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In a Nutshell

Motivation:
I Empirical comparisons of GI approaches
I Parameter configuration of GI
I Genetic improvement of GI
I Quick experimentation for GI ideas

Idea:
I Premise: GI applied on software is very slow
I Bottleneck: fitness evaluation
I Proposition: synthetic benchmarks
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Synthetic Benchmarks

Issues with real-world benchmarks:
I Evaluation is expensive
I Good data is scarce
I Uncertain features

Possible solutions:
I Surrogate modelling
I Artificial instances
I Synthetic benchmarks

Dang et al., GECCO 2017 (AC(AC) using surrogate modelling)
Malitsky et al., LION 2016 (Structure preserving instance generation) 3



Formalism

Standard GI:

(GI)
{

optimise E[o(s, i), i ∈ D]
subject to s ∈ S

with:
I E: statistical population parameter (e.g., average)
I o: cost metric (e.g., running time)
I D: input distribution (e.g., test cases, instances)
I s: software variants
I S: search space

Idea: Replacing E[o(s, i), i ∈ (D)] by a single instantaneous query
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Software Analysis

s0

Search space:
I Around n deletions
I Around n2 replacements
I Around n2 insertions
 

∑k
i=1(n2i) sequences up to size k

I that’s too big!

Assumption:
I Edits are independent
 only around n2 fitness values
I reasonable to model
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Synthetic Model

Empirical analysis:
I Sample edits
I Collect data, e.g.:

I did it compile?
I did it run?
I was it correct?
I how much better/worse?

I Compute underlying distribution

Contribution aggregation:
I Compilation errors propagate
I Runtime errors propagate
I Wrong outputs propagate
I Duplicate edits are ignored
I Fitness ratios are multiplied

E.g.: [80%, 100%, 105%] → 84%
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Conclusion
Problem:
I GI(software) is much slower than software
I GI(GI(software)) is much much slower than GI(software)

Idea:
I Replace software with model
I model is free
I GI(model) is cheap
I GI(GI(model)) should be reasonable

Advantages:
I Cheap, reusable benchmarks
I Model as complex as designed
I Possible focus on particular software feature
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