Colle MP*

Antoine Médoc

Semaine 9

1 Planche 1

1.1 Question de cours

— Montrer l'existence et unicité de l'endomorphisme adjoint d'un endomorphisme d'un espace euclidien.

1.2 Application

- Soit $u:(x,y)\in\mathbb{R}^2\mapsto (3x+2y,y-x)\in\mathbb{R}^2$. Déterminer son adjoint.
- Dans la base canonique, $M(u) = \begin{pmatrix} 3 & 2 \\ -1 & 1 \end{pmatrix}$, donc $M(u^*) = \begin{pmatrix} 3 & -1 \\ 2 & 1 \end{pmatrix}$, donc $u^*: (x,y) \in \mathbb{R}^2 \mapsto (3x y, 2x + y) \in \mathbb{R}^2$.

1.3 Exercices

Exercice 1

Soit $u \in \mathcal{L}(E)$ tel que $\langle x, y \rangle \Rightarrow \langle u(x), u(x) \rangle = 0$.

- 1. Montrer qu'il existe $k \in \mathbb{R}^+$ tel que $\forall x, ||u(x)|| = k ||x||$. Indication : Considérer une base (e_1, \ldots, e_n) orthonormée de E et les vecteurs $e_1 + e_i$ et $e_1 e_i$.
 - Le résultat est clair pour si n = 1. Supposons $n \ge 2$. Soient $x := e_1 + e_i$ et $y = e_1 - e_i$. On a $\langle x, y \rangle = 0$ donc $\langle u(x), u(y) \rangle = 0$ donc, avec $k := ||u(e_1)|| \langle u(e_i), u(e_i) \rangle = k^2$. Par ailleurs, $(u(e_1), \dots, u(e_n))$ est orthogonale. On a, par le théorème de Pythagore, $||u(x)||^2 = \sum_i x_i^2 ||u(e_i)||^2 = k^2 ||x||^2$.
- 2. Montrer que u est la composée d'une homothétie et d'un endomorphisme orthogonal.
 - Si k=0, u est la composée de l'homothétie nulle et de l'identité. Supposons $k\neq 0$. Soit h l'homothétie de rapport k et $v:=h^{-1}\circ u$. Pour tout x, ||v(x)||=||x||. Donc v est orthogonale.
- 3. Montrer que la composée v d'une homothétie et d'un endomorphisme orthogonal vérifie $\langle x, y \rangle \Rightarrow \langle v(x), v(x) \rangle = 0$.
 - Soit $v = h \circ u$. On a $\langle v(x), v(x) \rangle = k^2 \langle u(x), u(y) \rangle = k^2 \langle x, y \rangle$.

2 Planche 2

2.1 Question de cours

— Montrer que l'application $u \mapsto u^*$ est linéaire, antimultiplicative et involutive.

2.2 Application

- Soit $u \in \mathcal{L}(E)$. Montrer que $\operatorname{Ker} u^* = \operatorname{Im}(u)^{\perp}$ et $\operatorname{Im} u^* = (\operatorname{Ker} u)^{\perp}$.
- On a $x \in \operatorname{Ker} u^* \Leftrightarrow \forall y \in E \langle u^*(x), y \rangle = 0 \Leftrightarrow \forall y, \langle x, u(x) \rangle = 0$ donc $\operatorname{Ker} u^* = \operatorname{Im}(u)^{\perp}$. On a donc $\operatorname{Ker} u = (\operatorname{Im} u^*)^{\perp}$ i.e. $\operatorname{Im} u^* = (\operatorname{Ker} u)^{\perp}$.

2.3 Exercices

Exercice 1

Soient $u \in \mathcal{O}(E)$, v = u - Id et pour tout $n \in \mathbb{N}^*$

$$u_n := \frac{1}{n} \sum_{k=0}^{n-1} u^k.$$

- 1. Montrer que $\operatorname{Ker} v = (\operatorname{Im} v)^{\perp}$ et $\operatorname{Im} v = (\operatorname{Ker} v)^{\perp}$.
 - Il suffit de montrer la première égalité et de passer à l'orthogonal. Soit $x \in \text{Ker } v$, i.e. u(x) = x. Soit $y := v(z) \in \text{Im} v$. On a $\langle x, y \rangle = \langle x, u(z) \rangle \langle x, z \rangle = \langle u(x), u(z) \rangle \langle x, z \rangle = 0$. Donc $\text{Ker } v \subset (\text{Im} v)^{\perp}$. Par le théorème du rang, dim $\text{Ker } v = \dim \text{Im} v \dim E = \dim(\text{Im} v)^{\perp}$ donc $\text{Ker } v = (\text{Im} v)^{\perp}$.
- 2. Soit $x \in E$. Montrer que $(u_n(x))_n$ converge vers le projeté orthogonal de x sur Ker v. Soit $(a,b) \in \text{Ker } v \times (\text{Ker } v)^{\perp}$ tel que x=a+b. On a u(a)=a donc $u_n(a)=a$. On a $b \in \text{Im} v$ donc b=v(c). On a $u_n(b)=u_n(u(c)-c)=\frac{1}{n}\sum_{k=0}^{n-1}u^{k+1}(c)-\frac{1}{n}\sum_{k=0}^{n-1}u^k(c)=\frac{1}{n}u_n(c)-\frac{1}{n}c$. Or (inégalité triangulaire et orthogonalité de u) $||u_n(c)|| \leq 1$ donc $u_n(b) \to 0$.

3 Planche 3

3.1 Question de cours

— Caractériser une matrice orthogonale avec ses lignes ou avec ses colonnes.

3.2 Application

— Les matrices

$$A := \frac{1}{\sqrt{6}} \begin{pmatrix} \sqrt{2} & -\sqrt{3} & 1\\ \sqrt{2} & \sqrt{3} & 1\\ \sqrt{2} & 0 & -2 \end{pmatrix}, B := \begin{pmatrix} 1 & 1\\ 0 & 1 \end{pmatrix}$$

sont-elles orthogonales? Donner leurs déterminants.

— Par la question de cours, A est orthogonale et B ne l'est pas. Comme les colonnes de A ne forment pas une base orthonormée directe, det A=-1. Comme B est triangulaire supérieure, det $B=1\times 1=1$.

3.3 Exercices

Exercice 1

Supposons $n := \dim \geqslant 3$. Soient $a, b \in E$ unitaires tels que (a, b) est libre et $f : x \mapsto \langle a, x \rangle a + \langle b, x \rangle b$.

1. — Montrer que $\langle a,b\rangle \neq \pm 1$ et que (a+b,a-b) est une base orthogonale de Vect $\{a,b\}$.

- Supposons $\langle a, b \rangle = \pm 1$. Comme a, b sont unitaires, on a le cas d'égalité de Cauchy-Schwarz donc (a, b) est liée. Par contraposée, $\langle a, b \rangle \neq \pm 1$. On a $\langle a + b, a b \rangle = ||a||^2 ||b||^2 = 0$ donc (a + b, a b) est orthogonale et formée de vecteurs non nuls donc est libre. Donc c'est une base de Vect $\{a, b\}$.
- 2. Déterminer f^* .
 - On a $\langle f(x), y \rangle = \langle a, x \rangle \langle a, y \rangle + \langle b, x \rangle \langle b, y \rangle$. Cette expression est symétrique en x et y. Donc $f = f^*$.
- 3. Déterminer Ker f et Im f.
 - Par liberté de (a, b), $f(x) = 0 \Leftrightarrow \langle a, x \rangle = \langle b, x \rangle = 0$ donc $\operatorname{Ker} f = \operatorname{Vect}(a, b)^{\perp}$. Par le théorème du rang, $\dim \operatorname{Im} f = 2$. Or $\operatorname{Im} f \subset \operatorname{Vect}(a, b)$ donc $\operatorname{Im} f = \operatorname{Vect}(a, b)$.
- 4. Déterminer les espaces propres de f.
 - On a $E_0(f) = \text{Ker } f = \text{Vect}(a, b)^{\perp}$. On a $f(a+b) = f(a) + f(b) = (1 + \langle a, b \rangle)(a+b)$ et $f(a-b) = (1 - \langle a, b \rangle)(a-b)$. Or (a+b, a-b) est une base de Vect(a, b).
 - Si $\langle a,b\rangle=0$, les valeurs propres de f sont 0 et 1, ses espaces propres sont $E_0=\operatorname{Vect}(a,b)^{\perp}$ et $E_1=\operatorname{Vect}(a,b)$.
 - Sinon, les valeurs propres de f sont 0, 1, -1, ses espaces propres sont $E_0 = \text{Vect}(a, b)^{\perp}$, $E_1 = \text{Vect}(a + b)$, $E_{-1} = \text{Vect}(a b)$.

4 Exercices supplémentaires

Exercice 1

- Montrer qu'un endomorphisme orthogonal diagonalisable est une symétrie.
- Ses valeurs propres sont -1,1 donc u est la matrice d'une symétrie dans une base de vecteurs propres.

Exercice 2

On considère sur $M_n(\mathbb{R})$ le produit scalaire $\langle A, B \rangle = \operatorname{tr}(A^T B)$. Soient A, B orthogonales.

- Montrer que $M \mapsto AM$, $M \mapsto MB$ et $M \mapsto AMB$ sont orthogonales.
- On a $||AM||^2 = \operatorname{tr} M^T A^T A M = ||M||^2$. On a $||MB||^2 = \operatorname{tr} B^T M^T M B = ||M||^2$. Comme composée de deux isométries, $M \mapsto AMB$ est une isométrie.

Exercice 3

- Montrer que SO(2) est commutatif.
- On a un isomorphisme de groupes

$$\begin{array}{ccc}
\mathbb{S}^1 & \longrightarrow & \mathrm{SO}(2) \\
e^{i\theta} & \longmapsto & \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}.
\end{array}$$