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Abstract. The graph coloring problem is often investigated in the lit-
erature. Many insights about many neighboring solutions with the same
fitness value are raised but as far as we know, no deep analysis of this
neutrality has ever been conducted in the literature. In this paper, we
quantify the neutrality of some hard instances of the graph coloring prob-
lem. This neutrality property has to be detected as it impacts the search
process. Indeed, local optima may belong to plateaus that represents a
barrier for local search methods. In this work, we also aim at pointing
out the interest of exploiting neutrality during the search. Therefore, a
generic local search dedicated to neutral problems, NILS, is performed
on several hard instances.
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1 Introduction

The Graph Coloring Problem (GCP) is a well known combinatorial problem de-
fined as follows: considering a graph G = (V,E) where V is the set of n vertices
(nodes) and E is the set of edges (E ∈ V × V ), the goal is to find the minimum
number k, such that, given the mapping Ψ : V 7→ 1, 2...k, for all edge (u, v) ∈ E,
Ψ(u) 6= Ψ(v). Such k is called the chromatic number of G and is denoted by χ.

The GCP is a NP−hard problem [10] widely studied in the literature. Then,
for larger instances, approximate algorithms are used. For example, a lot of local
search methods have been applied or proposed to solve the GCP [1, 6, 9, 11, 20].
Moreover, the GCP has also been tackled by evolutionary strategies [19]. Indeed,
the most efficient metaheuristic schemes have been adapted to the GCP, includ-
ing specific encodings and mechanisms, in order to give better performance. All
these adaptations require a very good knowledge of the problem and a long time
of experimental analysis to tune the best parameters.

Another way to design efficient algorithms is to analyze the problem struc-
ture. Therefore, let us, first, remember the basic notions to define the structure



of a combinatorial optimization problem. The search space Ω is the set of ad-
missible solutions and f : Ω −→ IR is a fitness function that assigns a quality to
each solution s ∈ Ω. A neighborhood structure is a mapping functionN : Ω → 2Ω

that assigns a set of solutions N (s) ⊂ Ω to any feasible solution s ∈ Ω. N (s)
is called the neighborhood of s, and a solution s′ ∈ N (s) is called a neighbor of
s. A fitness landscape [22, 28] can be defined by a triplet (Ω,N , f). Landscape
may be a way to describe the problem structure. Many authors investigated the
landscape of different combinatorial optimization problems [3, 15–17]. This land-
scape analysis aims at understanding better the characteristics of the problems
and then, designing efficient algorithms. For example, neutrality appears when
neighboring solutions have the same fitness value. Then, neutrality is a charac-
teristic of the landscape [21] and has been analyzed on different problems such as
the permutation flowshop scheduling problem with the makespan criterion [14]
and the NKq-landscape problem [24] in order to design effective local search to
solve problem under neutrality.

The GCP is often investigated in the literature. Many insights about the
neutrality of this problem are raised when considering the number of edges with
the same color at both ends. But, as far as we know, no deep analysis has ever
been conducted in the literature. In this paper, we aim at investigating if the
GCP may be considered as a neutral problem and if the neutrality may be
exploited to solve the GCP. Therefore, in Section 2, the k-GCP is defined and
the modeling used in this article is given. Section 3 gives measures to analyze
the neutrality of a combinatorial optimization problem and gives the results on
the neutrality study of the GCP instances. Then, in Section 4, the benefit of
exploiting the neutrality when solving the GCP is studied. Section 5 gives the
conclusions of the presented work and future research interests.

2 The Graph Coloring Problem

The GCP is a problem widely studied in literature. Indeed, many real problems
are modeled and solved using graph coloring. Among them, many applications
are found such as frequency assignment to antennas [12], schedule design [29] or
register allocation [5].

As the GCP is a NP-hard problem, several heuristics and metaheuristics have
been proposed to solve the large instances. These approaches can be classified
in three main solution approaches [20]: (i) sequential construction heuristics like
Dsatur [4] that are fast but not really efficient, (ii) local search algorithms and
(iii) evolutionary hybrid or population-based algorithms. For local search algo-
rithms, several methods using problem-specific heuristics have been proposed [9]
such as Tabu Search [11, 8], Simulated Annealing [7], Iterated Local Search [18],
VNS [23], etc. In particular, the CHECKCOL algorithm [6] found new chromatic
numbers for four different DIMACS instances. Recently, Porumbel et al. [20]
have also proposed two tabu search algorithms (TS-Div and TS-Int) based on



the TABUCOL [11] heuristic leading to good performance. Moreover, Avanthay
et al. [1] have adapted and applied a variable neighborhood search to solve the
GCP efficiently. In addition, evolution strategies (ES) are one example of popula-
tion based approaches that have been proposed to solve the GCP. In particular a
very competitive algorithm on DIMACS instances is an hybrid algorithm which
combines a tabu search with a genetic algorithm [19].

In the following, we specify exactly the problem considered and present the
instances used in the experiments.

2.1 Problem Definition and Representation used

The GCP consists in finding the minimal number of colors χ, called the chromatic
number, that leads to a legal coloring of a graph. The k-GCP is a related problem,
that deals with the existence of a legal coloring using k colors (k-coloring). Since
it is easier to find a coloring with k > χ, the following strategy is often used to
solve GCP via k-GCP:

(i) Generate an initial legal k-coloring (k > χ)
(ii) Set k = k − 1
(iii) Solve the k-GCP; if a legal k-coloring is found then go step (ii), else return k

In this study, we are interesting in analyzing the neutrality of the χ-GCP prob-
lem, that is to say, the most difficult k-GCP problem since the best known
number of colors is χ. Then, characterizing the structure of the χ-GCP should
help to find a solution that represents a legal coloring with χ colors.

In order to lead a landscape analysis of the problem we need to define the
three elements (Ω,N , f), where Ω is the search space and depends on the repre-
sentation, N is a neighborhood induced by the neighborhood operator and f is
the objective function. In the literature, several representations, neighborhood
and objective functions are found to deal with the GCP.
In the case of χ-GCP, we propose to adopt the following representation: A so-
lution is represented as a vector of colors, s = [c(1), . . . , c(i), . . . , c(n)] where
n is the number of nodes and c(i) is the color associated to node i. To ensure
that each solution has one unique representation, colors are enumerated by their
order of arrival. Therefore, the colorings that differ only by a permutation of
colors have the same representation. The search space Ω is then defined by all
the possible vectors. The 1-move operator defines the neighorhood relation. This
operator changes the color of one node. With n nodes and k colors, the neigh-
borhood size of a solution is bounded by n × (k − 1). The objective function f
aims at evaluating how far the solution is from a legal coloring. In this work,
we choose to associate to a solution the number of conflicts. Hence, the fitness
value of a solution is equal to the number of edges with the two endpoints of
same color:

f : s→
∑
i

|Ei|



where Ei is the set of edges with both endpoints of color i in the solution s.

2.2 Benchmark Problems

In this study we focus on literature instances known to have “difficult upper
bound”, that is to say that a minimal legal coloring is hard to obtain. Those
instances are extracted from the DIMACS Computational Challenge on “Graph
Colouring and its Generalisations”1. There are four classes of instances, accord-
ing to the type of generation.

– dsjcX.Y are graphs with X vertices, where Y is the probability that two
vertices are connected by an edge.

– dsjrX.Y and rX.Y are graphs with X vertices. Two vertices are connected
if their distance is less than Y . A suffix “c” denotes the complementary of
the graph.

– flatX Y are graphs with X vertices, based on an initial Y -classes parti-
tioning. Finding the best legal coloring is equivalent to restoring the initial
partitioning.

– leX Y are graphs with X vertices, based on a clique of size Y . For those
graphs, χ = Y .

In the next section, a study under the neutrality point of view of the structure
of the DIMACS instances for the χ-GCP is leaded.

3 Neutrality in GCP

In this work, we are interested in the neutrality property. First, definitions and
measures are given in order to characterize the neutrality of a combinatorial
optimization problem such as the graph coloring problem. Then, experiments
are led on the GCP to analyze the neutrality of the different instances.

3.1 Measures to characterize the neutrality

A neutral neighbor of a solution is a neighboring solution having the same fitness
value. The set of neutral neighbors of a solution s ∈ Ω is then Nn(s) = {s′ ∈
N (s) | f(s′) = f(s)}. The neutral degree of a given solution is the number of
neutral solutions in its neighborhood. A fitness landscape is said to be neutral
if there are “many” solutions with a high neutral degree. A neutral fitness land-
scape can be pictured by a landscape with many plateaus. The average or the
distribution of neutral degrees over the landscape may be used to qualify the
level of neutrality of a problem instance. This measure plays an important role
in the dynamics of local search algorithms [25, 27].

1 http://dimacs.rutgers.edu/Challenges/



In the case a problem gets the neutrality property, Marmion et al. [14] sug-
gested to characterize the plateaus found from the local optima. Indeed, theses
plateaus might trap a local search even though all the solutions belonging to
such a plateau are not necessarily local optima. Thus, we define by the term
portal a solution in a plateau of a local optimum, having at least one neighbor
with a better fitness value. When the fitness landscape is neutral, an important
characteristic of the landscape can be described by its plateaus, that may be
sampled by neutral random walks. A neutral random walk is a sequence of solu-
tions where the solution si+1 is randomly chosen in the neutral neighborhood of
the solution si. The plateaus of the local optima sampled by a neutral random
walk were classified in a three-class topology (see Figure 1): (T1) the local op-
timum is the single solution of the plateau, i.e. it has no neutral neighbor; (T2)
no neighbor with a better fitness value was met for any solutions of the plateau
encountered along the neutral walk and; (T3) a portal has been identified on the
plateau, i.e. at least, one solution of the plateau has an improving neighbor.

T1 T2 T3

fitn
es

s

?

Fig. 1. Typologies of plateaus.

Let us give the measure to characterize the neutrality through the study of
the plateaus of the local optima. An important information is given by the au-
tocorrelation of neutral degree along a neutral random walk [2] as it measures
the correlation of the plateau structure. The autocorrelation function ρ(k) [26]
is the correlation coefficient of the neutral degree between the solutions si and
si+k of the neutral walk. If the first correlation coefficient ρ(1) is close to 1,
the neutral degree variation between neighbors is low, and so plateaus may be
considered as structured graph. As neutral walks are random, they may loop on
a subset of solutions. To attest that a neutral walk correctly describes a plateau,
the number of solutions that are encountered at least twice during the sampling
is computed. Moreover, in case of a T3 plateau, the position of portals is an
interesting information. Indeed, the number of solutions visited before finding a
portal during a neutral random walk is a good indicator of the probability to
find an improving solution.

Characterizing the plateaus of the local optima aims at understanding their
role during the search process. Then, there exists a cost/quality trade-off between
the number of solutions visited to find a portal and the number of solutions
visited to find a (new) local optimum starting with a new solution, called the



step length. This trade-off depends on the number of T3 plateaus relative to the
number of T2 plateaus sampled for a same instance. This trade-off consists in
analyzing the fitness landscape from the local search dynamics point of view.
Indeed, when a local optimum is found, the measures should help to answer if
it is faster to restart from another solution in order to find a new better local
optimum or, to exploit neutrality of the landscape to move on plateaus in order
to meet a portal and then accept an improving solution.

3.2 Experimental setup

The average neutral degree is estimated from 30 random solutions uniformly
generated and the average neutral degree of local optima is estimated from 30
local optima found by a steepest descent starting from random solutions. The
ratio of the neutral degree is the neutral degree over the size of the neighborhood.
This measure is also computed for the random solutions and the local optima as
it makes the comparison between different instances easier.

The step lengths of the descents to find the local optima have been recorded.
The maximal step length value, Lmax, is used to define the length of the neutral
walks Pmax. Thus, the lengths are comparable to analyze the trade-off between
the number of solutions visited to find a portal and the number of solutions vis-
ited to find a (new) local optimum. Then, 30 neutral walks are run independently
from the 30 different local optima. The neighborhood of each solution from the
neutral walk is visited entirely in order to compute the numbers of improving,
neutral and worsening neighbors. Thus, a given instance is characterized by 30
plateaus.

3.3 Experimental results

Table 1 gives the average neutral degree and the corresponding ratio for random
solutions and local optima on the GCP instances. For each instance, the number
of nodes V , the chromatic number χ and the size of the neighborhood |nbh|
are also given. This table first shows that, the ratios for random solutions are
quite high (up to 24.2% for the instance r250.5). That indicates the neutrality
property of the considered instances. Figure 2 shows the boxplots of the neutral
degree ratio of the random solution. The distribution of the ratios points out
that, for an instance, the neutral degree of the solutions do not vary. Then, the
neutrality characterises the problem in general. The landscape may have a lot of
flat parts. The second observation on the results of Table 1 is that the ratios for
local optima are smaller than the ones of the random solutions. Hence, depend-
ing on the instances, the number of neutral neighbors in the neighborhood of a
local optimum may be important or not. Some instances present a high neutral
degree (such as 9.7% for the highest, or around 5% for others) while some others
have a much smaller neutral degree (down to 0.2% for the instance dsjr1000.1c).
These results confirm the a priori fact that neutrality is a strong property in the
graph coloring problem that may be used in local search strategies to be more



Table 1. Average neutral degree and the corresponding ratio for the random solutions
and the local optima.

Neutral Degree

Data Random Local optima

Instances V χ |nbh| nd ratio nd ratio

dsjc250.5 250 28 6750 858 12.7% 83.8 1.2%
dsjc500.1 500 12 5500 800 14.5% 144 2.6%
dsjc500.5 500 48 23500 2910 12.4% 176 0.7%
dsjc500.9 500 126 62500 9320 14.9% 384 0.6%
dsjc1000.1 1000 20 19000 2440 12.8% 290 1.5%

r250.5 250 65 16000 3470 24.2% 1090 9.7%
dsjr500.5 500 122 60500 12800 21.1% 356 5.9%
dsjr500.1c 500 84 41500 4780 11.5% 121 0.3%
dsjr1000.1c 1000 98 97000 8600 8.9% 188 0.2%

flat300 28 0 300 28 8100 1010 12.5% 90.5 1.1%
flat1000 50 0 1000 50 49000 4400 9.0% 146 0.3%

le450 25c 450 25 10800 1910 17.7% 552 5.1%
le450 25d 450 25 10800 1900 17.6% 496 4.6%

efficient.

Therefore, the plateaus of the local optima have to be analyzed in details
when the average neutral degree of the local optima is significant. This analy-
sis will be achieved using the autocorrelation of neutral degree along a neutral
random walk as proposed before. In the following, only the instances where the
average neutral degree of the local optima is higher than 1% are considered.
Moreover, since the random neutral walks explore the neighborhood entirely,
the computation time can be very high. Then, only the instances where the
neighborhood size is lower than 16,000 solutions are analyzed.

First, the first value of the autocorrelation ρ(1) of each neutral walk has to
be checked in order to verify that it is reliable to characterize the structure of the
plateau. Table 2 gives the value of ρ(1) for all considered instances. Then, ρ(1)
values are higher than 0.69 that ensures the reliability of the following results.

Table 3 presents the number of each type of plateaus found by the 30 neutral
walks. No degenerated plateau, with a single solution, is found. It means that the
30 local optima found have, at least, one neutral neighbor. Only plateaus with at
least a portal have been explored by the 30 neutral walks, except for the r250.5
instance, where one neutral walk did not meet a portal. But, it is still possible
that the sampled plateau gets one. Moreover, no solutions is visited twice by a



Fig. 2. Boxplots of the neutral degree ratio for a sampling of 30 random solutions.

Table 2. The first value of the autocorrelation of the neutral degree

Instances ρ(1)

dsjc250.5 0.74
dsjc500.1 0.69

r250.5 0.90
flat300 28 0 0.74
le 450 25c 0.78
le 450 25d 0.77

neutral walk. Consequently, the neutral walks do not loop and correctly sample
the plateaus.

These results are promising in order to exploit the neutrality in local search
algorithms. At this step, we must verify that portals may be found quickly by
the neutral walks in order to consider the plateau as a new start of the search.

Table 4 gives the statistics of the distance from the initial local optimum to
the closest portal found i.e. the number of solutions visited on a plateau (nbS)
before meeting a portal. The statistics of the step lengths (L) are also given to



Table 3. Types of plateaus encountered by the 30 neutral walks

Plateaus

Instances T1 T2 T3

dsjc250.5 0 0 30
dsjc500.1 0 0 30

r250.5 0 1 29
flat300 28 0 0 0 30
le 450 25c 0 0 30
le 450 25d 0 0 30

study the cost/quality trade-off. Clearly, it is very quick to meet a portal even
randomly. Indeed, it is necessary to visit only 1 or 2 new solutions on the plateau
to find a portal to escape. Let us remark that reaching a portal may be quick,
but the difficulty is to identify a solution as a portal. However, compared to the
steps lengths, it seems to be more interesting to continue the search process by
moving on a plateau to find a portal than to restart the search process from a
new random solution.

Table 4. Cost/quality trade-off - The number of T3 plateaus is remembered to ensure
the reliability of the statistics. nbS gives the number of visited solutions before finding
a portal and LgM gives the number of visited solutions needed to find a local optimum
starting from a random solution of the search space using a steepest descent.

T3 nbS L

Instances nb Min Med Mean Max Min Med Mean Max

dsjc250.5 30 1 1 1.7 6 266 301 301 323
dsjc500.1 30 1 2 2 5 501 530 532 596

r250.5 29 1 2 3.3 17 125 148 148 164
flat300 28 0 30 1 1 1.7 6 344 388 385 406
le 450 25c 30 1 1 2.3 9 362 396 399 424
le 450 25d 30 1 2 2.5 11 370 399 400 428

Experiments confirm the intuition that the GCP, associated to the triplet
(Ω,N , f) defined in section 2, presents the neutrality property. Moreover, lo-
cal optima have neighboring solutions with the same fitness value. It leads to
plateaus that may disturb the progress of the search process. The analysis of the
plateaus of the local optima shows that portals, solutions of the plateau with at
least one improving neighbor, are quick to reach with a random neutral walk. It



assumes that exploiting neutrality in the search process may help to find better
solutions. The following section provides insight into how to exploit neutrality
to solve the GCP.

4 Influence of Neutrality on Local Search Performance

In the section below, the neutrality property of some hard instances of the graph
coloring problem has been highlighted. Indeed, for these instances, the local op-
tima have a significant number of neutral neighbors that leads to plateaus trap-
ping the search process. Here, we propose to study the interest of exploiting the
neutrality by moving on the plateaus when a local optima is found. NILS is an
iterated local search based on neutrality [13], which has been efficiently applied
to another neutral problem, the permutation flowshop scheduling problem with
the makespan criterion. Thus, NILS is a generic local search that benefits from
the neutrality of the problem. In this section, NILS is run on the graph coloring
problem to point out the interest of exploiting the neutrality in a local search.

4.1 NILS algorithm

The Neutrality-based Iterated Local Search (NILS) is an algorithm designed to
exploit the plateaus of the local optima. This algorithm iterates a steepest de-
scent, called First Improvement Hill Climber (FIHC), and a perturbation step to
escape when the search is blocked on a local optimum. The used FIHC replaces
the current solution by the first improving neighbor found. The neighborhood of
a solution is evaluated in a random order, and each neighbor is evaluated only
once.

There are two ways to escape from the plateau of a local optima in a neu-
tral fitness landscape: either performing neutral moves until finding a portal, or
performing a kick move which is a “large step” move. A neutral move should
be applied when it is assumed that the exploitation of the neutral properties
helps to find a better solution. On the contrary, a kick move should be applied
when it is assumed that portals are hard to find and therefore exploration of
another part of the search space is more promising. The Neutral Walk-Based
Perturbation of NILS deals with exploitation and exploration by setting a maxi-
mum number of steps (MNS) allowed in a neutral walk (see Algorithm 1). If no
improving neighbor has been found until then, the solution is kicked. Otherwise,
the neutral walk is stopped and a local search is performed from the improving
neighbor. As for FIHC, the neighborhood is evaluated in a random order, and
each neighbor is evaluated only once. In the following, NILS is performed on
the graph coloring problem in order to emphasize the benefit of exploiting the
neutrality of this problem.



Algorithm 1 Neutral Walk-based Perturbation (NWP)

step ← 0, better ← false
while step < MNS and not better and |Nn(s)| > 0 do

choose s′ ∈ N (s) such that f(s′) ≤ f(s)
if f(s′) < f(s) then

better ← true
end if
s← s′

step ← step+1
end while
if not better then
s← kick(s)

end if

4.2 Experimental setup

Four instances, one of each type, have been selected to perform NILS: dsjc250.5,
r250.5, flat 300 28 0 and le 450 25 c. The landscape analysis of theses instances
has shown that the plateaus of the local optima get portals that lead to improv-
ing solutions.

The MNS value is the single parameter of NILS algorithm. It controls the
exploitation of the plateaus by allowing a maximal number of neutral moves on
each plateau. In this paper, the aim is to point out the efficiency of using neutral-
ity to solve the graph coloring problem. Then, several MNS values were tested
in order to analyze the trade-off between exploiting the plateau and exploring
an other part of the search space. MNS values were set to 1, 2 and 5 times
the size of the neighborhood. Moreover, MNS values set to 0 was tested as it
corresponds to a classical ILS that restarts from a new part of the search space.
This classical ILS and NILS with a positive (strict) MNS value share a similar
behavior and differ only during the perturbation step when NILS continues the
search by moving neutrally when a local optimum is found. The comparison of
the performance of NILS and this classical ILS aims at pointing out the ben-
efit of exploiting neutrality during the search. For each configuration of NILS
and the ILS, 30 runs were performed. The stopping criterion was set to 2× 107

evaluations.

4.3 Experimental results

Figure 3 presents the boxplot of the performance of the classical ILS (MNS
value equals to 0) and the three configurations of NILS (MNS values equal to
1, 2 or 5 times the size of the neighborhood). Boxplots give the extent of the 30
fitness values found. This figure shows first, that the performance of NILS are
in average better than the ones of the classical ILS. For the instances r250.5 and
le 450 25c, the neutral degree ratios were high (respectively 9.7% and 5.1%),
and the results are very promising as they show a clear improvement over the



Fig. 3. ILS and NILS performance on 4 instances of the graph coloring problem. Next
to the name of the instance is indicated the number of edges m in the graph (as
the fitness chosen corresponds to the number of conflicting edges) and the chromatic
value χ.

standard ILS. For the other instances, the neutral degree ratios were lower (1.2%
for dscj250.5, and 1.1% for flat300 28 0), and the results obtained by NILS are
only a little better than the classical ILS. These results lead to the hypothesis
that if the neutrality degree ratio of an instance is high, NILS will probably
give good results. In other cases, it will not be attractive to use the neutrality,
but however the results will not be worse. Thus, exploiting the neutrality in the
search process can lead to a better efficiency and should not be discarded.

In these experiments, the performance of NILS is studied under different
MNS values for a same total number of evaluations. Results show that for
MNS values equal to 1 or 2 times the neighborhood size, performance is fairly



similar. However, with a coefficient of 5, results are worse. That implies NILS
can be stuck on plateaus on which searching portals is too expensive, and it may
be preferable, in these cases, to escape the plateaus not to waste too much time.

4.4 Discussion

The experimental results have shown that some instances of GCP present neu-
trality and that local search algorithms may be blocked on plateaus. Indeed,
NILS with a MNS equals to 0 is not able to find interesting solutions. How-
ever, when the neutrality is exploited in the local search, results are improved
even if no configuration of NILS gives a legal solution. This may be explained
by the fact that these instances are the hardest instances of the literature, and
for each, k is set to the χ-value, the best known chromatic number. In 2010,
Porumbel et al. [19] made a comparison between their algorithm dedicated to
GCP and the 10 best performing algorithms from the literature. Except the Iter-
ated Local Search, all the other algorithms are well-sophisticated and specific to
GCP. Indeed, GCP-specific mechanisms are used to improve the search. These
mechanisms require a huge knowledge on the GCP to be designed and tuned
efficiently. Despite this high level of sophistication, the comparison points out
the difficulty for some algorithms to find the χ-value. For example, the results
reported for the instances considered above indicate that: The instance r250.5 is
solved to the optimality (k = χ) by only four algorithms out of six. The instance
le 450 25c is solved to the optimality only by six algorithms out of ten. And, the
instance flat300 28 0 is solved to the optimality only by four algorithms out of
eleven. Moreover, the ILS [18] never find the χ-value for the two last instances.
Its performance illustrate the difficulty for a generic algorithm to be efficient.

This comparison highlights how these DIMACS instances are hard to solve
when considering the χ-value. It may explain the performance of NILS described
above. The comparison between the ILS and the NILS performance on the DI-
MACS instances points out the interest of using neutrality. However, one think
that this neutrality should be exploited under the design of GCP-specific mech-
anisms.

5 Conclusion

This paper answers to the assumption that the GCP presents the neutrality prop-
erty. Indeed, for some hard instances of GCP, experiments show that a solution
may have several neighbors with the same fitness value. Then, the neutrality
have to be taken into account when solving the GCP as it may explain some
good or bad performance of algorithms. The neutrality characteristic is partic-
ularly interesting when it appears for local optima. Local optima are integrated
in a plateau of neighboring solutions with the same fitness value. But, some of
them are not local optima as they have at least one improving neighbor. They
are called portal. Then, experiments points out the easiness to reach such portals



from a local optima by moving randomly on the plateau. From this observation,
we perform NILS, a generic algorithm, exploiting the neutrality when is trapped
on a local optimum. It shows the benefit of taking the neutrality into account
when solving these instances as NILS gives better results than a classical ILS.

This paper should be considered as a preliminary work on the neutrality
of the GCP. Indeed, one points out the neutrality of some hard instances and
gives the degree of this neutrality. However, the performance of NILS are not
as good as expected, but, it shows the potential of exploiting neutrality to solve
the GCP. Since heuristic methods represent the state-of-the-art algorithms [6,
20], one wants to investigate how to exploit neutrality in such heuristics.
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