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Genetic Improvement (GI)

Automated software improvement:
I Program repair / bug fixing
I Feature transplantation
I Running time
I Memory/energy consumption

Non-functional GI in practice:
I Start from original software
I Accumulate sequences of edits
I Deletion/replacement/insertion
I Lines/statements/data
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Non-Functional GI So Far: Success Stories

Non-functional GI literature usually:
I Focuses on software and final improvements
I Fine tunes GI approach to the application
I Only reports positive results

Motivation: focus on the evolutionary process

3



Focus on the Evolutionary Process

Case study:
I Pre-existing GI scenario: MiniSAT
I Running time → CPU instructions
I Eight GP approaches; four random approaches
I k-fold cross-validation

Research Questions:
I Effectiveness? (how often)
I Efficiency? (how good)
I Robustness? (how sensible to parameters)
I Consistency? (impact of data)
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Experimental Protocol

Training:
I To find improved software variants
I Using the search process (GP)
I Until budget exhaustion

Validation:
I To avoid overfitting
I Filter out potentially harmful mutations

Test:
I To assess generalisation
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Experimental Protocol

Some issues in some previous GI work:
I Report a single GI run
I Do not report intermediary results
I Reuse training data in validation and test steps
I Use a single random data split
I Use different types of data between steps

k-fold cross-validation:
I Report k GI runs
I Use disjoint data on three steps
I Assess generalisation on the same type of data
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Cross-validation (k = 5)

Data is separated into k disjoint “folds”
Then labelled in k different ways:
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Test: (X)
I Single fold
I Sequentially

Validation: (V)
I Single fold
I Uniform at random

Training: (T)
I k − 2 folds
I All remaining
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Training: Random Search (Baseline), GP, GPe

Rand(m): with m = 1, 2, 5, 10
I Generate sequences of up to m mutations
I Independent; uniformly at random

GP(n): with n = 10, 20, 50, 100
I Population: fixed size n

I Initialisation: single random mutation
I Offspring: 50% crossover, 50% mutation

GPe(n): (new) with n = 10, 20, 50, 100
I GP(n) with elitism
I Best 10% forwarded (+ 45% crossover, 45% mutation)
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Genetic Programming Main Loop
Selection:
I Filter invalid individuals and sort by fitness

Elitism: (new)
I Forward best pe individuals to offspring

Crossover:
I Select best pc individuals, 1-point crossover with a random parent

Mutation:
I Select best pm individuals, append a random mutation

Regrow:
I If not enough offspring, add new random individuals of size 1

After every generation, update the fitness function
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Validation: Filtering

First pass: (new)
I Sequentially remove edits with no impact
I To reduce size of edit sequences and shorten the second pass

Second pass:
I Evaluate every edit independently
I Sort them by fitness
I Sequentially re-add them, keep if improving
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Experimental Setup

MiniSAT: (® http://minisat.se/)
I Award winning SAT solver, still relevant today
I Designed to be simple, modular, and extensible.
I minisat2-070721 (2007), minisat-2.2.0 (2008, latest version)
I Search-related code in a single C++ file (428 AST nodes)

12 search processes: Rand ×4, GP ×4, GPe ×4

130 CIT instances: from previous GI work
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Training Overall Analysis
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Training budget: 10000 SAT instances
Average execution time: Rand: 2 hours << GP: 10 hours
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Experimental Results (Fold 1)
Training Validation Test

Search Size CPU Size’ CPU Size? CPU? CPU?

Rand(1) 1 66.5% 1 114.0% 0 — —
Rand(2) 2 67.0% 2 114.5% 0 — —
Rand(5) 1 75.0% 1 109.0% 0 — —
Rand(10) 2 74.9% 2 107.2% 1 100.0% 100.0%
GP (10) 16 99.9% 11 99.9% 7 99.9% 99.9%
GP (20) 32 92.7% 12 123.4% 5 93.5% 67.4%
GP (50) 23 69.6% 11 102.6% 3 99.4% 99.6%
GP (100) 16 63.8% 13 111.3% 4 99.9% 99.9%
GPe(10) 1304 33.5% 26 114.4% 13 90.8% 62.8%
GPe(20) 268 57.7% 21 105.5% 4 91.0% 63.0%
GPe(50) 15 78.2% 7 123.6% 5 96.7% 98.5%
GPe(100) 6 64.8% 6 107.1% 2 100.0% 100.0%
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Experimental Results (Fold 4)
Training Validation Test

Search Size CPU Size’ CPU Size? CPU? CPU?

Rand(1) 1 57.4% 1 77.2% 1 77.2% 122.8%
Rand(2) 1 77.1% 1 75.4% 1 75.4% 92.0%
Rand(5) 3 57.7% 3 99.9% 1 99.8% 96.1%
Rand(10) 1 77.1% 1 75.4% 1 75.4% 92.0%
GP (10) 26 93.8% 9 91.6% 6 91.6% 126.9%
GP (20) 54 22.2% 13 55.0% 6 50.2% 124.7%
GP (50) 9 82.8% 7 91.0% 6 54.0% 115.8%
GP (100) 7 57.8% 5 75.4% 3 75.4% 92.0%
GPe(10) 2 99.8% 2 99.9% 2 99.9% 99.8%
GPe(20) 49 22.2% 9 54.9% 8 49.8% 123.8%
GPe(50) 6 82.8% 6 99.7% 4 99.7% 130.6%
GPe(100) 10 48.9% 9 119.6% 5 50.1% 124.7%
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Results Overview

GP as search process:
I Much more successful than random search
I Not very parameter-sensitive
I Large overfits

Repeated experiments:
I Very variable results
I Highly heterogeneous dataset
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Research Questions

Effectiveness: (how often)
I > 5% after training: almost always
I > 5% after either validation or test: half of the time
I > 5% after validation AND test: only 5/40 GP, 2/20 Rand

Efficiency: (how good)
I Down to 36% CPU instructions (64% faster) on some unseen folds
I Two-third of improvements > 25% (validation or test)

Robustness: (how sensible to parameter)
I Inconclusive (due to dataset?)

Consistency: (impact of data)
I Inconclusive as revealed by protocol

16



Conclusion

What we did:
I Re-used existing GI scenario
I Much more rigorous experimental protocol

What we obtained:
I Consistent results for fixed data
I Inconsistent results when controlling data
I Some very good mutants

What we learned:
I Many potential hidden flaws
I Controlling data is essential
I Potential for better approaches
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Final Words

Take-home message:
I GI exists, and GI works!
I But it can work better!
I Success stories → standardisation
I First step towards future investigation
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