
Using Genetic Improvement to Optimise
Optimisation Algorithm Implementations

Aymeric Blot Justyna Petke

University College London

ROADEF 2022 (25 February 2022)

 http://www0.cs.ucl.ac.uk/staff/a.blot/publis#blot:2022:roadef 1

http://www0.cs.ucl.ac.uk/staff/a.blot/publis#blot:2022:roadef

Automated Software Improvement

Software synthesis:

min
s∈S

f(s, T)

With:
▶ s a software
▶ S the set of all software
▶ f the fitness function
▶ T the software specification

Genetic improvement:

min
p(s0)∈S

f(p(s0), T)

With:
▶ s0 a given software
▶ p(s0) a patched version of s0

Hypothesis:
▶ s0 is already very good

2

Genetic Improvement (GI)

Applications:
▶ Functional properties

▶ Program repair / bug fixing
▶ Feature transplantation

▶ Non-functional properties
▶ Execution time
▶ Energy / memory usage
▶ Solution quality

As an optimisation problem:
▶ Very expensive

▶ Compilation time
▶ Fitness uncertainty
▶ Fitness approximation

▶ Inconvenient search space
▶ Huge neighbourhoods
▶ Deceiving plateaus
▶ Fractal nature

Motivation:
Evolve software (source code) to improve performance

Petke et al., IEEE Transactions on Evolutionary Computation, 2018 3

Source Code Representation

Example C++ code:
...
if (j > i) {

x = j;
}
...

Software evolution:
▶ Convert source code to XML (SrcML)
▶ Focus on selected tags
▶ Mutate the AST
▶ Scrub XML tags

Example XML code:
...
<stmt >if <condition >(j > i)</ condition > <block >{

<stmt > x = j;</stmt >
}</block ></stmt >
...

4

Genetic Improvement (GI)

In a nutshell:
▶ Start from original software
▶ Create software mutations
▶ Apply, recompile, evaluate, accept
▶ Accumulate sequences of edits
▶ Show final patch

Software edits:
▶ Statement deletion
▶ Statement insertion
▶ Statement replacement
▶ Data structure replacement
▶ Literal mutation

5

Case Study

Multiobjective optimization problems with complicated Pareto sets,
MOEA/D and NSGA-II (TEVC 2009)
▶ Simple C++ implementation
▶ Nine hardcoded “complicated” problems
▶ Inverted generational distance (IGD)

Selected files:
▶ DMOEA/dmoeafunc.h.xml
▶ NSGA2/nsga2func.h.xml
▶ common/recombination.h.xml

Li and Zhang, IEEE Transactions on Evolutionary Computation, 2009 6

Experimental Setup

Simple local search:
▶ First improvement
▶ Mutation:

▶ 50% create/append edit
▶ 50% delete edit

▶ Fitness:
▶ CPU instructions (perf)
▶ Reject if solution quality > 110%

▶ Budget:
▶ Wallclock time
▶ ≈ 1000 evaluations

7

Experimental Protocol

Training: To find improved software variants
▶ Using the search process (local search)
▶ Until budget exhaustion (≈ 3 hours 45 minutes)
▶ Three runs on one problem

Validation: To avoid overfitting
▶ Filter out potentially harmful mutations
▶ Three runs on one unseen problem

Test: To assess generalisation
▶ Three runs on one (new) unseen problem

Sanity check:
▶ Three runs on all nine problems

Blot and Petke, Transactions on Evolutionary Computation, 2021 8

Cross-validation (k = 5)

Data is separated into k disjoint “folds”
Then labelled in k different ways:

a:X

b:Tc:T

d:T

e:V a:T

b:Xc:T

d:V

e:T a:T

b:Tc:X

d:T

e:V a:T

b:Tc:V

d:X

e:T a:V

b:Tc:T

d:T

e:X

Test: (X)
▶ Single fold
▶ Sequentially

Validation: (V)
▶ Single fold
▶ Uniform at random

Training: (T)
▶ k − 2 folds
▶ All remaining

Blot and Petke, Transactions on Evolutionary Computation, 2021 9

Results

Training
Validation Test

All instances

40%

50%

60%

70%

80%

90%

100% 267.4%
133.7%

474.5%

100%

2 925.5%
14 912.7%

231.7%

100%

131.6%

CP
U

in
st

ru
ct

io
ns

MOEA/D

Training
Validation Test

All instances85%

90%

95%

100%

116.6%

116.6%
104.4%
110.2%
150.7%

329%
106.6%
110.2%

127.4%

NSGA-II

10

Results

Training
Validation Test

All instances

40%

50%

60%

70%

80%

90%

100% 267.4%
133.7%

474.5%

100%

2 925.5%
14 912.7%

231.7%

100%

131.6%

CP
U

in
st

ru
ct

io
ns

MOEA/D

Observations
▶ Consistent −7 to −12%

improvement
▶ Major speedups (up to

−60%) fail to generalise
▶ Various negative impact on

solution quality

11

Patch Examples

Removing IGD computation: (−12% execution time at validation)
+++ after: DMOEA/ dmoeafunc .h

void CMOEAD :: calc_distance () {
distance = 0;

- for(int i=0; i<ps.size (); i++) {
- double min_d = 1.0e+10;
- for(int j=0; j< population .size (); j++) {
- double d = dist_vector (ps[i]. y_obj ,
- population [j]. indiv.y_obj);
- if (d<min_d) min_d = d;
- }
- distance += min_d;
- }

distance /= ps.size ();
}

12

Patch Examples

Removing IGD computation: (−12% execution time at validation)
+++ after: DMOEA/ dmoeafunc .h

// load the representative Pareto - optimal solutions
sprintf (filename ,"PF/pf_%s.dat", strTestInstance);

- loadpfront (filename ,ps);

+++ after: DMOEA/ dmoeafunc .h
// load the representative Pareto - optimal solutions

- sprintf (filename ,"PF/pf_%s.dat", strTestInstance);
loadpfront (filename ,ps);

Note:
▶ Final population was captured and externally reassessed

13

Patch Examples

Hidden parameter tuning: (−48% execution time at validation)
+++ after: DMOEA/ dmoeafunc .h

// mating selection based on probability
if (rnd < realb) {type = 1;} // neighborhood

- else {type = 2;} // whole population
+ else {} // whole population

Notes:
▶ Brackets added automatically thanks to SrcML
▶ realb = 0.9
▶ Failed to generalise on third problem (test)

14

Patch Examples
New strategy: (−27% execution time at validation)
+++ after: DMOEA/ dmoeafunc .h

// produce a child solution
CMOEADInd child;
diff_evo_xover2 (population [n]. indiv ,

population [p[0]]. indiv ,
population [p[1]]. indiv ,
child);

+ type = 1;
// apply polynomial mutation
realmutation (child , 1.0/ nvar);

Notes:
▶ type is used twice (matingselection(...) and update_problem(...))
▶ Insertion happens between both uses
▶ Fail to generalise on third problem (test)

15

Patch Examples
New strategy: (−9% execution time at validation)
+++ after: NSGA2/ nsga2func .h.xml

bool flag = true;
int size = offspring .size ();

- for (int i=0; i<size; i++) {
- if (ind == offspring [i]) {
- flag = false;
- break;
- }
- }
+ nfes = 0;

if(flag) offspring . push_back (ind);

Notes:
▶ Remove duplicity check (reset debug variable)
▶ Generalises, but worse fitness (+50%) during sanity check

16

Conclusion

Findings:
▶ “Free” 10% speedup
▶ Algorithmic changes

▶ Some “known”
▶ Some “new”

▶ Overfitting issues

What’s next?
▶ Better multi-objective setup
▶ New targets for edits
▶ Transplantation from optimisation

frameworks
▶ Guidance process

� Work funded by the UK EPSRC grant EP/P023991/1 17

Take Away

To err is human
▶ Practice ̸= theory
▶ Software bugs and defects

Automated performance improvement
▶ Compiler/parameter tuning
▶ Source code evolution (with GI)

Genetic improvement
▶ Evolution applied to software
▶ Functional properties

▶ Bug fixing
▶ Functionality transplantation

▶ Non-functional properties
▶ Execution time
▶ Solution quality
▶ Energy/memory usage

� Aymeric Blot and Justyna Petke, University College London 18

Selected References

Aymeric Blot and Justyna Petke.
Empirical comparison of search heuristics for genetic improvement of software.
IEEE Transactions on Evolutionary Computation, 25(5):1001–1011, 2021.

Hui Li and Qingfu Zhang.
Multiobjective optimization problems with complicated Pareto sets, MOEA/D and
NSGA-II.
IEEE Transactions on Evolutionary Computation, 13(2):284–302, 2009.

Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B. Langdon, David R.
White, and John R. Woodward.
Genetic improvement of software: A comprehensive survey.
IEEE Transactions on Evolutionary Computation, 22(3):415–432, 2018.

+1

Complicated Pareto Sets (MOEA/D)

Li and Zhang, IEEE Transactions on Evolutionary Computation, 2009 +2

	Context
	Case Study
	Results
	Final Words
	Appendix
	Appendix

