Overall, the permutation s(c¢) moves our element strictly to the right, and
thus cannot be trivial. Hence the cactus ¢ cannot be pure. O

APPENDIX A. A ONE-RELATOR PRESENTATION FOR P.J4

The goal of this appendix is to provide explicit group presentations for P.Js and PJy. First let us
state simpler presentations for Js and J; which can be easily obtained using Tietze transformations:
Proposition A.1. The cactus groups J3 and Jy admit the following group presentations:

J3 >~ (s12,513] 8%72 = 5%73 =1) 2 ZoxZo
2 2 _ 2 _
S1o=9513=s14=1,
Jy == 512,513,514 | $1,251,451,251,4 = 51,451,251,451,2,
$1,451,351,251,3 = 51,351,251,351,4

Similar presentations can be produced for general n.

Corollary A.2. The pure cactus group PJs admits the following group presentation:
PJs = ((s12513)°) ~ Z.

Proof. The cactus group J3 is the RACG Zg * Za generated by si2 and s;3, and the symmetric
group S3 admits the presentation S3 ~ (s, s9 | 7 = s% = 1, (s152) = 1), which, when s5 is replaced
with s = s1s281, becomes S5 ~ (s1,s) | 53 = (sh)? = 1,(s155)® = 1). Since s(s12) = s1 and
s(s1,3) = s15251 = sh, the kernel of s is freely generated by (517281,3)3. O

Note that the generator of PJs above can be rewritten in a shorter form:
a:=(s12513)" = 512(51,351,251,3)51,251,3 = 51,252,351,251,3-
Theorem A.3. The pure cactus group PJy admits the following group presentation:
PJy=(a, B, v, 4, €| ayefea 16715707 = 1),
where o = (81735172)3,
B = $1,251,351,451,351,451,251,4 = 51,351,481,3(51,281,4)27
v = s12514512(51,351.4)°,
§ = 513(51,251.4)%51,351.4,
€ = (s1,451,251,351,2)".

We will derive this presentation by hand, using the Reidemeister—Schreier method. Our computations
were verified in GAP by Neha Nanda and John Guaschi.

The group PJy is thus a one-relator group, where the relation is not a power. Applying Theorem
4.12 of [MKS04], we then obtain another proof of the absence of torsion in PJs. One can also derive
several other nice properties of PJy, using the classical theory of one-relator groups (see for instance
[MKS04, LS01, Put| and references therein): P.Jy is locally indicable and of cohomological dimension
< 2; it has algorithmically decidable word problem; it satisfies the Tits alternative: every its subgroup
is either solvable or contains a free group of rank 2; its presentation 2-complex is aspherical.

Note that in our presentation of P.Jy, we used the generating set {s12, 513,514} of Js. One obtains
shorter and more manageable expressions by including the generators s; ; with ¢ > 1:

o= (81,331,2)3 = 81,351,252,351,2, B = 51,452,451,351,253 4,
Y = 51,253,452,451,351,4, 0 = 51,351,283,451,351 4,

€ = 53,452,352,451,252,351,3-
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In particular, « is the inverse of the (image of the) generator a of PJs from Corollary A.2. Also, some
generators can be replaced with shorter and/or more meaningful ones:

(a) €~ ¢ =ea™t = 894893834523, which is the generator a “shifted” to the right (in other words, the

inclusion of J3 into Jy given by sp, 4 = Sp41,4+1 sends a~!to ();

(b) y~n=py= (81,38274)2, which is the commutator of s1 3 and sg 4;

(¢) 0~ 0 =010 =51252351251351,351,293451,351,4 = $1,252,353,451 351 43

(d)

k= 97)_15 = 51,252,353,451,351,4 * 52,451,352,451,3 * 51,452,451,351,253 4

= 51,252,353,451,4524 * 52,451,352,451,3 * 51,352,451,451,253 4
= 51,252,353,451,451,351,451,253,4
= 51,252,353,452,453,451,2
= 51,2 " 52,353452,352.4 * 51,2,

which is (71 conjugated by s 2.

The generators «, (, k, 0 and n are depicted in Fig. 5.

N
Dol - DK

NS

N

FIGURE 5. Generators of the group PJy

Observe that the squares o2, (? and k2 can be rewritten using 2-leaf generators only, and yield 3 out

of the 7 free generators of the pure twin group (also called the planar pure braid group) PTw, from
[Mos20)].

Remark A.4. In [Dev99], the group P.Jy was given a topological interpretation. It is the fundamental
group of the connected sum of five real projective planes. This yields its one-relator presentation of the
following form:

PJy={ a1, az, a3, a4, as | aiadaiaiad =1).

However, it seems difficult to find explicit expressions of the generators aj in terms of the generators
s; j of the whole cactus group Jj.

Proof of Theorem A.3. Let us first recall the Reidemeister—Schreier method, in order to fix notations.

Let G be a group with presentation G = (X | R), where X = {z1,...,z,} is the set of generators
and R = {r1,...,r4} is the set of relations. Let F(X) be the free group on X. A Schreier transversal
of a subgroup H in G is a set T' of reduced words in the generators {x1,...,x,} containing exactly one
representative of every right coset of H, and together with each word containing all its prefixes. Any
subgroup of G admits a Schreier transversal [MKS04].
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Fix a Schreier transversal T of H. Denote by ~ the map F'(X) — T sending w to its representative
weT. Forany k€ T and z; € X, put

by = (k) (R) .

According to Theorem 2.9 of [MKS04|, H admits a group presentation having as generators all the

non-trivial ay ,,. A system of relations is constructed as follows. Let w = xfll :cff .. xf;", where

eg==x1land x5, € X for [ =1,...,m. The rewriting function is defined as
_ €1 €2 Em
7(w) = ak?ilﬂfil akiQJiQ Oy @i,
€1 gi—1 ; —
R ife; =1,
where k;;, = H‘l o
iy ife; = 1.

A complete set of relations for H is given by {r(krjk™!) | 1 <j <gq, k€ T}.
We now turn to our concrete subgroup H = PJy of G = Jy. Fix the following Schreier transversal:

k1 =1, ky = 512, k3 = 513, ka = 814, ks = 512513, ke = 51,2514, k7 = 513512,
kg = 51,3514, ko = $1.451,2, k10 = 51,451,3, k11 = 51,251,351,2, k12 = 51.251,3514,
K = ki3 = 512514512, k14 = 51,251451,3, k15 = 51,351,2514, k16 = 51,351,451,2,
k17 = 51,351,451,3, k18 = 51,451,251,3, k19 = 514512514, k20 = 51,451,351,2,
ko1 = s1,451,351,4, k22 = 51,251,351,251,4, K23 = 51,251,351,451,2, k24 = 51,251,451,351,2

The non-trivial generators of P.J4 are:

Q7,813 — 51,351,281,351,251,351,2
Qky1,81,3 — S51,281,351,251,351,251,3
Qki9,s13 — 51,281,351,451,351,451,2514
Qky3,51,3 — S51,251,451,251,351,451,351,4
k3,514 — S1,281,451,281,451,351,451,3
Akiy,51,4 — S1,281,451,351,451,351,251,4
Qky5,512 — S1,351,251,451,251,451,351,4
Qki5,51,3 — 51,351,251,451,351,251,351,451,2
Qkig,513 — S1,351,451,2581,351,251,451,351,2
k16,514 — S1,351,451,281,451,281,351,4
k17,812 = 51,351,451,351,251,451,251,4
k17,814 — S51,351,451,351,451,251,451,2
k18,512 — S51,4581,251,351,2581,451,251,351,2
Qkyg,51.4 — 51,481,251,351,451,351,451,2
k19,512 — 51,481,251,481,251,351,451,3
Qki9,51,3 — 51,451,251,451,351,4581,351,2
Qkog,s1,3 — S51,451,351,251,351,451,251,351,2
Qkog,s1,4 — S51,451,351,251,451,251,451,3
Qko1,s12 — 51,481,351,481,251,481,251,3
Qko1,51,3 — S1,481,351,481,351,281,451,2
Qkog,s1,2 — 51,251,351,251,451,251,351,251,4
Qkoo,s1,3 — S51,251,351,251,451,351,251,3514
Qkoz,s13 — S1,281,351,4581,251,351,251,451,3
Qkoz,s1,4 — S1,281,351,481,251,481,251,351,451,2
Akoy,s1,3 — S1,281,451,351,251,351,451,251,3
Qkoy,s1,4 — S1,251,451,351,251,451,251,451,351,2

We detail only non-trivial relations of type 7(kRk™!):
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27.—1\ __
T(k1(s1,251,351,451,3)°k1 *) = 7(51,251,351,451,351,251,351,451,3)
= Qky,s1,200kg,51,30ks,51,4 Ak12,51,3Vk19,51,2Vk17,51,3 ks, 51,4 Vks,s1,3 — Ak12,51,3%k19,51,2
47.—1\ __
T(k1(s1,251,4) k1 ) = 7(51,251,451,251,451,251,451,251,4)
= Qky,s1,2Qko,s1,4 ke 51,2 k13,514 Vk17,51,2Ak19,51,4 ko,51,2Pky, 51,4 = Ak13,51,4Qk17,51,2
27.—1\ _
7(ka(51,251,351,451,3)°ky ) = T(51,251,251,351,451,351,251,351,451,351,2)
= Qky,s1,2Qka,s1,20Qky,51,30k3,51 4 ks, s1,3Qk17,51,2Pk19,51,3 k12,514 Vks,s1,3Qka,512 = Aki7,51,2 k19,513
47.—-1y _
T(ka(s1,251,4) ks ) = 7(51,251,251,451,251,451,251,451,251,451,2)
= Qky,s1,200ko,s1,2Qk1,51,4 k4,512 Vkg, 51,4 k19,512 k17514 Vk13,51,2 Ak,51,4 Aka,s1,20 = Qk1g,51,20k1751,4
27.—1\ _
7(k3(51,251,351,451,3) k3 ") = 7(51,351,251,351,451,351,251,351,451,351,3)
= Qky,51,30ks,s1,2k7,51,3Ak11,51,4 Vkoo,51,3Vk20,51,2 Vk10,51,3 Vka,s1,4 Vk1,81,3Aks,s1,3 = Qk7,51,30k22,51,3
47.—-1\ _
T(k3(s1,251,4) k5 ") = 7(51,351,251,451,251,451,251,451,251,451,3)
= Qky,s1,30ks,51,2k7,51,4Vk15,51,2 Vko1,51,4 Vk10,51,2 Vk20,51,4 Vk16,51,2 Vks, 51,4 Vks3,s1,3 = Aki5,51,2ka0,51,4
27.—1\ __
T(k4(51,251,351,451,3) ks ) = T(51,451,251,351,451,351,251,351,451,351,4)
= Qky,s1,40ky,51,0Qko,51,3k18,51,4 Vk14,51,3 Vke,51,2Vk13,81,3 Vko1,51,4 Vk10,51,3 Vka,s1,4 — Ak1s,51,4 k13,513
47.—1\ __
T(ka(s1,251,4) ks ") = 7(51,451,251,451,251,451,251,451,251,451,4)
= Qky,51,4Oky,51,2kg,51,4 Vk19,51,2 Vk17,51,4 Vk13,51,2 ke ,51,4 Vka,51,2Vk1,51,4 Aka,s1,4 — Qkig,s1,20k17,51,4
27.—1\ __
T(ks(s1,251,351,451,3) ks ) = 7(51,251,351,251,351,451,351,251,351,451,351,351,2)
= Qky,s1,20Qko,s1,3Qks,51,20k11,51,3Ak7,51, 4 Ak15,51,3 k4,512 Vk14,51,3Vke 51,4 Vko,s1,3Vks,51, 30ka,s1,2 —
Qk11,51,30k15,51,3
47.-1\ _
7(ks(s1,251,4) k5 ) = 7(51,251,351,251,451,251,451,251,451,251,451,351,2)
= Qky,s1,00ka,s1,3Qks,51,2k11,51,4 Vka2,51,2 Vk15,51,4 Vk14,51,2 koy,s1,4 Vkos,s1,2Vk12,51,4 Vks,51,3AVka,s1,2 —
QAkoo,51,20k18,51,4 Vkoa,51,4
7(ke(51,251,351,451,3) 2k 1) = T(51,251,451,251,351,451,351,251,351,451,351,451,2)
= Qky,s1,200ko,51,4Vke,51,2Vk13,51,3Vk21,51,4 Vk10,51,3 ks, 51,20 Vko 51,3 Vk15,51,4 Vk14,51,3 Vk,51,4 V2,512 =
QAky3,51,30k18,51,4
47.—1\ __
T(ke(s1,251,4) kg ) = T(51,251,451,251,451,251,451,251,451,251,451,451,2)
= Qky,s1,200kg,51,40ke,51,2Vk13,51,4 Vk17,51,2 Vk19,51,4 kg, 51,2 Vka, 51,4 Vk1,51,2 ko ,51,4 Vke 51,4 Vo 51,2 =
QAky3,51,4 k17,512
T(k7(51,251,351,451,3)%k7 1) = 7(51,351,251,251,351,451,351,251,351,451,351,251,3)
= Qky,s1,30ks,s1,2k7,51,2k3,51,3Ak1,51 4 Vkg,51,3Ak10,51,2 Pkao,51,3 Vkao,s1,4 Vk11,51,3Vk7,51,20 k3,813 —
QAkag,s1,3Qk11,51,3
47.—1\ _
T(k7(s1,251,4) k7 ") = 7(51,351,251,251,451,251,451,251,451,251,451,251,3)
= Qky,s51,30ks,s1,2k7,51,2Vk3,51,4 Vks,s1,2Vk16,51,4 Vko20,51,2 Vk10,51,4 Vko1,81,2 Vk15,51,4 Vk7,81 20 Vk3,81,3 =
QAk16,51,4 V21,512
k Qk—l _
T(kg(51,251,351,451,3) kg ) = T(51,351,451,251,351,451,351,251,351,451,351,451,3)
= Qky,s1,30ks,s1,4Vks,s1,2k16,51,3Vkas3,51,4 Vk2a,51,3Ak15,51,2 Pko1,51,3 Vk13,51,4 Vk17,51,3Vks, 51,4 Vkz, 51,3 —
QAky6,51,3ka3,51,4 Vk24,51,3Pk15,51,2 Vka1,51,3Vk13,51,4
7(ks(s1.251.4) kg ) = T(51,351.451.251 451251451251 451,251.451.451,3)
= Qky,s1,3Qks,s1,4Qks,s1,2Ak16,51,4 Vk20,51,2Vk10,51,4 Pko1,51,2 Vk15,51,4 Wk 51,2 ks, 51,4 Uk, 51,4 ks, 51,3 =
Qk16,51,4 k21,512
k 2k.—1 _
7(ko(51,251,351,451,3) kg ) = T(51,451,251,251,351,451,351,251,351,451,351,251,4)
= Qky,s1,4Qky,s1,2kg,51,2Ak4,51,3Ak10,51,4 Vka1,51,3Pk13,51,2Vke 51,3 Vk14,51,4 Vk18,51,3 Ak, 51,2 Vks,51,4 =
Ako1,51,30k14,51,4
47.—1
T(kg(s1,251,4) kg ") = T(51,451,251,251,451,251,451,251,451,251,451,251,4)
= Qky,s1,40ky,s1,20Qkg,51,2kq,51,4Vk1,51,2Vk2,51,4 Vke,51,2 Pk13,51,4 Vk17,51,2 Vk19,51,4 Vo, 51,2 Vka,s1,4 =

QAky3,51,4 k17,512
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27.—1\ __ _
T(k10(51,251,351,451,3)°k1y ) = T(51,451,351,251,351,451,351,251,351,451,351,351,4) =
Aky,51,4Qky,51,3Pk10,51,2Vk20,51,3Vk22,51,4 Pk11,51,3Vk7,51,2Qk3,51,3Vk1,51,4Vks,51,3k10,51,3Vka,s1,4 — Vkoo,s1,30k11,51,3

41.—1\ __

T(k10(51,251,4) K1y ) = 7(51,451,351,251,451,251,451,251,451,251,451,351,4)
= Qky,s1,4Qkq,s1,3Qk10,51,2Vkao,51,4 Vk16,51,2 Vks, 51,4 ks, s1,2 Uk, 51,4 Vk15,51,2 Vka1,51,4Vk10,51,3Aks,51,4 —
QAkog,s1,4Vk15,51,2

k 2 ]{7_1 _ _
T(k1157 k11 ) = T(51,251,351,251,351,351,251,351,2) = Qky,51 2 Whn, 51,3 Vs 51,2 Wk 51,8 Vhr 51,3 B 1,512
ks ,s1,30ka,51,20 = Aki1,51,3k7,51,3

k Qk—l _
7(k11(51,251,351,451,3) k17 ) = 7(51,251,351,251,251,351,451,351,251,351,451,351,251,351,2)
= Qky,s1,200ko,s1,30ks,51,2k11,81,2 Vks,51,3Ak2,51,4 Vke,51,3Vk14,51,2 Vkos,s1,3Vk15,51,4 Vk7,51,3Ak11,81,2 Vks,51,3ka,51,2 =
QAkoy,s1,30k7,51,3

k 4k—1 _
T(k11(s1,251,4) k17 ) = T(51,251,351,251,251,451,251,451,251,451,251,451,251,351,2)
= Qky,s1,00ko,51,3Qks,5,.2Qk11,51,2Vks,51,4 Vk12,51,2 Vkos,s1,4 Vkoa,s1,20 Vk14,51,4 Vk18,51,2 Vkaa,51,4 Vk11,51,2 Aks,81,3 ko810 =
QAky3,51,4k18,51,2

k 2 k,fl _ _
T( 1251,3712 ) = T(5172‘91,3517451»33173517481,35172) = Qky,51,00ko,51,30ks,51,4 Vk12,51,3Vk19,51,30k12,51 4
QAks,s1,3ka,51,2 = Aki12,51,3%k19,51,3

2,—1\ _
T(k12(51,251,351,451,3) k15 ) = T(51,251,351,451,251,351,451,351,251,351,451,351,451,351,2)

= Qky,51,20ko,51,30ks,51,4 Vk12,51,2 Vkas,s1,3Vk16,51,4 Vkoo,51,3 Vkao,s1,2 Vk18,51,3 Vkg,51,4 Vk19,51,3Vk12,51,4 ks,51,3Vka, 51,2 —

Qky3,51,3k16,51,4 Vk20,51,3 Vka2,51,2 k19,513

Ap—1y _
T(k12(51,251,4) k15 ) = 7(51,251,351,451,251,451,251,451,251,451,251,451,451,351,2)

= Qky,s1,200ko,s1,3Qks,51,4Ak12,51,2 V23,514 Vkoa,51,2 Vk14,51,4 Vk1g,51,2 Vkao,s1,4 Vk11,51,2 Vks 51,4 Vk12,51,4 Aks,51,3 kg, 51,2 =

Qkog,51,40k14,51,4Vk18,51,2

k 2 k‘_l _ _
T( 1351,3713 ) - T(31728174317281733173817281748112) = Qky,51,0Qk,51,4 Uk, 51,2 Vk13,51,3Vka1,51,3 k13,512
Qkg,s1,4 k2,512 = Aki3,51,3 k21,513

k 2 k_l _ _
T( 1351,4713 ) = T(31723174317231743174317231748172) = Qky,s51,00ko,51,4kg,51,2Vk13,51,4 Vk17,51,4 V13,51 2
QAkg,s1,4Qk2,51,2 = Aki13,51,4 k17,514

k 2k—1 _
T(k13(51,251,351,451,3) k15 ) = T(51,251,451,251,251,351,451,351,251,351,451,351,251,451,2)
= Qky,s1,00ko,51,4Vks,51,2Vk13,51,2 Vke,51,3Vk14,51,4 Vk18,51,3 Vko,51,20Vka,s1,3Vk10,51,4 Vko1,51,3Vk13,51,2 Ake,51,4 Aka 51,0 =
QAk14,51,4Qk21,81,3

k 4]{;71 _
T(k13(51,251,4) k15 ) = T(51,251,451,251,251,451,251,451,251,451,251,451,251,451,2)
= Qky,s1,20kg,51,40ks,51,2 Vk13,51,2 Vke 51,4 V2,512 Ak1,51,4 Vka,s1,2 Vg, 51,4 Vk19,51,2 Vk17,51,4 Vk13,51,2 Vke 51, Uka,s1,20 —
QAkyg,51,2k17,51,4

k 2 kfl _
7( 1451 4R14 )7 (51,251,481,351,451,451,351,451,2) = Aky,51,2@k,51,4Vke,51,3Vk14,51,4 Vk18,51,4Vh14,51,3 ke 51,4
QAky,s1,2 = k14,514 k18,514

k 2k,—1 _
T(k14(51,251,351,451,3) k14 ) = T(51,251,451,351,251,351,451,351,251,351,451,351,351,451,2)
= Qky,s1,200ka,s1,4 ke ,51,3Ak14,51,2Vk24,51,3 k15,514 Uk ,51,3Pk11,51,2Vks 51,3 Vka,51,4 Vke,51,3Vk14,51,3Vke,51,4 Aka,51,2 —
Akoy,s1,30k7,51,3

471.—1
T(k1a(s1,251,4) k14 ) = T(51,251,451,351,251,451,251,451,251,451,251,451,351,451,2)

= Qky,s1,00ko,51,4Vke,51,3Ak14,51,2Vk24,51,4 Vko3,51,2 Vk12,51,4 Vks 51,0 Vk11,51,4 Vhkoo,51,2Vk18,51,4 Vk14,51,3 Vke,51,4 Vka,81,2 =

Qkoy,51,00k22,51,2AVk18,51,4

k 2 k’_l _ _
T( 15512715 ) = T(517381,2517481»23172517431725173) = Qky,s1,30ks,s1,20k7,51,4 Vk15,51,2Vko1,51,20k15,51 4
QAfr7,51,20ks,81,3 = Akys5,51,2Pko1,51,2

k 2 k’_l _ _
T( 1551,3%15 ) = T(3173‘91,2517481»33173517431725173) = Qky,s1,30ks,s1,20k7,51,4 Vk15,51,3Vkoa,s1,30k15,51 4
QAk7,51,20k3,51,3 — Oki5,51,3Pko4,51,3

27.-1
T(k15(51,251,351,451,3) k15 ) = T(51,351,251,451,251,351,451,351,251,351,451,351,451,251,3)

= Qky,s1,30ks,s1,20k7,51,4 Vk15,51,2 Vko1,51,3Ak13,51,4 Vk17,51,3 Vkg,s1,2 Vk16,51,3 Vka3,51,4 Vkoa,s1,3k15,51,4 V7,51, Vks,s1,3 —

QAk15,51,2Qk21,81,3Vk13,51,4 Vk16,51,3 Vka3,51,4 Vhoa,s1,3
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47.—1\ __

T(k15(51,251,4) k15 ) = 7(51,351,251,451,251,451,251,451,251,451,251,451,451,251,3)
= Qky,s1,30ks,51,20k7,51,4 Vk15,51,2 Vka1,51,4 Vk10,51,2 Vkoo,51,4 Vk16,51,2 Vs, 51,4 Vks,s1,20 Vkr,51,4 Vk15,51,4 Akr,51,2Vks,s1,3 —
Qky5,51,2k20,51,4

(k1657 3k1g ) = 7( )=
T{F1651,3716 ) = T\51,351,451,251,351,351,251,451,3) = Qky,51 30k3,51,4 Uk, 51,2 Vk16,51,3 Vko3,51,3Vk16,51,2 Vksg,51,4
Qks,s1,3 = Qkig,51,3%k23,51,3

(k1653 4kig ) = 7( )=
T{F1651,4716 ) = T\51,351,451,251,451,451,251,451,3) = Qky,51 30k3,51,4 Uk, 51,2 Vk16,51,4 Pkoo,51,4 Pk16,51,2 Pksg, 51,2
k3,513 = QAkig,51,4 k20,514

27.—1y _
T(k16(81,281,381,481,3) k16 ) = 7‘(81,381,481,281,281,381,451,381,281,381,451,381,281,481,3)

= Qky,s51,30ks,51,4Qks,s1,2Vk16,51,2 Vks,s1,3 Vk17,51,4 Vk13,51,3 Vko1,51,2 Vk15,51,3 Vkoa,51,4 Vkag,s1,3 Vk16,51,2 Vksg,51,4 Vks,s1,3 —

Ak17,51,4Qk13,51,3Pk21,51,2Vk15,51,3Vko4,51,4 Vko3,51 .3
k 4k—1 _

T(k16(s1,251,4) k16 ) = T(51,351,451,251,251,451,251,451,251,451,251,451,251,451,3)
= Qky,s1,30ks,s1,4 ks, 51,2 Vk16,51,2 Vks,s1,4 Vk3,5,2 Vk7,51,4 Vk15,51,2 Vk21,51,4 Vk10,51,2 Vko0,51,4 Vk16,51,2 kg, 51,4 Vks 81,3 —
Qk15,51,20k20,51,4

2 -1\ __ _
7—(k175172k17 ) = 7(517381,4317381»23172517381745173) = Qky,s1,30ks,s1,4Qksg,s1,3Pk17,51,2Vk19,51,20k17,51,3 ks, 51,4
QAks,s1,3 = Aki7,51,2k19,51,2

2 -1\ __ _
7—(k;1751,4k17 ) = T(3173‘91,4517381»33173517331745173) = Qky,s1,30ks,s1,4 ks, 51,3 Pk17,51,4 Vk13,51,4Vk17,51,3Vks, 51,4
QAks,s1,3 = Qki7,51,4 k13,814

27.—1\ __
T(k17(51,251,351,451,3)°k 7 ) = T(51,351,451,351,251,351,451,351,251,351,451,351,351,451,3)
= Qky,s1,30ks,s1,40ks,s1,3Ak17,51,2Vk19,51,3Vk12,51,4 Aks,51,3Vka,51,2 Vk1,51,3 ks, 51,4 Vks,s1,3Vk17,51,3 kg, 51,4 k3,813 —
Qk17,51,20k19,51,3
47.—1\ _

T(k17(s1,251,4) k17 ) = 7(51,351,451,351,251,451,251,451,251,451,251,451,351,451,3)
= Qky,s1,30ks,s1,4Qks,s1,3Ak17,51,2Ak19,51,4 Vkg, 51,2 ks, 51,4 Vk1,51,2Vka 51,4 Vke,51,2k13,51,4Vk17,51,3 ks, 51,4 k3,513 —
QAk17,51,20k13,51,4

2 -1y _ _
T(k1ss1 2k1g ) = T(51,481,251,351,251,251,351,251,4) = Qhky 51,4 Whia, 51,2 Vg 51,5 Vs, 51,2 Do, 51,2 Vs, 51,
Qkg,s1,20k4,51,4 = Ak1g,s1,2Vka2,51,2

2 7.—1\ _ _
7'(1471881,4]?18 ) = T(31743172317381743174817331728174) = Qky,51,4Qky,s1,2 kg, 51,3 Vk15,51,4 Vk14,51,4 Vk18,51,3
Qkg,s1,2k4,51,4 = Aki1g,51,4 k14,514

27.—1
7(k18(51,251,351,451,3) k15 ) = T(51,451,251,351,251,351,451,351,251,351,451,351,351,251,4)

= Qky,51,4Vky,51,2Qkg,51,3Vk18,51,2 Vkoo,s1,3 Vk20,51,4 Vk16,51,3 Vkos,s1,2 Vk12,51,3 Vk19,51,4 kg, 51,3 Vk1s,51,3 Vkg, 51,2 Vka,51,4 —

QAkyg,51,2Vka2,51,3Vk20,51,4 Pk16,51,3 Vk12,51,3
k 4]{;71 _

T(k18(51,251,4) k1g ) = T(51,451,251,351,251,451,251,451,251,451,251,451,351,251,4)
= Qky,51,4Oky,s1,2kg,51,3Vk18,51,2 Vkao,51,4 Vk11,51,2 ks, 51,4 Vk12,51,2 Vka3,51,4 Vkoa,s1,2 Vk14,51,4 Vk13,51,3 Uk, 51,20 Vka, 51,4
Qkyg,51,2ka3,51,4 Vk14,51 4

2 -1\ _ _
(k1957 2k19 ) = T(51,451,251,451,251,251,451,251,4) = Qhky 51,4 W 51,2 g 51,4 Vhno, 51,0 Vhrr,51,2 Whrg,51.4
Qkg,s1,2Qk4,51,4 = Pkig,51,2Pk17,51,2

2 -1\ _ _
(k1957 3k19 ) = T(51,451,251,451,351,351,451,251,4) = Qhky51 4 W, 51,2 g 51,4 Vhno, 51,8 Vhr2,51,3 Urg,51,4
Qkg,s1,2Qk4,514 = Akig,51,3%k12,51,3

27.—1\ _
9 9 9 9 19 - 9 9 9 9 3 b bl b bl b bl b 9 b
T(k19(51,251,351,451,3) k19 ) = T(51,451,251,451,251,351,451,351,251,351,451,351,451,251,4)
= Qky,s1,4Qky,s1,2Qkg,51,4Qk19,51,2Vk17,51,3 ks, 51,4 Aks,s1,3 k1,512 Vka,s1,3Vks,51,4k12,51,3Vk19,51,4 Vkg, 51,2 AVka,51,4 =
Ak1g,51,20k12,51,3
k 4k—1 _

T(k19(s1,251,4) kg ) = T(51,451,251,451,251,451,251,451,251,451,251,451,451,251,4)
= Qky,s1,40ky,s1,20Qkg,51,4Vk19,51,2k17,51,4 k13,512 Vke,51,4 ko 51,20 Vk1,51,4 Vky,51,2 kg, 51,4 Vk19,51,4 Vkg, 51,2 Vka, 51,4 =
QAk1g,51,2Qk17,51,4

2 -1\ __ _
7—(152051,?#1‘:20 ) = T(517481,3517281»33173517281735174) = Qky,51,40ky,51,30k10,51,2Ak20,51,3
QAkgz,51,3Aka0,51,2Vk10,51,3Vka,51,4 = Pkoo,s1,3Vka2,51,3

2 -1\ __ _
7—(1{72051,4]‘:20 ) = T(3174‘91,3517281»43174517231735174) = Qky,51,40ky,51,30k10,51,2Ak20,51,4

Qkg,51,4 Vkoo,51,2Vk10,51,3Vka,51,4 = Pkoo,s1,4Vk16,51,4
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27.—1\ __
T(k20(51,251,351,451,3) kg ) = T(51,451,351,251,251,351,451,351,251,351,451,351,251,351,4)
= Qky,51,4Uky,51,30k10,51,2 Vk20,51,2 Vk10,51,3Vka,51,4 Vk1,51,3 Vks,s1,2 Vk7,51,3 Ak11,51,4 Vkao,s1,3Vk20,51,2 Vk10,51,3 Vka, 51,4 —
QAfr7.51,30ko2,81,3
47.—1y _

T(kao(s1,251,4) ka0 ) = 7(51,451,351,251,251,451,251,451,251,451,251,451,251,351,4)
= Qky,s1,4Qky,s1,3Qk10,51,2Vka0,51,2Vk10,51,4 Vka1,51,2 Pk15,51,4 k51,2 Vks,s1,4 Vs, 51,2 Vk16,51,4 Vhoo,51,2 Vk10,51,3 ks, 51,4 =
Qo1 ,51,2k16,51,4

(k2153 okig') = 7( )=
T\R2181 2721 ) = T\S81,451,351,451,281,251,451,351,4) = Qky,s1,4Aky,51,33k10,51,4 Vko1,51,2Vk15,51,2Vko1,51,4
QAk1g,51,30k4,51,4 = Aka1,s1,2 k15,512

k 2 k‘_l _ _
T (ko157 3kay ) = 7(51,451,351,451,351,351,451,3514) = Wy 51,4 Va1, Vkro,s1,4 Ve 51,3
Qk13,51,30k21,81,4Ak10,51,3Vka, 51,0 — Qko1,51,30k13,51,3

27.—1
T(k21(51,251,351,451,3) kar ) = T(51,451,351,451,251,351,451,351,251,351,451,351,451,351,4)

= Qky,s1,40ky,51,3Qk10,51,4 Vka1,51,2 Vk15,51,3 Vkoa,s1,4 Pkos,s1,3 Vk16,51,2 Vks,s1,3k17,51,4 Vk13,51,3Vka1,51,4 Pk10,51,3Vks, 51,4 =

QAkoy,51,2Ak15,51,3Vk24,51,4 Vkas,s1,3Pk17,51,4 k13,513

(ka1 (51.251.4) ky") = T(51,451,351,451,251,451,251,451,251, 451,251,451 451,351 4)
= Qky,51,4kyq,s1,30k10,51,4 Vko1,81,2Vk15,51,4 k7,812 Uks, 51,4 ks, 51,2 Vk16,51,4 Vkao,81,2 Vk10,51,4 Vko1,51,4 Vk10,51,3 Vka,81,4 =
QAkoy,51,2k16,51,4

T(k225%72k‘§21) = T(31,281,351,2S1,451,251,281,451,281,351,2) = Qky,s1,9Qks,51,3Qks,51,2Ak11,51,4 Vkaa,51 2
QAkyg8,51,2Akoo,51,4 Vk11,81,2ks,51,3Vka,s1,2 = Bkao,s1,20k1g,51,2

T(k225%73k‘2}1) = 7(51,251,351,251,451,351,351,451,251,351,2) = Qky 51 5 Vho,s1,50ks,51.2Vk1y,51.40kao,51.3
Akog,s1,30k22,51,4 Vk11,51,2Vks,51,30k2,51,2 = Akao,s1,3 k20,513

7(k2a(s1,251,351,451,3) k') = T(51,251,351,251,451,251,351,451,351,251,351,451,351,451,251,351,2)

= Qky,51,2ko,51,30ks,51,2 Vk11,51,4 Vkoo,s1,2 Vk13,51,3 Uk, 51,4 Vk19,51,3 Vk12,51,2 Vkas,51,3 Vk16,51,4 Vk20,51,3 V2,514
k1,812 ks,51,30ka,51,0 = Qkoa,s1 2Ak19,51,3Vka3,51,3Vk16,51,4 Pk20,81,3

T(kao(s1,251,4) 5y ) = T(51,251,351,251,451,251,451,251,451,251,451,251,451,451,251,351,2)

= Qky,s1,00ko,51,3Qks,51,2k11,51,4 V2,512 Vk15,51,4 Ak14,51,2 Vkoa,s1,4 Vkos,51,20Vk12,51,4 Vks,51,2 Vk11,51,4 Vka2,51 4
QAkyy,51,2Qks,51,3Qk2,51,2 = Pkao,s1,2Vk18,51,4Vkos,s1,4

7'(@38%3/62_31) = 7(51,251,351,451,251,351,351,251,451,351,2) = Oy, s1.50ks,s1.50ks,s1.4@kya,51.0 ko313
Qky6,51,3ka3,51,2Vk12,51,4 Aks,51,3Pka 51,2 = Qkaz,s1,30k16,51,3

T(k238%74k2_31) = 7(51,251,351,451,251,451,451,251,451,351,2) = Ohky,s1 5 Vks,s1.50ks,s1.4@k1a,51.00kns,51.4
QAkoy 51,4 Qko3,81,2Ak12,51,4 Vks,51,3Qka,81,2 = Akoz,s1,4Pkoa,51,4

T(koz(51.251,351.451.3) kg ) = T(51.251,351,451,251,251 351,451 351,251 351 451 351251 451,351.2)

= Qky,51,00ka,s1,3Qks,51,4 Vk12,51 2 Vkas,s1,2Vk12,81,3Vk19,51,4 Akg,s1,3 Vk18,51,2 Vkao,s1,3 Vkao,s1,4 Vk16,51,3 Vkas,s1 2
QAkyg,51,4ks,51,30ka,51,2 = Aki2,51,3Vk18,51,2Vkao,51,3k20,51,4 Vk16,51,3

T(kas(s1,251,4) kag ) = T(51,251,351,451,251,251,451,251,451,251,451,251,451,251,451,351,2)

= Qky,s1,20Qka,s1,3Qks,51,4Ak12,51,2Vk23,51,2 Vk12,51,4 Pks 51,2 Vk11,51,4 Vkoo,s1,2 Vk18,51,4 V14,512 V24,514 Vkas,s1 2
QAl1o,51,4Qks,51,3 k2,512 = Qkoo,s1,2Qk15,51,4 V24,51 4

T(k248%,3k2_41) = 7(51,251,451,351,251,351,351,251,351,451,2) Ay 51, Ok, 51 4 Okg,s1.3 Wk, 51,2 Vs ,s1.3
Ak15,51,30k24,81,2AVk14,51,3Vke,51,4 k2,812 = Akoa,s1,3k15,51,3

T(k248%,4k2_41) = 7(51,251,451,351,251,351,351,251,351,451,2) = k)51 20ks,s1.40ke,51.3 Vh1a,51.00kos,51.4
QAko3,51,4Vkaa,51,2Ak14,51,3Pke,51,4 Vka,s1,2 = Qkoy,s1,4 k3,51 4

T(k24(81,281,331,481,3)27472_41) = 7(51,251,451,351,251,251,351,451,351,251,351,451,351,251,351,451,2)

= Qky,51,00ko,51,4Vks,51,3 Vk14,51,2 Vkoa,51,2Vk14,51,3 Vks,51,4 ko ,51,3Vks,51,2 Vk11,51,3 Vk7,51,4 Vk15,51,3 Vhoa,s51,2
Qk14,51,30k6,51,4Pka,51,2 = Qki1,51,30k15,51,3

7(koa(s1.251.4) ko) = T(51,251.451,351,251,251,451, 251,451,251 451251 451,251,351.451.2)

Aky,s1,0ka,51,4 Vke,51,3Ak14,51,2Vkoa,s1,2Vk14,51,4 Vk18,51,2 Vkao,51,4 Vk11,81,2 Vks 51,4 Vk12,51 2 Vkog,s1,4 Bkoa,s1,2

QAky4,51,30ke,51,4 k2,512 = Akia,51,4Vk18,51,2Vko3,51,4
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This implies:
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_ _ _ _ 1 _ 1 . _ 1 _ _ _
Okrys1,3 = Qe 3 = Qkiss1,3 = Qkoos1,3 = Qhggs1 3 = Qkog,s1 30 k12,513 = Qkyger 4 = Qkizsie = OQkirsia =
— . _ _ -1 _ -1 . _ _ -1 _ -1 .

k‘lg,sl,g’ a’k13751,3 - ak14751,4 - a’k1875174 - ak‘gl,sl,g’ a’k15751,2 - ak16751,4 - ak20,3174 - akzl,slyg’

0
k19,512

k16,513 — @

— . _ 71 . _ —
kgg,slyg’ ak18751,2 - a’kgz,sl,g’ ak‘23751,4 - ak24,8174'

It follows that P.Jy is generated by ak; s, 55 Qkyg,s1.55 Ckis,s1.35 Vhis,s1.20 hig,s1.50 This,s1.00 Thog,s1,45 a0d &
complete set of relations is:

- 1 1 . _ 1.
Okr,51,30k03,51 4 V6,51 ,3Pk12,51,3 V13,851,383V 5,61 0 = L Qk13,51,30k18,51,2Vk23,514 = 1; and

-1 -1 -1

ak7751,3ak)18,81,2 ak12,8173 ak16,sly3 a’k15751,2 -

: -1 _ -1 _ -1 -1
Therefore, using Uy 1.4 = Vh1s,51,3 ks 51 and Uhrousts = k2,513 Vk18,5120ky .51 3 Vhys,s1.00 WE 8O

PJy= < QAkz,s1,35 Ak12,51,35 Qki3,81,30 Bk15,51,25 k1g,s1,2

[Bon16]
[BSV19]

[CGP20]
[Cho21]

[Devo9]

[DJS03]
[EHKR10]

[FT79]

[GLMRM21]
[HKO6a]
[HKO6b)]
[HK20]

[Kho97]
[KNS21]

[KTWO04]
[KW19]

[Los19]
[LS01]

[LV19]

[Mer99]

[MKS04]

[Mos19]

—1 —1 —1 _
Ok 51,3 0k13,51,3 Tk18,51,2 Fh12,51,3 Ph18,51,2 V7 51 3 Vky5,51 2 P12,51,3Ph13,51,3 V15,81 0 = 1). O
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