
Synthetic Benchmarks for Genetic Improvement

Aymeric Blot Justyna Petke

University College London, UK
UK EPSRC grant EP/P023991/1

GI@ICSE — 3 July 2020

1



In a Nutshell

Motivation:
I Empirical comparisons of GI approaches
I Parameter configuration of GI
I Genetic improvement of GI
I Quick experimentation for GI ideas

Idea:
I Premise: GI applied on software is very slow
I Bottleneck: fitness evaluation
I Proposition: synthetic benchmarks

2



Synthetic Benchmarks

Issues with real-world benchmarks:
I Evaluation is expensive
I Good data is scarce
I Uncertain features

Possible solutions:
I Surrogate modelling
I Artificial instances
I Synthetic benchmarks

Dang et al., GECCO 2017 (AC(AC) using surrogate modelling)
Malitsky et al., LION 2016 (Structure preserving instance generation) 3



Formalism

Standard GI:

(GI)
{

optimise E[o(s, i), i ∈ D]
subject to s ∈ S

with:
I E: statistical population parameter (e.g., average)
I o: cost metric (e.g., running time)
I D: input distribution (e.g., test cases, instances)
I s: software variants
I S: search space

Idea: Replacing E[o(s, i), i ∈ (D)] by a single instantaneous query

4



Software Analysis

s0

Search space:
I Around n deletions
I Around n2 replacements
I Around n2 insertions
 

∑k
i=1(n2i) sequences up to size k

I that’s too big!

Assumption:
I Edits are independent
 only around n2 fitness values
I reasonable to model

5



Synthetic Model

Empirical analysis:
I Sample edits
I Collect data, e.g.:

I did it compile?
I did it run?
I was it correct?
I how much better/worse?

I Compute underlying distribution

Contribution aggregation:
I Compilation errors propagate
I Runtime errors propagate
I Wrong outputs propagate
I Duplicate edits are ignored
I Fitness ratios are multiplied

E.g.: [80%, 100%, 105%] → 84%

6



Conclusion
Problem:
I GI(software) is much slower than software
I GI(GI(software)) is much much slower than GI(software)

Idea:
I Replace software with model
I model is free
I GI(model) is cheap
I GI(GI(model)) should be reasonable

Advantages:
I Cheap, reusable benchmarks
I Model as complex as designed
I Possible focus on particular software feature

7



Selected References

Nguyen Dang, Leslie Pérez Cáceres, Patrick De Causmaecker, and Thomas Stützle.
Configuring irace using surrogate configuration benchmarks.
In Peter A. N. Bosman, editor, Proceedings of the 12th Genetic and Evolutionary
Computation Conference (GECCO 2017), Berlin, Germany, pages 243–250. ACM, 2017.

Yuri Malitsky, Marius Merschformann, Barry O’Sullivan, and Kevin Tierney.
Structure-preserving instance generation.
In Paola Festa, Meinolf Sellmann, and Joaquin Vanschoren, editors, Proceedings of the
10th International Conference on Learning and Intelligent Optimization, Revised Selected
Papers (LION 10), Ischia, Italy, volume 10079 of Lecture Notes in Computer Science,
pages 123–140. Springer, 2016.

+1


	Context
	Formalism
	Proposition
	Conclusions
	Appendix
	Appendix


