Horn's inequalities from a geometric point of view A refinement using Belkale's method

Antoine Médoc

IMAG, University of Montpellier, CNRS

30 may 2024, ICJ algebra seminar

Summary

Horn's conjecture

Wording Verification

Refinements of Horn's conjecture

Horn's tuples

Algebraic varieties Horn's tuples

Back to Hermitian matrices

References

Eigenvalues of a sum

Definition

- $\mathcal{H}(r) = \{A|A^* = A\} \subset M_r(\mathbb{C}).$
- \mathbb{R}^r_{\geq} the decreasing real *r*-tuples.
- $\lambda(A) \in \mathbb{R}^r_{\geq}$ the spectrum with multiplicity of $A \in \mathcal{H}(r)$.
- ▶ What is the link between $\lambda(A)$, $\lambda(B)$ and $\lambda(A+B)$?

Eigenvalues of a sum

Trace of A + B = C: with $\alpha = \lambda(A)$, $\beta = \lambda(B)$ and $\gamma = \lambda(C)$,

$$\sum_{i=1}^{r} \alpha(i) + \sum_{i=1}^{r} \beta(i) = \sum_{i=1}^{r} \gamma(i).$$

A sufficient condition for r=1 : if $lpha,eta,\gamma\in\mathbb{R}^r$ satisfie this last equation,

$$\exists A, B, C \in \mathcal{H}(r), \ A + B = C$$

 $\lambda(A) = \alpha, \lambda(B) = \beta, \lambda(C) = \gamma$

► Admissible spectra in the Hermitian case ?

Eigenvalues of a sum

Trace of A + B = C: with $\alpha = \lambda(A)$, $\beta = \lambda(B)$ and $\gamma = \lambda(C)$,

$$\sum_{i=1}^{r} \alpha(i) + \sum_{i=1}^{r} \beta(i) = \sum_{i=1}^{r} \gamma(i).$$

A sufficient condition for r=1 : if $\alpha,\beta,\gamma\in\mathbb{R}^r$ satisfie this last equation,

$$\exists A, B, C \in \mathcal{H}(r), \ A + B = C$$

 $\lambda(A) = \alpha, \lambda(B) = \beta, \lambda(C) = \gamma.$

► Admissible spectra in the Hermitian case ?

Horn's conjecture

Weyl (1912) : if
$$1 \le i + j - 1 \le r$$
,

$$\gamma(i+j-1) \leqslant \alpha(i) + \beta(j).$$

Case $r \in \{2,3\}$: the Weyl inequalities with the trace are necessary and sufficient conditions.

Other inequalities: Ky Fan (1949), Lidskii (1950), etc.

Conjecture (1962): inductive description on r of the cone of admissible spectra with inequalities of the form

$$\sum_{k \in K} \gamma(k) \leqslant \sum_{i \in I} \alpha(i) + \sum_{j \in J} \beta(j).$$

Horn's conjecture

Weyl (1912) : if $1 \le i + j - 1 \le r$,

$$\gamma(i+j-1) \leqslant \alpha(i) + \beta(j).$$

Case $r \in \{2,3\}$: the Weyl inequalities with the trace are necessary and sufficient conditions.

Other inequalities: Ky Fan (1949), Lidskii (1950), etc.

Conjecture (1962): inductive description on $\it r$ of the cone of admissible spectra with inequalities of the form

$$\sum_{k \in K} \gamma(k) \leqslant \sum_{i \in I} \alpha(i) + \sum_{j \in J} \beta(j).$$

Formulating the problem

Definition

Kirwan's cone:

$$\mathsf{LR}(r,s) := \left\{ (\lambda(X_k))_k; X_k \in \mathcal{H}(r), \sum_{k=1}^s X_k = 0 \right\} \subset (\mathbb{R}^r)^s.$$

$$LR(r,1) = \{0\}$$

$$LR(r,2) = \{(\lambda, (-\lambda(n), \dots, -\lambda(1))); \lambda \in \mathbb{R}_{\geqslant}^r\}$$

$$LR(1,s) = \{(\Lambda_1, \dots, \Lambda_s) \in \mathbb{R}^s | \sum_{k=1}^s \Lambda_k = 0\}.$$

Formulating the problem

Definition

Kirwan's cone:

$$\mathsf{LR}(r,s) := \left\{ (\lambda(X_k))_k; X_k \in \mathcal{H}(r), \sum_{k=1}^s X_k = 0 \right\} \subset (\mathbb{R}^r)^s.$$

$$\mathsf{LR}(r,1) = \{0\}$$
 $\mathsf{LR}(r,2) = \{(\lambda,(-\lambda(n),\ldots,-\lambda(1))); \lambda \in \mathbb{R}_{\geqslant}^r\}$
 $\mathsf{LR}(1,s) = \left\{(\Lambda_1,\ldots,\Lambda_s) \in \mathbb{R}^s | \sum_{k=1}^s \Lambda_k = 0\right\}.$

The conjecture is true

Notation : for $\lambda \in \mathbb{R}^r$,

$$|\lambda| = \sum_{j=1}^{r} \lambda(j)$$
 $\forall J \subset [r], |\lambda|_J = \sum_{j \in J}^{r} \lambda(j)$

- 1998-99 Klyachko and Knutson-Tao prove that the conjecture is true for inequalities of the form $\Lambda_k(i) \geqslant \Lambda_k(i+1)$ and $\sum_{k=1}^s |\Lambda_k|_{\mathcal{J}_k} \leqslant 0$.
 - 2000 Belkale reduces the number of inequalities.
 - 2004 Knutson-Tao-Woodward prove that these inequalities are irredundant if s = 3.

The conjecture is true

Notation : $[r] := \{1, \dots, r\} \subset \mathbb{N}^*$ and, for all $J = \{J(1) < \dots < J(d)\} \subset [r]$,

$$\mu(J):=\left(J(d)-d-(r-d)rac{s-1}{s},\ldots,J(1)-1-(r-d)rac{s-1}{s}
ight)\in\mathbb{R}_{\geqslant}^{r}.$$

Theorem (Horn's inequalities, Klyachko-Knutson-Tao)

The cone LR(r,s) is the set of all $\Lambda \in (\mathbb{R}_{\geqslant}^r)^s$ such that, for all $d \in [r-1]$ and all s-tuple $(\mathcal{J}_k)_{k \in [s]}$ of subsets of [r] of cardinality d such that $(\mu(\mathcal{J}_k))_k \in LR(d,s)$,

$$\sum_{k=1}^s |\Lambda_k| = 0 \text{ and } \sum_{k=1}^s |\Lambda_k|_{\mathcal{J}_k} \leqslant 0.$$

Saturation

Theorem (s=3)

The Littlewood-Richardson coefficients are saturated.

Theorem (saturation, Knutson-Tao)

$$\Lambda \in \mathsf{LR}(r,s) \cap (\mathbb{Z}^r)^s \Leftrightarrow \left(\bigotimes_k V(\Lambda_k)\right)^{\mathsf{U}(r)} \neq \{0\}$$

Summary

Horn's conjecture

Wording

Verification

Refinements of Horn's conjecture

Horn's tuples

Algebraic varieties

Horn's tuples

Back to Hermitian matrices

References

Three sets of s-tupes of subsets of [n] of cardinality r:

$$\operatorname{Horn}^{00}(r,n,s)\subset\operatorname{Horn}^0(r,n,s)\subset\operatorname{Horn}(r,n,s).$$

Example

$$\mathsf{Horn}(1,2,3) = \left\{ \left(\left\{1\right\},\left\{2\right\},\left\{2\right\}\right), \left(\left\{2\right\},\left\{1\right\},\left\{2\right\}\right), \left(\left\{2\right\},\left\{1\right\}\right), \left(\left\{2\right\},\left\{2\right\}\right), \left\{2\right\}\right) \right\}.$$

Theorem (Horn's inequalities, Belkale-Klyachko-Knutson-Tao)

The cone LR(r,s) is the set of all $\Lambda \in (\mathbb{R}^r_{\geqslant})^s$ such that

$$\sum_{k=1}^{s} |\lambda_k| = 0 \text{ and } \forall d \in [r-1], \forall J \in \mathsf{Horn}^*(d,r,s), \sum_{k=1}^{s} \sum_{i \in \mathcal{J}_k} \Lambda_k(i) \leqslant 0$$

Horn⁰⁰ is harder to compute. Error in Klyachko's article

Three sets of s-tupes of subsets of [n] of cardinality r:

$$\operatorname{Horn}^{00}(r, n, s) \subset \operatorname{Horn}^{0}(r, n, s) \subset \operatorname{Horn}(r, n, s).$$

Example

$$\mathsf{Horn}(1,2,3) = \left\{ \left(\left\{ 1 \right\}, \left\{ 2 \right\}, \left\{ 2 \right\} \right), \left(\left\{ 2 \right\}, \left\{ 1 \right\}, \left\{ 2 \right\} \right), \left(\left\{ 2 \right\}, \left\{ 2 \right\}, \left\{ 1 \right\} \right), \left(\left\{ 2 \right\}, \left\{ 2 \right\} \right) \right\}.$$

Theorem (Horn's inequalities, Belkale-Klyachko-Knutson-Tao)

The cone LR(r,s) is the set of all $\Lambda \in (\mathbb{R}^r_{\geq})^s$ such that

$$\sum_{k=1}^{s} |\lambda_k| = 0 \text{ and } \forall d \in [r-1], \forall J \in \mathsf{Horn}^*(d,r,s), \sum_{k=1}^{s} \sum_{i \in \mathcal{J}_k} \Lambda_k(i) \leqslant 0.$$

Horn⁰⁰ is harder to compute. Error in Klyachko's article.

Theorem (Knutson-Tao-Woodward)

For s = 3, the inequalities parametrized by Horn⁰⁰ are irredundant.

Ressayre : computation of $Horn^{00}(r, n, 3)$.

r	1	2	3	4	5	6	7		9	10
$I^{0}(r,3)$	2		20	52	156	539	2,082	8,775	39,742	191, 382
$I_{\min}(r,3)$	2	5	20	52	156	538	2,062	8,522	37, 180	168,602

Number of equations required to describe LR(r,3).

Theorem (Knutson-Tao-Woodward)

For s = 3, the inequalities parametrized by $Horn^{00}$ are irredundant.

Ressayre : computation of $Horn^{00}(r, n, 3)$.

r	1	2	3	4	5	6	7	8	9	10
$I^{0}(r,3)$							/	/	,	191, 382
$I_{\min}(r,3)$	2	5	20	52	156	538	2,062	8,522	37, 180	168, 602

Number of equations required to describe LR(r, 3).

Inequalities with repetitions

We choose a partition of the number of matrices : $s = s_1 + \cdots + s_a$. The associated repetitions are imposed : the s_1 five spectra are identical, the next s_2 are identical, and so on.

Example

$$LR(r,3)^{(3)} = \{ \Lambda \in LR(r,3) | \Lambda_1 = \Lambda_2 = \Lambda_3 \}$$

$$LR(r,3)^{(2,1)} = \{ \Lambda \in LR(r,3) | \Lambda_1 = \Lambda_2 \}$$

► Are certain equations becoming redundant ?

Inequalities with repetition

Theorem (Horn's inequalities with repetition)

- The LR(r, s) cone with repetitions admits the same inductive description as in the solution of the Horn conjecture.
- The inequalities describing the elements of LR(r, s) with repetitions can be reduced to those with the same repetitions.
- Horn's tuples with repetitions are parameterised by the smallest tuples verifying the same repetitions.

Examples

Number of equations required to describe LR(r,3) and LR(r,3) with $\Lambda_1 = \Lambda_2 = \Lambda_3$.

r	1	2	3	4	5	6	7	8	9	10
$I^{0}(r,3)$	2	8	20	52	156	539	2,082	8,775	39,742	191, 382
$I_{\min}(r,3)$	2	5	20	52	156	538	2,062	8,522	37, 180	168, 602
$I_3^0(r,3)$	2	3	4	7	10	10	18	25	24	51
$I_3^{00}(r,3)$	2	3	4	7	10	9	16	21	18	35

Is $l_3^{00}(r,3)$ minimal

Examples

Number of equations required to describe LR(r,3) and LR(r,3) with $\Lambda_1 = \Lambda_2 = \Lambda_3$.

r	1	2	3	4	5	6	7	8	9	10
$I^{0}(r,3)$	2	8	20	52	156	539	2,082	8,775	39,742	191, 382
$I_{\min}(r,3)$	2	5	20	52	156	538	2,062	8,522	37, 180	168,602
$I_3^0(r,3)$	2	3	4	7	10	10	18	25	24	51
$I_3^{00}(r,3)$	2	3	4	7	10	9	16	21	18	35

Is $I_3^{00}(r,3)$ minimal ?

Examples

Let $\lambda \in \mathbb{Z}^6$. Representation $V(\lambda) \otimes V(\lambda) \otimes V(\lambda)$ has a U(6) invariant non-zero vector if and only if $\lambda(1) \geqslant \cdots \geqslant \lambda(6)$ and

$$\lambda(1) + \lambda(2) + \lambda(3) + \lambda(4) + \lambda(5) + \lambda(6) = 0$$

$$\lambda(1) + \lambda(5) + \lambda(6) \leqslant 0$$

$$\lambda(2) + \lambda(4) + \lambda(6) \leqslant 0 \text{ (*)}$$

$$\lambda(3) + \lambda(4) + \lambda(5) \leqslant 0$$

Summary

Horn's conjecture
Wording
Verification

Refinements of Horn's conjecture

Horn's tuples

Algebraic varieties Horn's tuples

Back to Hermitian matrices

References

Flags and positions

Definition

• A flag is a sequence of vector subspaces of \mathbb{C}^n such that

$$E(j) \subset E(j+1)$$

dim $E(j) = j$

• The position of $V \subset \mathbb{C}^n$ with respect to the flag E is the subset Pos(V, E) of [n] with r elements composed of the jumps of

$$0=\operatorname{\mathsf{dim}} E(0)\cap V\leqslant\cdots\leqslant\operatorname{\mathsf{dim}} E(n)\cap V=r$$

Flags and positions

Definition

• A flag is a sequence of vector subspaces of \mathbb{C}^n such that

$$E(j) \subset E(j+1)$$

dim $E(j) = j$

• The position of $V \subset \mathbb{C}^n$ with respect to the flag E is the subset Pos(V, E) of [n] with r elements composed of the jumps of

$$0 = \dim E(0) \cap V \leqslant \cdots \leqslant \dim E(n) \cap V = r.$$

Cells

Definition

$$\begin{split} \Omega_I^0(E) &:= \{V \in \mathsf{Gr}(r,\mathbb{C}^n) | \, \mathsf{Pos}(V,E) = I \} \\ \mathsf{Flag}_I^0(V,\mathbb{C}^n) &:= \{E \in \mathsf{Flag}(\mathbb{C}^n) | \, \mathsf{Pos}(V,E) = I \} \, . \end{split}$$

Remark

Decomposition into cells :

$$Gr(r, \mathbb{C}^n) = \bigsqcup_{I \subset [n], \#I = r} \Omega_I^0(E)$$

$$Flag(\mathbb{C}^n) = \bigsqcup_{I \subset [n], \#I = r} Flag_I^0(V, \mathbb{C}^n)$$

Cells

Definition

$$\begin{split} \Omega_I^0(E) &:= \{V \in \mathsf{Gr}(r,\mathbb{C}^n) | \, \mathsf{Pos}(V,E) = I \} \\ \mathsf{Flag}_I^0(V,\mathbb{C}^n) &:= \{E \in \mathsf{Flag}(\mathbb{C}^n) | \, \mathsf{Pos}(V,E) = I \} \, . \end{split}$$

Remark

Decomposition into cells:

$$Gr(r, \mathbb{C}^n) = \bigsqcup_{I \subset [n], \#I = r} \Omega_I^0(E)$$

$$Flag(\mathbb{C}^n) = \bigsqcup_{I \subset [n], \#I = r} Flag_I^0(V, \mathbb{C}^n).$$

Schubert varieties

Definition

$$\Omega_I(E) := \overline{\Omega_I^0(E)} \subset Gr(r, \mathbb{C}^n).$$

Proposition

Algebraic variety satisfying

$$\Omega_I(E) = \bigcup_{J \leqslant I} \Omega_J^0(E)$$
 and $\dim \Omega_I(E) = \sum_{i=1}^r I(i) - i := \dim I$

Example

$$\Omega_{[n-r+1,n]}(E)=\operatorname{Gr}(r,\mathbb{C}^n)$$
 and $\Omega_{[r]}(E)=\{E(r)\}$

Schubert varieties

Definition

$$\Omega_I(E) := \overline{\Omega_I^0(E)} \subset \operatorname{Gr}(r, \mathbb{C}^n).$$

Proposition

Algebraic variety satisfying

$$\Omega_I(E) = \bigcup_{J \leqslant I} \Omega_J^0(E)$$
 and $\dim \Omega_I(E) = \sum_{i=1}^r I(i) - i := \dim I$.

Example

$$\Omega_{[n-r+1,n]}(E)=\operatorname{Gr}(r,\mathbb{C}^n) \text{ and } \Omega_{[r]}(E)=\left\{E(r)\right\}.$$

Definition

Cohomology : $\Omega_I \subset Gr(r, \mathbb{C}^n)$, $\omega_I \in H^{2m}(Gr(r, \mathbb{C}^n))$ with $m = \operatorname{codim}_{\mathbb{C}}\Omega_I(E)$.

$$H^*(\operatorname{Gr}(r,\mathbb{C}^n)) = \bigoplus_{m=1}^{r(n-r)} H^{2m}(\operatorname{Gr}(r,\mathbb{C}^n)) = \bigoplus_{\#I=r} \mathbb{R}\omega_I.$$

Definition

- $(\mathcal{I}_k)_k \in \text{Horn if } \prod_k \omega_{\mathcal{I}_k} \neq 0.$
- $(\mathcal{I}_k)_k \in \mathsf{Horn}^0$ if $\prod_k \omega_{\mathcal{I}_k} = x[\mathsf{pt}], \ x \neq 0$.
- $(\mathcal{I}_k)_k \in \mathsf{Horn}^{00}$ if $\prod_k \omega_{\mathcal{I}_k} = [\mathsf{pt}]$.

Characterisation

Theorem

$$(\mathcal{I}_k)_k \in \mathsf{Horn}(r,n,s)$$
 if and only if

$$\forall (\mathcal{E}_k)_k \in \mathsf{Flag}(\mathbb{C}^n)^s, \bigcap_{k=1}^s \Omega_{\mathcal{I}_k}(\mathcal{E}_k)
eq \emptyset.$$

Characterisation

▶ Inductive description of Horn(r, n, s)?

$$\begin{array}{c|ccc} \omega^0_{\mathcal{I}}: & \mathsf{GL}(n) \times \prod_{k=1}^s \mathsf{Flag}^0_{\mathcal{I}_k}(V,\mathbb{C}^n) & \longrightarrow & \mathsf{Flag}(\mathbb{C}^n)^s \\ & (\gamma,\mathcal{E}) & \longmapsto & (\gamma\mathcal{E}_k)_k \end{array}$$

Characterisation of an Horn's tuple by the image of $\omega_{\mathcal{I}}^0$. If \mathcal{I} is a Horn's tuple, there is an inequality on the dimensions :

$$\operatorname{\mathsf{edim}} \mathcal{I} := r(n-r) - \sum_{k=1}^s (r(n-r) - \dim \mathcal{I}_k) \geqslant 0.$$

Slopes

Lemma (Harder-Narasimhan)

There is a unique linear subspace with minimum slope and maximum dimension.

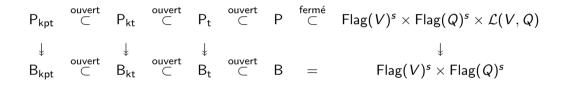
Notation : \mathcal{I}_k : $[r] \nearrow [n]$, $\mathcal{I}\mathcal{J} = (\mathcal{I}_k \circ \mathcal{J}_k)_k$.

Proposition (Algorithmic point of view)

If $(\mathcal{I}_k)_k$ is a Horn's tuple then edim $\mathcal{I} \geqslant 0$ and

$$\forall d \in [r-1], \forall \mathcal{J} \in \mathsf{Horn}^*(d,r,s), \mathsf{edim}\, \mathcal{I}\mathcal{J} \geqslant 0.$$

Somes tools for the reciprocal



Proof of the reciprocal

Induction on r by verifying Horn's inequalities on a smaller tuple.

Theorem (Belkale)

 $(\mathcal{I}_k)_k$ is a Horn's tuple if and only if edim $\mathcal{I} \geqslant 0$ and

$$\forall d \in [r-1], \forall \mathcal{J} \in \mathsf{Horn}^*(d,r,s), \mathsf{edim}\, \mathcal{I}\mathcal{J} \geqslant 0.$$

► Computing Horn's tuples is "easy" using a computer.

Remark

$$\mathsf{Horn}^0 = \{\mathcal{I} \in \mathsf{Horn} \,|\, \mathsf{edim}\, \mathcal{I} = 0\}$$

Summary

Horn's conjecture

Wording

Verification

Refinements of Horn's conjecture

Horn's tuples

Algebraic varieties

Horn's tuples

Back to Hermitian matrices

References

The Hersch-Zahlen-Klyachko lemma

Lemma (Hersch-Zahlen-Klyachko)

If $\Lambda \in LR(r, s)$, it verifies Horn's inequalities for Horn's tuples.

Proof: minimisation of a continuous function.

Working with integers

Spectra with integers: seen as weights.

Definition

$$c(\Lambda) := \dim \left(\bigotimes_{k=1}^s V(\Lambda_k) \right)^{\mathsf{U}(r)}.$$

Lemma (Kempf-Ness)

For all Λ made of integers,

$$c(\Lambda) > 0 \Rightarrow \Lambda \in \mathsf{LR}(r,s).$$

► Find an invariant for the reciprocal.

Working with integers

Spectra with integers: seen as weights.

Definition

$$c(\Lambda) := \dim \left(\bigotimes_{k=1}^s V(\Lambda_k) \right)^{\mathsf{U}(r)}.$$

Lemma (Kempf-Ness)

For all Λ made of integers,

$$c(\Lambda) > 0 \Rightarrow \Lambda \in LR(r,s).$$

► Find an invariant for the reciprocal.

Searching for invariants

If edim $\mathcal{I}=0$, $d\omega_{\mathcal{I}}$ is between spaces of the same dimensions.

Definition

$$\delta_{\mathcal{I}}: \left| egin{array}{ccc} \operatorname{\mathsf{GL}}(r)^s imes \operatorname{\mathsf{GL}}(n-r)^s & \longrightarrow & \mathbb{C} \ (g,h) & \longmapsto & \det \Delta_{\mathcal{I},g,h} \end{array}
ight..$$

Proposition

 δ is an invariant for $\Lambda(\mathcal{I})$ and any integer Λ satisfying Horn's inequalities comes from a Horn's tuple of zero expected dimension.

► Reciprocal.

Summary

Horn's conjecture

Wording

Verification

Refinements of Horn's conjecture

Horn's tuples

Algebraic varieties

Horn's tuples

Back to Hermitian matrices

References

References

Geometric Proofs of Horn and saturation conjectures P. Belkale

Journal of Algebraic Geometry 15, 2006.

The Horn inequalities from a geometric point of view N. Berline, M. Vergne and M. Walter.

L'Enseignement Mathématique 63, 2018.

A refinement of Horn's conjecture
A. Médoc
arXiv, 2024