Colle MP*

Antoine Médoc

Semaine 5 (10 octobre 2022)

1 Planche 1

1.1 Question de cours

— Montrer que toute famille de vecteurs propres associés à des valeurs propres deux à deux distinctes est libre. Montrer que toute famille de sous-espaces propres associés à des valeurs propres deux à deux distinctes est en somme directe.

1.2 Application

— Montrer que $\mathbb{R}_n[X] = \bigoplus_{k=0}^n \{ P \in \mathbb{R}_n[X] \mid XP' = kP \}.$

- Soit

$$u: \begin{vmatrix} P & \longrightarrow & \mathbb{R}_n[X] \\ \mathbb{R}_n[X] & \longmapsto & XP' \end{vmatrix}.$$

Elle est bien définie et linéaire. Pour tout $k \in [0, n]$, $u(X^k) = kX^k$ donc k est valeur propre de u et $\{P \in \mathbb{R}_n[X] \mid XP' = kP\}$ est le sous-espace propre associé. Ainsi, u admet n+1 valeurs propres distinctes donc il est diagonalisable et $\mathbb{R}_n[X]$ est la somme directe de ses sous-espaces propres.

1.3 Exercices

Exercice 1

Pour tous $a, b \in \mathbb{R}$ on note

$$M(a,b) := \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}.$$

1. — Soit A := M(0,1). Montrer que A est diagonalisable et donner P telle que $P^{-1}AP$ est diagonale.

— On a $\chi_A = (X-2)(X+1)^2$. On a Ker $(A+I_3) = \{x+y+z=0\} = \text{Vect } \{(1,-1,0),(1,0,-1)\}$ et Ker $(A-2I_3) = \text{Vect } \{(1,1,1)\}$. Donc A est diagonalisable et

$$P = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}$$

1

convient : $P^{-1}AP = diag(-1, -1, 2)$.

2. — Calculer $P^{-1}M(a,b)P$ en fonction de a et b.

- On a $M(a,b) = a I_3 + bA$ donc $P^{-1}AP = a I_3 + b \operatorname{diag}(-1,-1,2) = \operatorname{diag}(a-b,a-b,a+2b)$.
- 3. En déduire le déterminant et le spectre de M(a, b).
 - Deux matrices semblables ont même déterminant et spectre donc det $M(a,b) = (a + 2b)(a-b)^2$ et le spectre de M(a,b) est $\{a+2b,a-b\}$.

Exercice 2

Soit $D \in M_n(\mathbb{C})$ telle que χ_D est scindé à racines simples.

- L'équation $X^3-3X=D$ d'inconnue $X\in \mathrm{M}_n(\mathbb{C})$ admet-elle un nombre fini de solutions?
- Comme χ_D est scindé à racines simples, D est diagonalisable et chacun de ses espaces propres est une droite. Soit (e_1, \ldots, e_n) une base de vecteurs propres de D. On a

$$P^{-1}DP = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$$

Soit X une solution de l'équation. On a $XD = X^4 - 3X^2 = XD$ donc X commute avec D donc X stabilise tous les espaces propres de D. Ainsi, (e_1, \ldots, e_n) est une base de vecteurs propres de X donc on peut écrire

$$P^{-1}XP = \operatorname{diag}(x_1, \dots, x_n).$$

On a $P^{-1}(X^3 - 3X)P = \text{diag}(x_1^3 - 3x_1, \dots, x_n^3 - 3x_n)$ donc, pour tout $i \in [1, n], x_i^3 - x_i = \lambda_i$. Finalement,

$$\left\{X \in \mathcal{M}_n(\mathbb{C}) \mid X^3 - 3X = D\right\} \subset \left\{P \operatorname{diag}(x_1, \dots, x_n) P^{-1} ; \forall i, x_i^3 - 3x_i = \lambda_i\right\}.$$

Or, pour tout $i \in [1, n]$, $X^3 - 3X - \lambda_i$ admet un nombre fini de racines donc ce deuxième ensemble est fini. Donc l'équation $X^3 - X = D$ admet un nombre fini de solutions dans $M_n(\mathbb{K})$.

2 Planche 2

2.1 Question de cours

— Donner la définition du polynôme caractéristique d'une matrice $M \in M_n(\mathbb{K})$. Quel est son degré d? Donner ses coefficients de degré d, d-1 et 0.

2.2 Application

- Deux matrices d'ordre 2 ayant la même trace et le même déterminant sont-elles nécessairement semblables? Deux matrices carrées d'ordre 2 ayant la même trace t et le même déterminant d vérifiant $t^2 4d \neq 0$ sont-elles semblables?
- Les matrices

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \text{ et } \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

ont la même trace 2 et le même déterminant 1 mais ne sont pas semblables. Le polynôme caractéristique de deux telles matrices est $\chi = X^2 - tX + d$ et est de déterminant $\Delta = t^2 - d$. Si $\Delta \neq 0$, il est scindé à racines simples sur $\mathbb C$ donc les matrices sont diagonalisables et ont même valeurs propres, donc elles sont semblables.

2.3 Exercices

Exercice 1

Soit

$$A := \begin{pmatrix} 3 & 1 & 0 \\ 1 & 3 & 0 \\ -1 & 0 & 0 \end{pmatrix}.$$

- 1. Montrer que A est diagonalisable. Donner ses valeurs propres et la dimension des sous-espaces propres associés.
 - On a $\chi_A = X(X-2)(X-4)$. Il est scindé à racines simples donc ses valeurs propres sont 0, 2, 4 et tous ses sous-espaces propres sont de dimension 1.
- 2. Soit M commutant avec A. Montrer que M est diagonalisable dans une même base que A.
 - Comme M commute avec A, les sous-espaces propres de A sont stables par M. Or, ce sont des droites. Ainsi, toute base de vecteurs propres de A est aussi une base de vecteurs propres de M.
- 3. En déduire le nombre de matrices B telles que $A=B^2$.
 - Soit e_1, e_2, e_3 une base de vecteurs propres (associés respectivement à 0,2,4) de A et $P = \text{Mat}(e_1, e_2, e_3)$.

Soit B telle que $B^2 = A$. On a $BA = B^3 = AB$ donc B commute avec A. Il existe $\Delta := \operatorname{diag}(a,b,c)$ telle que $\Delta = P^{-1}BP$. Or $P^{-1}AP = \operatorname{diag}(0,2,4)$ donc $\operatorname{diag}(a^2,b^2,c^2) = \operatorname{diag}(0,2,4)$, i.e $a = 0, b = \pm \sqrt{2}, c = \pm 2$.

Réciproquement, si $B:=P^{-1}\operatorname{diag}(0,\pm\sqrt{2},\pm2),\ B^2=A.$ Donc il existe 4 telles matrices B.

Exercice 2

- La famille $(e_n)_{n\in\mathbb{N}} := (t \mapsto \cos(nt))_{n\in\mathbb{N}}$ est-elle libre dans $\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$?
- L'application

$$D: \left| \begin{array}{ccc} \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}) & \longrightarrow & \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}) \\ f & \longmapsto & f'' \end{array} \right|$$

est un endomorphisme et, pour tout $n \in \mathbb{N}$, $D(e_n) = -n^2 e_n$ donc e_n est un vecteur propre associé à la valeur propre $-n^2$. Ainsi, toute sous-famille finie de $(e_n)_n$ est une famille de vecteurs propres associés à des valeurs propres distinctes donc est libre. Donc $(e_n)_n$ est libre.

3 Planche 3

3.1 Question de cours

— Quelle est la condition classique nécessaire et suffisante sur le polynôme caractéristique d'une matrice pour qu'elle soit diagonalisable? Le prouver.

3.2 Application

— La matrice

$$A := \begin{pmatrix} -3 & -6 & 0 \\ 2 & 4 & 0 \\ 1 & 3 & 1 \end{pmatrix}$$

est-elle trigonalisable/diagonalisable?

— On a, en calculant par blocs, $\chi_A = (X-1)((X+3)(X-4)+12) = X(X-1)^2$. Il est scindé donc A est trigonalisable. La matrice $A-I_3$ est de rang 2, donc dim $\operatorname{Ker}(A-I_3)=1<2$. Donc A n'est pas diagonalisable.

3.3 Exercices

Exercice 1

Soit

$$\varphi: \mid \mathbb{R}[X] \longrightarrow \mathbb{R}[X]$$

 $P \longmapsto (X-1)(X-2)P'-2XP$.

- 1. Montrer que φ est un endomorphisme et déterminer le degré de ses vecteurs propres.
 - Comme $\mathbb{R}[X]$ est un anneau, φ est bien définie. Par bilinéarité du produit et linéarité de la dérivation, φ est linéaire. Soit $P \neq 0$, d son degré et $a \neq 0$ sont coefficient dominant. On a $\deg(\varphi(P)) \leqslant d+1$ et le coefficient de $\varphi(P)$ de degré d+1 est a(d-2). Par contraposée, un vecteur propre de φ est de degré d tel que d-2=0, i.e. d=2.
- 2. Montrer que $\mathbb{R}_2[X]$ est stable par φ et que $(1, X 1, (X 1)^2)$ est une base de $\mathbb{R}_2[X]$.
- Soit $P \in \mathbb{R}_2[X]$. Le coefficient de degré 2+1 de $\varphi(P)$ est 0 donc deg $\varphi(P) \leq 2$. La famille $(1, X - 1, (X - 1)^2)$ est échelonnée en degré, donc est libre. Elle est de cardinal dim $\mathbb{R}_2[X]$ donc en est une base.
- 3. Écrire la matrice M représentative de l'endomorphisme de $\mathbb{R}_2[X]$ induit par φ dans la base $(1, X 1, (X 1)^2)$.
 - On a

$$M = \begin{pmatrix} 2 & 0 & 0 \\ -2 & -3 & 0 \\ 0 & -1 & -4 \end{pmatrix}.$$

- 4. Déterminer les éléments propres de φ .
 - Par la question (1), les sous-espaces propres de φ sont des sous-espaces vectoriels de $\mathbb{R}_2[X]$, donc les valeurs propres de φ sont celles de la matrice M, donc $\operatorname{Sp} \varphi = \{2, -3, -4\}$.

Comme M a trois valeurs propres distinctes, ses sous-espaces propres sont des droites. On a vu que $E_{-4}(\varphi) = \text{Vect } \{(X-1)^2\}$. On a $E_{-3}(M) = \text{Vect } (0,-1,1) \text{ donc } -(X-1) + (X-1)^2 = (X-1)(X-2) \text{ dirige } E_{-3}(\varphi)$. De même, $E_2(M) = \text{Vect } \{(1,-2,1)\} \text{ donc } 1 - 2(X-1) + (X-1)^2 = (X-2)^2 \text{ dirige } E_2(\varphi)$.

Exercide 2

Soient $A, B \in M_n(\mathbb{K})$ telles que B est inversible.

- Les matrices AB et BA ont-elles nécessairement les mêmes valeurs propres?
- On a $\chi_{AB}(0) = \det(-AB) = (-1)^n (\det A)(\det B) = \det(-BA) = \chi_{BA}(0)$ et, pour tout $\lambda \in \mathbb{K}^*$, $\chi_{AB}(\lambda) = \det(\lambda I_n AB) = \det(B^{-1}\lambda I_n B B^{-1}BAB) = \det(\lambda I_n BA)$. Donc $\chi_{AB} = \chi_{BA}$. En particulier, AB et BA ont les mêmes valeurs propres.

4 Exercices supplémentaires

Exercice 1

Soit u un automorphisme d'un \mathbb{K} -espace vectoriel E.

— Donner le spectre de u^{-1} en fonction de celui de u.

— Comme u et u^{-1} sont des injectifs, ils ont un noyau nul, i.e. n'admettent pas 0 comme valeur propre. Pour tout $\mu \in \mathbb{K}^*$,

$$\mu \in \operatorname{Sp}(u^{-1}) \Leftrightarrow \exists x \in E \setminus \{0\}, u^{-1}(x) = \mu x$$

 $\Leftrightarrow \exists x \in E \setminus \{0\}, u(x) = \mu^{-1} x \qquad \Leftrightarrow \mu \in \operatorname{Sp}(u)$

donc
$$Sp(u^{-1}) = \{ \mu^{-1} ; \mu \in Sp(u) \}.$$

Exercice 2

Soit $J \in \mathcal{M}_n(\mathbb{K})$ la matrice dont tous les coefficients sont égaux à 1.

- Montrer que J est diagonalisable, donner ses valeurs propres et la dimension des sousespaces propres associés.
- On a rg J=1 donc 0 est valeur propre de J et dim $E_0=n-1$. On a, avec $e_1:=(1,\ldots,1)$, $Je_1=ne_1$ donc 1 est valeur propre et dim $E_n\geqslant 1$. Donc $\sum_{\lambda\in\mathrm{Sp}(J)}\dim E_\lambda\geqslant n-1+1=n$ donc J est diagonalisable et dim $E_n=1$.