Algorithms for modular correspondences between abelian varieties with level structure

Antoine Dequay¹, David Lubicz^{1,2}

¹Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes

²DGA Maîtrise de l'information, BP 7419, F-35174 Bruz

April 1st 2025, Journées C2

Abelian varieties

Definition

An abelian variety is a complete connected group variety over a base field k.

- Abelian variety = points on a projective space (locus of homogeneous polynomials) + algebraic group law.
- An abelian variety is projective, smooth, irreducible and its group law is abelian.

Abelian varieties

Definition

An abelian variety is a complete connected group variety over a base field k

- Abelian variety = points on a projective space (locus of homogeneous polynomials) + algebraic group law.
- An abelian variety is projective, smooth, irreducible and its group law is abelian

Example

- Elliptic curves = Abelian varieties of dimension 1,
- Jacobians of genus g (smooth) curves are abelian varieties of dimension g,
- The inclusion is strict for $g \ge 4$.

Isogenies

Definition

An isogeny is a finite surjective morphisme between abelian verieties.

- Isogenies = Rational map + group morphism + finite kernel.
- Isogenies ⇐⇒ Finite subgroups :

$$(f: A \rightarrow B) \mapsto \mathsf{Ker} f$$

 $(A \rightarrow A/H) \leftrightarrow H$

Isogenies

Definition

An isogeny is a finite surjective morphisme between abelian verieties.

- Isogenies = Rational map + group morphism + finite kernel.
- Isogenies ⇐⇒ Finite subgroups :

$$(f: A \rightarrow B) \mapsto \mathsf{Ker} f$$

 $(A \rightarrow A/H) \leftarrow H$

Example

Multiplication by ℓ (\mapsto $A[\ell]$, the ℓ -torsion of A).

Complex abelian varieties

Property

A complex abelian variety is of the form $\mathbb{C}^g/(\mathbb{Z}^g+\Omega\mathbb{Z}^g)$, with $\Omega\in\mathcal{H}_g$, the Siegel upper-half space.

Complex abelian varieties

Property

A complex abelian variety is of the form $\mathbb{C}^g/(\mathbb{Z}^g + \Omega\mathbb{Z}^g)$, with $\Omega \in \mathcal{H}_g$, the Siegel upper-half space.

A projective embedding of $A = \mathbb{C}^g/\Lambda$ can be given by quasi-periodic functions with respect to Λ .

Definition

The space \mathcal{L}_m of Λ -quasi-periodic function of level m is the space of analytic function satisfying, for $z \in \mathbb{C}^g$ and $\lambda \in \mathbb{Z}^g$:

$$f(z + \lambda) = f(z)$$
 $f(z + \Omega\lambda) = \exp(-m \cdot \pi i^t \lambda \Omega\lambda - m \cdot 2\pi i^t z\lambda)f(z).$

Definition

A theta function with rational characteristics $a,b\in\mathbb{Q}^g$ is given by :

$$\theta \left[\begin{smallmatrix} a \\ b \end{smallmatrix}\right](z,\Omega) = \sum_{\mathbf{n} \in \mathbb{Z}^g} \exp \left(\imath \pi^t (\mathbf{n} + \mathbf{a}) \Omega(\mathbf{n} + \mathbf{a}) + 2\imath \pi^t (\mathbf{n} + \mathbf{a}) (z + b)\right).$$

Definition

A theta function with rational characteristics $a, b \in \mathbb{Q}^g$ is given by :

$$\theta \left[\begin{smallmatrix} a \\ b \end{smallmatrix}\right](z,\Omega) = \sum_{n \in \mathbb{Z}^g} \exp\left(\imath \pi^t (n+a) \Omega(n+a) + 2\imath \pi^t (n+a) (z+b)\right).$$

For $m \geq 2$, let $Z(m) = \mathbb{Z}^g / m \mathbb{Z}^g$. A basis of \mathcal{L}_m is given by :

$$\left\{\theta_i := \theta \begin{bmatrix} {}^{\mathbf{0}}_{i/m} \end{bmatrix} (\cdot, \Omega/m) \right\}_{i \in Z(m)}.$$

Definition

A theta function with rational characteristics $a, b \in \mathbb{Q}^g$ is given by :

$$\theta \left[\begin{smallmatrix} a \\ b \end{smallmatrix}\right](z,\Omega) = \sum_{n \in \mathbb{Z}^g} \exp\left(\imath \pi^t (n+a) \Omega(n+a) + 2\imath \pi^t (n+a) (z+b)\right).$$

For $m \geq 2$, let $Z(m) = \mathbb{Z}^g / m \mathbb{Z}^g$. A basis of \mathcal{L}_m is given by :

$$\left\{\theta_i := \theta \begin{bmatrix} \mathbf{0} \\ i/m \end{bmatrix} (\cdot, \Omega/m) \right\}_{i \in Z(m)}.$$

If $m \ge 3$, it gives us an embedding :

$$\varphi_{m,\Omega}: \left(\begin{array}{ccc} A & \longrightarrow & \mathbb{P}^{Z(m)} \\ z & \longmapsto & (\theta_i(z))_{i\in Z(m)} \end{array}\right).$$

Definition

A theta function with rational characteristics $a, b \in \mathbb{Q}^g$ is given by :

$$\theta \left[\begin{smallmatrix} a \\ b \end{smallmatrix}\right](z,\Omega) = \sum_{n \in \mathbb{Z}^g} \exp\left(\imath \pi^t (n+a) \Omega(n+a) + 2\imath \pi^t (n+a) (z+b)\right).$$

For $m \geq 2$, let $Z(m) = \mathbb{Z}^g / m \mathbb{Z}^g$. A basis of \mathcal{L}_m is given by :

$$\left\{\theta_i := \theta \begin{bmatrix} \mathbf{0} \\ i/m \end{bmatrix} (\cdot, \Omega/m) \right\}_{i \in Z(m)}.$$

If $m \ge 3$, it gives us an embedding :

$$\varphi_{m,\Omega}:\left(\begin{array}{ccc} A & \longrightarrow & \mathbb{P}^{Z(m)} \\ z & \longmapsto & (\theta_i(z))_{i\in Z(m)} \end{array} \right).$$

The point $\varphi_{m,\Omega}(0_A)$ is called the theta null point of $\varphi_{m,\Omega}$.

Theorem (Mumford)

The level m theta null point $(a_i)_{i \in Z(m)}$ satisfy the Riemann equations of evel m:

$$L(x,y)L(u,v) = L(x+z,y-z)L(u-z,v-z),$$

with L(x, y) of the form $\sum_{t \in Z(2)} \chi(t) a_{x+t} a_{y+t}$.

Theorem (Mumford)

The level m theta null point $(a_i)_{i \in Z(m)}$ satisfy the Riemann equations of evel m:

$$L(x,y)L(u,v) = L(x+z,y-z)L(u-z,v-z),$$

with L(x,y) of the form $\sum_{t\in Z(2)}\chi(t)a_{x+t}a_{y+t}$, and the symmetry relations of level m:

$$a_{\scriptscriptstyle X}=a_{-\scriptscriptstyle X}.$$

Theorem (Mumford)

The level m theta null point $(a_i)_{i \in Z(m)}$ satisfy the Riemann equations of evel m:

$$L(x,y)L(u,v) = L(x+z,y-z)L(u-z,v-z),$$

with L(x, y) of the form $\sum_{t \in Z(2)} \chi(t) a_{x+t} a_{y+t}$, and the symmetry relations of level m:

$$a_{\scriptscriptstyle X}=a_{-\scriptscriptstyle X}.$$

This systeme is complete!

Theorem (Mumford)

The level m theta null point $(a_i)_{i \in Z(m)}$ satisfy the Riemann equations of evel m:

$$L(x,y)L(u,v) = L(x+z,y-z)L(u-z,v-z),$$

with L(x, y) of the form $\sum_{t \in Z(2)} \chi(t) a_{x+t} a_{y+t}$, and the symmetry relations of level m:

$$a_{\scriptscriptstyle X}=a_{-\scriptscriptstyle X}.$$

This systeme is complete!

Definition

There is an action by translation of $Z(m) \times Z(m)$ on the theta basis :

$$(i,j) \cdot \theta_k = \theta_k(\cdot - i/m - \Omega j/m) = e_{\mathcal{L}_m}(i+k,j)\theta_{i+k},$$

where $e_{\mathcal{L}_m}$ is the commutator paring.

Theorem

• Let $\psi: Z(m) \to Z(dm)$ be the canonical embedding. Let $K = (\{0\} \times Z(m)) \cdot 0_A \subset A[m] \subset A[dm]$,

Theorem

- Let $\psi: Z(m) \to Z(dm)$ be the canonical embedding. Let $K = (\{0\} \times Z(m)) \cdot 0_A \subset A[m] \subset A[dm]$,
- Let $(\theta_i^B)_{i \in Z(md)}$ be the theta functions of level md on $B = \mathbb{C}^g/(\mathbb{Z}^g + \Omega \mathbb{Z}^g)$,

Theorem

- Let $\psi: Z(m) \to Z(dm)$ be the canonical embedding. Let $K = (\{0\} \times Z(m)) \cdot 0_A \subset A[m] \subset A[dm]$,
- Let $(\theta_i^B)_{i \in Z(md)}$ be the theta functions of level md on $B = \mathbb{C}^g/(\mathbb{Z}^g + \Omega \mathbb{Z}^g)$,
- Let $(\theta_i^A)_{i \in Z(m)}$ be the theta functions of level m on $A = B/K = \mathbb{C}^g/(\mathbb{Z}^g + (\Omega/m)\mathbb{Z}^g)$,

Theorem 1

- Let $\psi: Z(m) \to Z(dm)$ be the canonical embedding. Let $K = (\{0\} \times Z(m)) \cdot 0_A \subset A[m] \subset A[dm]$,
- Let $(\theta_i^B)_{i \in Z(md)}$ be the theta functions of level md on $B = \mathbb{C}^g/(\mathbb{Z}^g + \Omega \mathbb{Z}^g)$,
- Let $(\theta_i^A)_{i \in Z(m)}$ be the theta functions of level m on $A = B/K = \mathbb{C}^g/(\mathbb{Z}^g + (\Omega/m)\mathbb{Z}^g)$,
- We have :

$$(\theta_i^A)_{i\in Z(m)} = (\theta_{\psi(i)}^B)_{i\in Z(m)}.$$

Theorem

- Let $\psi: Z(m) \to Z(dm)$ be the canonical embedding. Let $K = (\{0\} \times Z(m)) \cdot 0_A \subset A[m] \subset A[dm],$
- Let $(\theta_i^B)_{i \in Z(md)}$ be the theta functions of level md on $B = \mathbb{C}^g/(\mathbb{Z}^g + \Omega \mathbb{Z}^g)$,
- Let $(\theta_i^A)_{i \in Z(m)}$ be the theta functions of level m on $A = B/K = \mathbb{C}^g/(\mathbb{Z}^g + (\Omega/m)\mathbb{Z}^g)$,
- We have :

$$(\theta_i^A)_{i\in Z(m)} = (\theta_{\psi(i)}^B)_{i\in Z(m)}.$$

Proof.

$$\theta \begin{bmatrix} \mathbf{0} \\ i/m \end{bmatrix} (\cdot, (\Omega/m)/d) = \theta \begin{bmatrix} \mathbf{0} \\ di/dm \end{bmatrix} (\cdot, \Omega/dm).$$

Change of level algorithms and isogeny computation

Definition: Changing level

A change of level algorithm takes the theta null point of level m of A, and K = A[dm], and computes the theta null point of level dm of A (going up) or the other way around (going down).

Change of level algorithms and isogeny computation

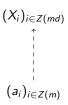
Definition: Changing level

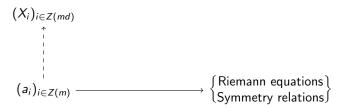
A change of level algorithm takes the theta null point of level m of A, and K = A[dm], and computes the theta null point of level dm of A (going up) or the other way around (going down).

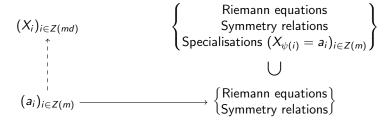
Definition: Computing isogeny

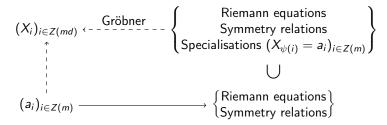
An isogeny computation algorithm takes the theta null point of a marked abelian variety A of level m, and $K \subset A[dm]$ a subgroup isomorphic to Z(d), and computes the theta null point of an abelian variety B of level m, where B = A/K, and the isogeny $f: A \to B$.

$$(a_i)_{i\in Z(m)}$$









Basic idea : to find a theta null point of level md from a theta null point of level m :

$$(X_i)_{i \in \mathcal{Z}(md)} \overset{\mathsf{Gr\"{o}bner}}{\longleftarrow} \left\{ \begin{array}{c} \mathsf{Riemann \ equations} \\ \mathsf{Symmetry \ relations} \\ \mathsf{Specialisations} \ (X_{\psi(i)} = a_i)_{i \in \mathcal{Z}(m)} \end{array} \right\}$$

$$(a_i)_{i \in \mathcal{Z}(m)} \xrightarrow{\mathsf{Gr\"{o}bner}} \left\{ \begin{array}{c} \mathsf{Riemann \ equations} \\ \mathsf{Symmetry \ relations} \\ \mathsf{Symmetry \ relations} \end{array} \right\}$$

Can we do better?

Basic idea : to find a theta null point of level md from a theta null point of level m :

$$(X_i)_{i \in Z(md)} \leftarrow -\frac{\mathsf{Gr\"{o}bner}}{-} - \left\{ \begin{array}{c} \mathsf{Riemann \ equations} \\ \mathsf{Symmetry \ relations} \\ \mathsf{Specialisations} \ (X_{\psi(i)} = a_i)_{i \in Z(m)} \end{array} \right\}$$
 Sufficient, but necessary ? Symmetry relations
$$(X_{\psi(i)} = a_i)_{i \in Z(m)} = \frac{\mathsf{Sufficient}}{\mathsf{Symmetry \ relations}} = \frac{\mathsf{$$

Can we do better?

Basic idea: to find a theta null point of level md from a theta null point of level m:

$$(X_i)_{i \in Z(md)} \leftarrow \frac{\text{Gr\"{o}bner}}{\text{Gr\"{o}bner}} \left\{ \begin{array}{c} \text{Riemann equations} \\ \text{Symmetry relations} \\ \text{Specialisations} (X_{\psi(i)} = a_i)_{i \in Z(m)} \end{array} \right\}$$

$$(a_i)_{i \in Z(m)} \longrightarrow \left\{ \begin{array}{c} \text{Riemann equations} \\ \text{Sufficient,} \\ \text{but necessary ?} \end{array} \right\}$$

$$\text{Symmetry relations} \left\{ \begin{array}{c} \text{Sufficient,} \\ \text{Symmetry relations} \end{array} \right\}$$

Can we do better?

Previous results:

- Duplication formula : going up form level m to level 2m;
- Koizumi formula : going down from level dm to level m;
- Lubicz and Robert, 2022 : change of level algorithms and isogeny computation for *d* prime to *m*.

Compatibility and first difference

Definition

Two theta null points of level m_1 and m_2 , say $\varphi_{m_1,\Omega_1}(0)$ and $\varphi_{m_2,\Omega_2}(0)$, are said to be compatible if there exists d such that $m_1=dm_2$, and if there exists $\Omega\in\mathcal{H}_g$ such that $\Omega/m_i\simeq\Omega_i\mod\Gamma(m_i,2m_i)$ for i=1,2, where $\Gamma(m,2m)$ is a congruence subgroup of $\mathrm{Sp}_{2g}(\mathbb{Z})$ (Igusa level m subgroups).

Compatibility and first difference

Definition

Two theta null points of level m_1 and m_2 , say $\varphi_{m_1,\Omega_1}(0)$ and $\varphi_{m_2,\Omega_2}(0)$, are said to be compatible if there exists d such that $m_1=dm_2$, and if there exists $\Omega\in\mathcal{H}_g$ such that $\Omega/m_i\simeq\Omega_i$ mod $\Gamma(m_i,2m_i)$ for i=1,2, where $\Gamma(m,2m)$ is a congruence subgroup of $\mathrm{Sp}_{2g}(\mathbb{Z})$ (Igusa level m subgroups).

From A an abelian variety of level m, and $\varphi_{m,\Omega}(0_A)$ its theta null point :

Case $d \wedge m = 1$

Any abelian variety of the form A/K, where $K \subset A[dm]$ is isomorphic to Z(d), can be equiped with a theta null point compatible with $\varphi_{m,\Omega}(0_A)$.

Compatibility and first difference

Definition

Two theta null points of level m_1 and m_2 , say $\varphi_{m_1,\Omega_1}(0)$ and $\varphi_{m_2,\Omega_2}(0)$, are said to be compatible if there exists d such that $m_1=dm_2$, and if there exists $\Omega\in\mathcal{H}_g$ such that $\Omega/m_i\simeq\Omega_i$ mod $\Gamma(m_i,2m_i)$ for i=1,2, where $\Gamma(m,2m)$ is a congruence subgroup of $\mathrm{Sp}_{2g}(\mathbb{Z})$ (Igusa level m subgroups).

From A an abelian variety of level m, and $\varphi_{m,\Omega}(0_A)$ its theta null point :

Case $d \wedge m = 1$

Any abelian variety of the form A/K, where $K \subset A[dm]$ is isomorphic to Z(d), can be equiped with a theta null point compatible with $\varphi_{m,\Omega}(0_A)$.

Case 2|d|m

There is a unique $K_0 \subset A[dm]$, isomorphic to Z(d), such that A/K_0 can be equiped with a theta null point compatible with $\varphi_{m,\Omega}(0_A)$:

$$K_0 = \left(\frac{m}{d}Z(d) \times \{0\}\right) \cdot 0_A.$$

What method for our algorithms?

Case $d \wedge m = 1$: Excellent lift

- Compute an affine lift of K (and other groups), consistent with relations on A;
- Use formulas for theta null point/image by the isogeny.

What method for our algorithms?

Case $d \wedge m = 1$: Excellent lift

- Compute an affine lift of K (and other groups), consistent with relations on A:
- Use formulas for theta null point/image by the isogeny.

Tools:

- Differential addition : $\widetilde{x+y} = \text{DiffAdd}(\widetilde{x}, \widetilde{y}, \widetilde{x-y});$
- Action of $Z(m) \times Z(m)$;
- Inv: $\widetilde{x} = (\widetilde{x}_i)_{i \in Z(m)} \mapsto -\widetilde{x} = (\widetilde{x}_{-i})_{i \in Z(m)}$.

What method for our algorithms?

Case $d \wedge m = 1$: Excellent lift

- Compute an affine lift of K (and other groups), consistent with relations on A;
- Use formulas for theta null point/image by the isogeny.

Tools:

- Differential addition : $\widetilde{x+y} = \text{DiffAdd}(\widetilde{x}, \widetilde{y}, \widetilde{x-y});$
- Action of $Z(m) \times Z(m)$;
- Inv: $\widetilde{x} = (\widetilde{x}_i)_{i \in Z(m)} \mapsto -\widetilde{x} = (\widetilde{x}_{-i})_{i \in Z(m)}$.

Definition

Let (e_1, \ldots, e_g) be a basis of Z(md)/Z(m). We say that $(e_i, e_i + e_j)_{i,j=1,\ldots,g}$ is a chain basis of Z(d).

Example

For g = 2, a chain basis of Z(d) is ((1,0),(0,1),(1,1)).

Definition

We set:

$$S_{\mathtt{Inv}} = \left\{ t \in Z(\mathit{dm}), \ t = -t \ \mathsf{mod} \ Z(\mathit{m}) \right\}.$$

Definition

We set:

$$S_{\operatorname{Inv}} = \{ t \in Z(dm), \ t = -t \ \operatorname{mod} Z(m) \}.$$

Case $d \wedge m = 1$

If $d \wedge m = 1$, then $S_{Inv} = \{0\}$.

In other words, Inv acts freely on the set of points we can compute thanks to DiffAdd and the action of $Z(m) \times Z(m)$.

Definition

We set :

$$S_{\text{Inv}} = \left\{ t \in Z(dm), \ t = -t \ \text{mod} \ Z(m) \right\}.$$

Case $d \wedge m = 1$

If $d \wedge m = 1$, then $S_{Inv} = \{0\}$.

In other words, Inv acts freely on the set of points we can compute thanks to DiffAdd and the action of $Z(m) \times Z(m)$.

Case 2|d|m: new relations

Let $\phi: Z(dm) \to A[dm]$ be a numbering of A[dm]. For $t \in S_{\text{Inv}}$, we have :

$$2\phi(t) = (2dt, 0) \cdot \phi(0),$$

where $dt \in Z(m)$.

Remedying the obstruction: symmetric compatibility

Proposition

If there exists $t \in S_{inv}$ such that $\phi(t) \neq (2dt, 0) \cdot \phi(0)$, then $\phi(t) = (2dt, 0) \cdot -\phi(0)$. This property is Z(m)-linear in t!

Remedying the obstruction: symmetric compatibility

Proposition

If there exists $t \in S_{inv}$ such that $\phi(t) \neq (2dt, 0) \cdot \phi(0)$, then $\phi(t) = (2dt, 0) \cdot -\phi(0)$. This property is Z(m)-linear in t!

Proposition: Changing the theta null point to make it sym. compatible

For $(e_i)_{i=1,...,g}$ a basis of Z(md), if $\phi(e_i) \neq (2de_i,0) \cdot \phi(0)$, then by replacing θ_k by $-\theta_k$ for $k \in \langle e_i \rangle$, we get the equality.

Example

For g=1, m=d=2 and a theta null point $(a_0:a_1:a_2:a_3)$, either $(a_0:a_1:a_2:a_3)$ or $(a_0:-a_1:a_2:-a_3)$ is symmetric compatible with K.

Remedying the obstruction: symmetric compatibility

Proposition

If there exists $t \in S_{inv}$ such that $\phi(t) \neq (2dt, 0) \cdot \phi(0)$, then $\phi(t) = (2dt, 0) \cdot -\phi(0)$. This property is Z(m)-linear in t!

Proposition: Changing the theta null point to make it sym. compatible

For $(e_i)_{i=1,...,g}$ a basis of Z(md), if $\phi(e_i) \neq (2de_i,0) \cdot \phi(0)$, then by replacing θ_k by $-\theta_k$ for $k \in \langle e_i \rangle$, we get the equality.

Example

For g=1, m=d=2 and a theta null point $(a_0:a_1:a_2:a_3)$, either $(a_0:a_1:a_2:a_3)$ or $(a_0:-a_1:a_2:-a_3)$ is symmetric compatible with K.

Proposition: Changing K to make it symmetric compatible

For $(e_i)_{i=1,...,g}$ a basis of Z(md), if $\phi(e_i) \neq (2de_i,0) \cdot \phi(0)$, then : $\phi(e_i) + (0, \frac{md}{2}e_i) \cdot \phi(0) = (2de_i,0) \cdot \phi(0)$.

Application

Theorem: Changing level (going up)

- Input : A basis of K = A[dm] and $\varphi_{m,\Omega}(0_A)$ the theta null point of level m of A;
- We make K symmetric compatible with $\varphi_{m,\Omega}(0_A)$ (equivalent to a change of numbering or basis);
- We compute an affine lift of K (and other groups), consistent with relations on A;
- We use formulas for the theta null point of level dm of A.

Application

Theorem: Changing level (going up)

- We make K symmetric compatible with $\varphi_{m,\Omega}(0_A)$ (equivalent to a change of numbering or basis);
- We compute an affine lift of K (and other groups), consistent with relations on A;
- We use formulas for the theta null point of level dm of A.

Theorem: Computing isogeny

- Input : A basis of $K \subset A[dm]$ a subgroup isomorphic to Z(d) and $\varphi_{m,\Omega}(0_A)$ the theta null point of level m of A;
- We make $\varphi_{m,\Omega}(0_A)$ symmetric compatible with it K;
- We compute an affine lift of K (and other groups), consistent with relations on A;
- We use formulas for the image by the isogeny $A \to A/K$.

Application

Theorem: Changing level (going up)

- We make K symmetric compatible with $\varphi_{m,\Omega}(0_A)$ (equivalent to a change of numbering or basis);
- We compute an affine lift of K (and other groups), consistent with relations on A;
- We use formulas for the theta null point of level dm of A.

Thank you for your attention!

Theorem: Computing isogeny

- We make $\varphi_{m,\Omega}(0_A)$ symmetric compatible with it K;
- We compute an affine lift of K (and other groups), consistent with relations on A;
- We use formulas for the image by the isogeny $A \rightarrow A/K$.