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Genetic Improvement (Gl)

Automated software improvement:
» Program repair / bug fixing
» Feature transplantation
» Running time

» Memory/energy consumption

Non-functional Gl in practice:
» Start from original software
» Accumulate sequences of edits
» Deletion/replacement /insertion
» Lines/statements/data

@ Petke et al., IEEE Transactions on Evolutionary Computation, 2018



Non-Functional Gl So Far: Success Stories

Non-functional Gl literature usually:
» Focuses on software and final improvements
» Fine tunes Gl approach to the application

» Only reports positive results

Motivation: focus on the evolutionary process



Focus on the Evolutionary Process

Case study:
» Pre-existing Gl scenario: MiniSAT
» Running time — CPU instructions
» Eight GP approaches; four random approaches

» k-fold cross-validation

Research Questions:
» Effectiveness? (how often)
» Efficiency? (how good)
» Robustness? (how sensible to parameters)

» Consistency? (impact of data)



Experimental Protocol

Training:
» To find improved software variants
» Using the search process (GP)
» Until budget exhaustion

Validation:
» To avoid overfitting

» Filter out potentially harmful mutations

Test:

» To assess generalisation



Experimental Protocol

Some issues in some previous Gl work:
» Report a single Gl run
» Do not report intermediary results
» Reuse training data in validation and test steps
» Use a single random data split
» Use different types of data between steps

k-fold cross-validation:
» Report k Gl runs
» Use disjoint data on three steps

> Assess generalisation on the same type of data



Cross-validation (k = 5)

Data is separated into k disjoint “folds”
Then labelled in £ different ways:

Test: (X) Validation: (V) Training: (T)
» Single fold » Single fold > k — 2 folds
» Sequentially » Uniform at random » All remaining
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Training: Random Search (Baseline), GP, GP,

Rand(m): with m =1,2,5,10
» Generate sequences of up to m mutations

» Independent; uniformly at random

GP(n): with n = 10, 20, 50, 100
» Population: fixed size n
» Initialisation: single random mutation

» Offspring: 50% crossover, 50% mutation
GPe(n): (new) with n = 10,20, 50, 100
» GP(n) with elitism
> Best 10% forwarded (+ 45% crossover, 45% mutation)



Genetic Programming Main Loop
Selection:
» Filter invalid individuals and sort by fitness
Elitism: (new)
» Forward best p. individuals to offspring

Crossover:

» Select best p. individuals, 1-point crossover with a random parent

Mutation:

» Select best p,, individuals, append a random mutation

Regrow:
» If not enough offspring, add new random individuals of size 1

After every generation, update the fitness function



Validation: Filtering

First pass: (new)
» Sequentially remove edits with no impact

» To reduce size of edit sequences and shorten the second pass

Second pass:
» Evaluate every edit independently
» Sort them by fitness
» Sequentially re-add them, keep if improving
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Experimental Setup

MiniSAT: (% http://minisat.se/)
» Award winning SAT solver, still relevant today
» Designed to be simple, modular, and extensible.
» minisat2-070721 (2007), minisat-2.2.0 (2008, latest version)
» Search-related code in a single C++ file (428 AST nodes)

12 search processes: Rand x4, GP x4, GP. x4

130 CIT instances: from previous Gl work

@ Eén and Sérensson, Theory and Applications of Satisfiability Testing (SAT), 2003 11


http://minisat.se/
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Training budget: 10000 SAT instances

Average execution time: Rand: 2 hours << GP: 10 hours
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Experimental Results (Fold 1)

Training Validation Test

Search Size CPU Size’ CPU Size* CPU~* CPU~*
Rand(1) 1 665% 1  1140% 0 — —
Rand(2) 2 67.0% 2  1145% 0 — —
Rand(5) 1  75.0% 1  109.0% 0 — —
Rand(10) 2 74.9% 2 107.2% 1 100.0% 100.0%
GP(10) 16 99.9% 11 99.9% 7 99.9%  99.9%
GP(20) 32  927% 12 | 1234% 5 93.5%  67.4%
GP(50) 23 69.6% 11 102.6% 3 99.4%  99.6%
GP(IOO) 16 63.8% 13 111.3% 4 99.9% 99.9%
P.(10) 1304 @ 33.5% 26 114.4% 13 90.8%  62.8%
P.(20) 268  57.7% 21 1055% 4 91.0%  63.0%
GP (50) 15 78.2% 7 123.6% 5 96.7%  98.5%
G P.(100) 6 64.8% 6 107.1% 2 100.0% 100.0%
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Experimental Results (Fold 4)

Training Validation Test

Search Size CPU Size' CPU Size* CPU* CPU~*
Rand(1) 1 | 574% 1 2% 1 T7.2% | 122.8%
Rand(2) 1 77.1% 1 75.4% 1 75.4%  92.0%
Rand(5) 3 | 57.7% 3 99.9% 1 99.8%  96.1%
Rand(10) 1 77.1% 1 54% 1 T54%  92.0%
GP(10) 26 93.8% 9 91.6% 6 91.6% @ 126.9%
GP(20) 54 22.2% 13 55.0% 6 50.2% 124.7%
GP(50) 9 82.8% 7 91.0% 6 54.0% 115.8%
GP(l()O) 7  578% 5 754% 3 T54%  92.0%
P.(10) 2 99.8% 2 99.9% 2 99.9%  99.8%
P.(20) 49 [7222% 9 54.9% 8  49.8% 123.8%
GP (50) 6 82.8% 6 99.7% 4 99.7% ' 130.6%
GP.(100) 10 48.9% 9 119.6% ) 50.1% 124.7%
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Results Overview

GP as search process:
» Much more successful than random search
» Not very parameter-sensitive

» Large overfits

Repeated experiments:
» Very variable results

» Highly heterogeneous dataset
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Research Questions

Effectiveness: (how often)
> > 5% after training: almost always
» > 5% after either validation or test: half of the time
» > 5% after validation AND test: only 5/40 GP, 2/20 Rand
Efficiency: (how good)
» Down to 36% CPU instructions (64% faster) on some unseen folds
» Two-third of improvements > 25% (validation or test)

Robustness: (how sensible to parameter)

» Inconclusive (due to dataset?)

Consistency: (impact of data)

» Inconclusive as revealed by protocol
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Conclusion

What we did:
» Re-used existing Gl scenario

» Much more rigorous experimental protocol

What we obtained:
» Consistent results for fixed data
» Inconsistent results when controlling data

» Some very good mutants

What we learned:
» Many potential hidden flaws
» Controlling data is essential

» Potential for better approaches
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Final Words

Take-home message:
» Gl exists, and Gl works!
» But it can work better!
» Success stories — standardisation

» First step towards future investigation
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