
Comparing Genetic Programming Approaches for
Non-Functional Genetic Improvement

Case Study: Improvement of MiniSAT’s Running Time

Aymeric Blot Justyna Petke

University College London, UK
UK EPSRC grant EP/P023991/1

EuroGP (EvoStar) — 15 April 2020

1



Genetic Improvement (GI)

Automated software improvement:
I Program repair / bug fixing
I Feature transplantation
I Running time
I Memory/energy consumption

Non-functional GI in practice:
I Start from original software
I Accumulate sequences of edits
I Deletion/replacement/insertion
I Lines/statements/data

Petke et al., IEEE Transactions on Evolutionary Computation, 2018 2



Non-Functional GI So Far: Success Stories

Non-functional GI literature usually:
I Focuses on software and final improvements
I Fine tunes GI approach to the application
I Only reports positive results

Motivation: focus on the evolutionary process

3



Focus on the Evolutionary Process

Case study:
I Pre-existing GI scenario: MiniSAT
I Running time → CPU instructions
I Eight GP approaches; four random approaches
I k-fold cross-validation

Research Questions:
I Effectiveness? (how often)
I Efficiency? (how good)
I Robustness? (how sensible to parameters)
I Consistency? (impact of data)

4



Experimental Protocol

Training:
I To find improved software variants
I Using the search process (GP)
I Until budget exhaustion

Validation:
I To avoid overfitting
I Filter out potentially harmful mutations

Test:
I To assess generalisation

5



Experimental Protocol

Some issues in some previous GI work:
I Report a single GI run
I Do not report intermediary results
I Reuse training data in validation and test steps
I Use a single random data split
I Use different types of data between steps

k-fold cross-validation:
I Report k GI runs
I Use disjoint data on three steps
I Assess generalisation on the same type of data

6



Cross-validation (k = 5)

Data is separated into k disjoint “folds”
Then labelled in k different ways:

ab
c

d
e

ab
c

d
e

ab
c

d
e

ab
c

d
e

ab
c

d
e

Test: (X)
I Single fold
I Sequentially

Validation: (V)
I Single fold
I Uniform at random

Training: (T)
I k − 2 folds
I All remaining

7



Cross-validation (k = 5)

Data is separated into k disjoint “folds”
Then labelled in k different ways:

a:Xb
c

d
e

ab:X
c

d
e

ab

c:X

d
e

ab
c

d:X
e

ab
c

d e:X

Test: (X)
I Single fold
I Sequentially

Validation: (V)
I Single fold
I Uniform at random

Training: (T)
I k − 2 folds
I All remaining

7



Cross-validation (k = 5)

Data is separated into k disjoint “folds”
Then labelled in k different ways:

a:Xb:V
c

d
e

a:Vb:X
c

d
e

ab

c:X

d:V
e

ab:V
c

d:X
e

ab

c:V

d e:X

Test: (X)
I Single fold
I Sequentially

Validation: (V)
I Single fold
I Uniform at random

Training: (T)
I k − 2 folds
I All remaining

7



Cross-validation (k = 5)

Data is separated into k disjoint “folds”
Then labelled in k different ways:

a:Xb:V

c:T

d:T e:T

a:Vb:X

c:T

d:T e:T

a:Tb:T

c:X

d:V e:T

a:Tb:V

c:T

d:X e:T

a:Tb:T

c:V

d:T e:X

Test: (X)
I Single fold
I Sequentially

Validation: (V)
I Single fold
I Uniform at random

Training: (T)
I k − 2 folds
I All remaining

7



Training: Random Search (Baseline), GP, GPe

Rand(m): with m = 1, 2, 5, 10
I Generate sequences of up to m mutations
I Independent; uniformly at random

GP(n): with n = 10, 20, 50, 100
I Population: fixed size n

I Initialisation: single random mutation
I Offspring: 50% crossover, 50% mutation

GPe(n): (new) with n = 10, 20, 50, 100
I GP(n) with elitism
I Best 10% forwarded (+ 45% crossover, 45% mutation)

8



Genetic Programming Main Loop
Selection:
I Filter invalid individuals and sort by fitness

Elitism: (new)
I Forward best pe individuals to offspring

Crossover:
I Select best pc individuals, 1-point crossover with a random parent

Mutation:
I Select best pm individuals, append a random mutation

Regrow:
I If not enough offspring, add new random individuals of size 1

After every generation, update the fitness function
9



Validation: Filtering

First pass: (new)
I Sequentially remove edits with no impact
I To reduce size of edit sequences and shorten the second pass

Second pass:
I Evaluate every edit independently
I Sort them by fitness
I Sequentially re-add them, keep if improving

10



Experimental Setup

MiniSAT: (® http://minisat.se/)
I Award winning SAT solver, still relevant today
I Designed to be simple, modular, and extensible.
I minisat2-070721 (2007), minisat-2.2.0 (2008, latest version)
I Search-related code in a single C++ file (428 AST nodes)

12 search processes: Rand ×4, GP ×4, GPe ×4

130 CIT instances: from previous GI work

Eén and Sörensson, Theory and Applications of Satisfiability Testing (SAT), 2003 11

http://minisat.se/


Training Overall Analysis

0% 50% 100%

compile
error
runtime
error

timeout

output
error
success

14.3%

2.6%

1.2%

1.8%

80.1%

72%

6.7%

2.4%

4.5%

14.5%

Fraction of mutants

Rand
GP

50% 100% 150%
0%

20%

40%

60%

80%

100%

CPU instructions executed

Fr
ac
tio

n
of

su
cc
es
sfu

lm
ut
an
ts

Rand
GP

Training budget: 10000 SAT instances
Average execution time: Rand: 2 hours << GP: 10 hours

12



Experimental Results (Fold 1)
Training Validation Test

Search Size CPU Size’ CPU Size? CPU? CPU?

Rand(1) 1 66.5% 1 114.0% 0 — —
Rand(2) 2 67.0% 2 114.5% 0 — —
Rand(5) 1 75.0% 1 109.0% 0 — —
Rand(10) 2 74.9% 2 107.2% 1 100.0% 100.0%
GP (10) 16 99.9% 11 99.9% 7 99.9% 99.9%
GP (20) 32 92.7% 12 123.4% 5 93.5% 67.4%
GP (50) 23 69.6% 11 102.6% 3 99.4% 99.6%
GP (100) 16 63.8% 13 111.3% 4 99.9% 99.9%
GPe(10) 1304 33.5% 26 114.4% 13 90.8% 62.8%
GPe(20) 268 57.7% 21 105.5% 4 91.0% 63.0%
GPe(50) 15 78.2% 7 123.6% 5 96.7% 98.5%
GPe(100) 6 64.8% 6 107.1% 2 100.0% 100.0%

13



Experimental Results (Fold 4)
Training Validation Test

Search Size CPU Size’ CPU Size? CPU? CPU?

Rand(1) 1 57.4% 1 77.2% 1 77.2% 122.8%
Rand(2) 1 77.1% 1 75.4% 1 75.4% 92.0%
Rand(5) 3 57.7% 3 99.9% 1 99.8% 96.1%
Rand(10) 1 77.1% 1 75.4% 1 75.4% 92.0%
GP (10) 26 93.8% 9 91.6% 6 91.6% 126.9%
GP (20) 54 22.2% 13 55.0% 6 50.2% 124.7%
GP (50) 9 82.8% 7 91.0% 6 54.0% 115.8%
GP (100) 7 57.8% 5 75.4% 3 75.4% 92.0%
GPe(10) 2 99.8% 2 99.9% 2 99.9% 99.8%
GPe(20) 49 22.2% 9 54.9% 8 49.8% 123.8%
GPe(50) 6 82.8% 6 99.7% 4 99.7% 130.6%
GPe(100) 10 48.9% 9 119.6% 5 50.1% 124.7%

14



Results Overview

GP as search process:
I Much more successful than random search
I Not very parameter-sensitive
I Large overfits

Repeated experiments:
I Very variable results
I Highly heterogeneous dataset

15



Research Questions

Effectiveness: (how often)
I > 5% after training: almost always
I > 5% after either validation or test: half of the time
I > 5% after validation AND test: only 5/40 GP, 2/20 Rand

Efficiency: (how good)
I Down to 36% CPU instructions (64% faster) on some unseen folds
I Two-third of improvements > 25% (validation or test)

Robustness: (how sensible to parameter)
I Inconclusive (due to dataset?)

Consistency: (impact of data)
I Inconclusive as revealed by protocol

16



Conclusion

What we did:
I Re-used existing GI scenario
I Much more rigorous experimental protocol

What we obtained:
I Consistent results for fixed data
I Inconsistent results when controlling data
I Some very good mutants

What we learned:
I Many potential hidden flaws
I Controlling data is essential
I Potential for better approaches

17



Final Words

Take-home message:
I GI exists, and GI works!
I But it can work better!
I Success stories → standardisation
I First step towards future investigation

18



Selected References

Niklas Eén and Niklas Sörensson.
An extensible SAT-solver.
In Theory and Applications of Satisfiability Testing (SAT 2003), volume 2919 of Lecture
Notes in Computer Science, pages 502–518.

Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B. Langdon,
David Robert White, and John R. Woodward.
Genetic improvement of software: A comprehensive survey.
IEEE Transactions on Evolutionary Computation, 22(3):415–432, 2018.

+1


	Context
	Experimental Protocol
	Experimental Results
	Conclusions
	Appendix

