

Mixing of geodesic flow on infinite volume

With some and

Baptiste Dugué

IMJ-PRG

13 November 2025, Paris

Table of Contents

1 Geodesic flow

2 Mixing

3 Mixing of the geodesic flow

Table of Contents

1 Geodesic flow

2 Mixing

3 Mixing of the geodesic flow

Definition

A **flow** on a set X is a map

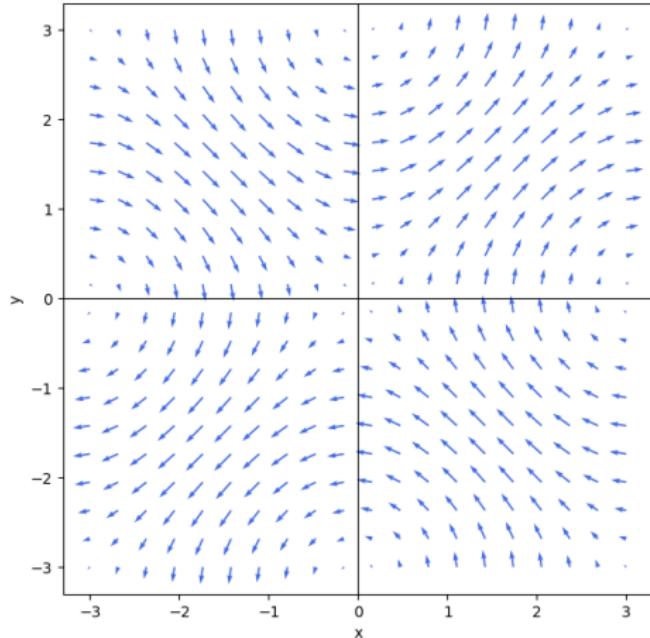
$$\varphi : X \times \mathbb{R} \rightarrow X$$

such that for all $x \in X$ and $s, t \in \mathbb{R}$,

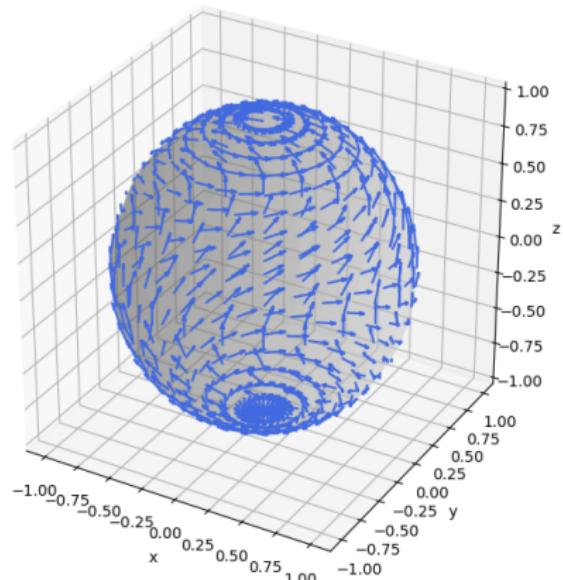
$$\varphi_0(x) = x, \quad \text{and} \quad \varphi_{s+t}(x) = \varphi_s(\varphi_t(x)).$$

Flows

Vector field $\vec{v}(x, y) = (\cos(y), \sin(x))$



Vector field on a sphere



Geodesics

Informally, a **geodesic** can be seen as the shortest path between two points on a manifold. For example :

Geodesics

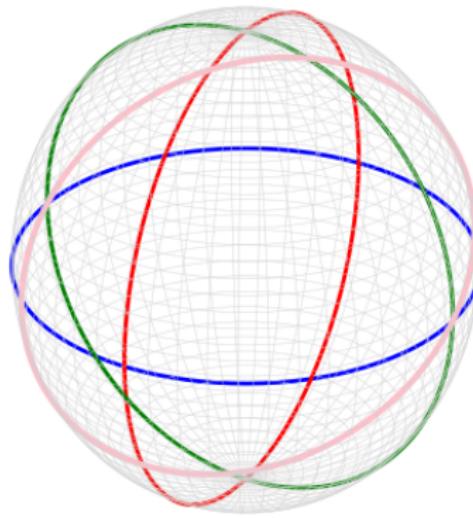
Informally, a **geodesic** can be seen as the shortest path between two points on a manifold. For example :

- geodesics on the euclidean plane are straight lines,

Geodesics

Informally, a **geodesic** can be seen as the shortest path between two points on a manifold. For example :

- geodesics on the euclidean plane are straight lines,
- geodesics on the euclidean sphere are **great circles**.



Geodesics

Geodesics on a torus can look like this :

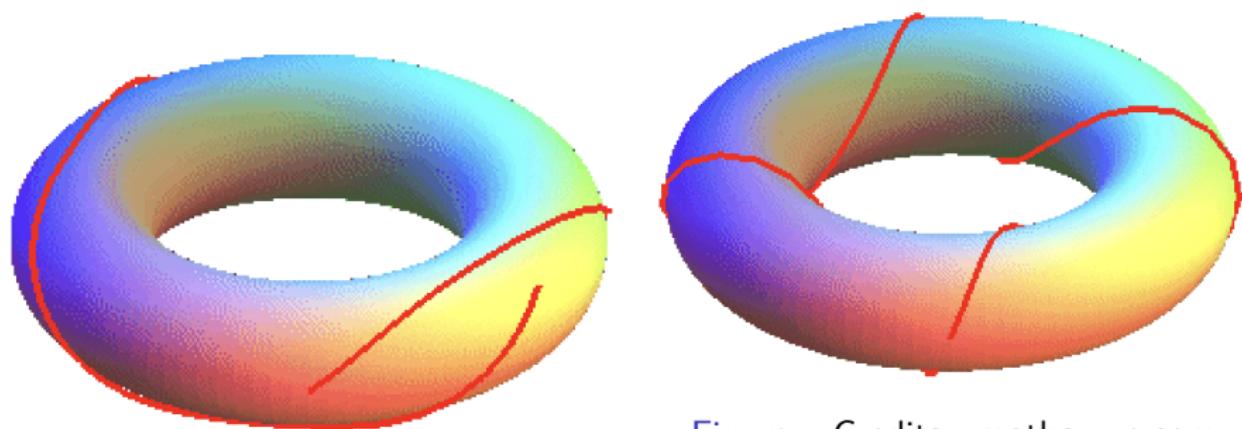
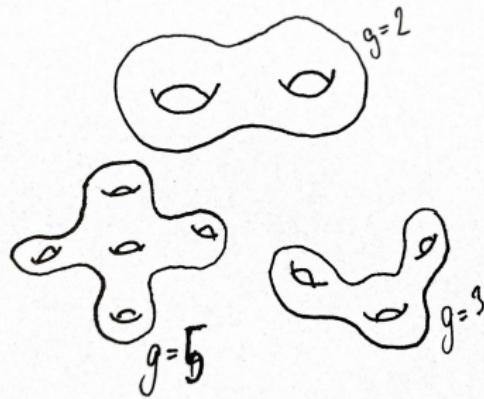


Figure – Credits : mathcurve.com

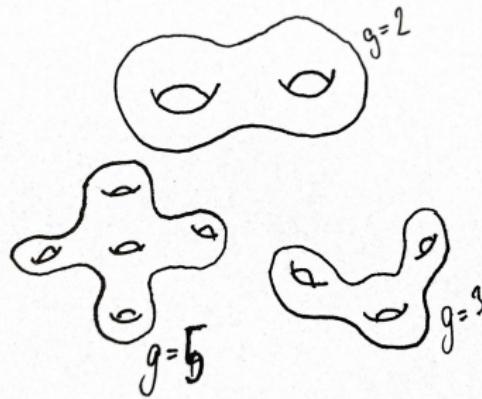
Such geodesics can be constructed as projections of geodesics of \mathbb{R}^2 (i.e. straight lines) by remembering that $\mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2$.

Geodesics

What about surfaces of genus $g \geq 2$?



What about surfaces of genus $g \geq 2$?

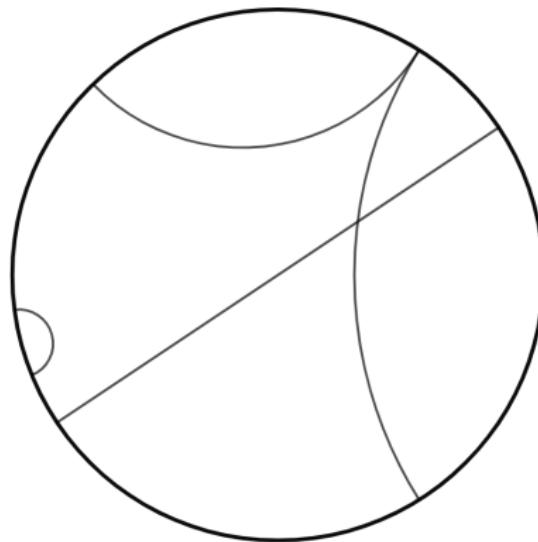


Theorem (Henri Poincaré)

Every such (orientable) surface can always be built as a quotient of the hyperbolic plane \mathbb{H}^2 by a lattice Γ , that is, a discrete subgroup of $\text{Isom}^+(\mathbb{H}^2) \simeq PSL_2(\mathbb{R})$ with no global fixed point.

Geodesics

In the Poincaré disk model, the geodesics of \mathbb{H}^2 are diameters and arcs of circles orthogonal to the boundary.



Geodesics

For example, a genus 2 surface can be built by glueing sides of a geodesic octagon :

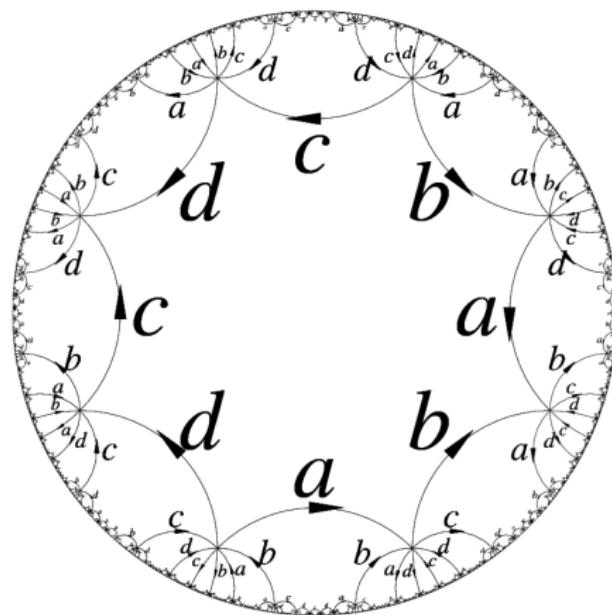


Figure – Credit : Fisher-Hasselblatt, Hyperbolic flows

Informal definition

The **geodesic flow** on a manifold M is the flow which moves points along geodesics.

Definition

The **tangent bundle** of a manifold M is

$$TM := \bigsqcup_{x \in M} T_x M = \{(x, v) \mid x \in M, v \in T_x M\}.$$

The **unit tangent bundle** of M is the unit sphere bundle for TM , namely

$$T^1 M = \{(x, v) \in TM \mid \|v\| = 1\}.$$

Geodesic flow

Definition

The **tangent bundle** of a manifold M is

$$TM := \bigsqcup_{x \in M} T_x M = \{(x, v) \mid x \in M, v \in T_x M\}.$$

The **unit tangent bundle** of M is the unit sphere bundle for TM , namely

$$T^1 M = \{(x, v) \in TM \mid \|v\| = 1\}.$$

Formal definition

For $(x, v) \in T^1 M$, let $g_{(x,v)} : \mathbb{R} \rightarrow M$ be the (unique) geodesic (parametrized by arc length) such that $g(0) = x$ and $g'(0) = v$.

The **geodesic flow** on M , denoted φ_t , is the flow **defined on** $T^1 M$ by :

$$\forall t \in \mathbb{R}, \varphi_t : \begin{array}{ccc} T^1 M & \longrightarrow & T^1 M \\ (x, v) & \longmapsto & (g_{(x,v)}(t), g'_{(x,v)}(t)) \end{array}.$$

Table of Contents

1 Geodesic flow

2 Mixing

3 Mixing of the geodesic flow

Definition

Dynamical systems

Definition(informal)

A dynamical system is a bunch of stuff moving around.

Dynamical systems

Let X be a topological space. (Feel free to think only about metric spaces.)

Dynamical systems

Let X be a topological space. (Feel free to think only about metric spaces.)

Discrete dynamical system

Let $\Phi : X \rightarrow X$ be a diffeomorphism. The couple (X, Φ) is a **discrete dynamical system**.

In this case, the trajectory of a point $x \in X$ in the future is the set

$$\{\Phi^n(x) \mid n \in \mathbb{N}\}.$$

Dynamical systems

Let X be a topological space. (Feel free to think only about metric spaces.)

Discrete dynamical system

Let $\Phi : X \rightarrow X$ be a diffeomorphism. The couple (X, Φ) is a **discrete dynamical system**.

In this case, the trajectory of a point $x \in X$ in the future is the set

$$\{\Phi^n(x) \mid n \in \mathbb{N}\}.$$

Continuous dynamical system

Let $\varphi : (X, \mathbb{R}) \rightarrow X$ be a flow. The couple (X, φ) is a **continuous dynamical system**.

In this case, the trajectory of a point $x \in X$ in the future is the set

$$\{\varphi_t(x) \mid t \in \mathbb{R}_+\}.$$

Dynamical systems

- The cat map : $(\mathbb{T}^2, (\begin{smallmatrix} 2 & 1 \\ 1 & 1 \end{smallmatrix}))$
- The geodesic flow on a (hyperbolic) manifold : $(T^1 M, \varphi_t)$

The cat map and the geodesic flow on a hyperbolic manifold behave a lot like blenders (*mixeurs* in french).

Measure-preserving dynamical system

Measure preserving transformation

Let (X, \mathcal{A}, μ) be a measured space and $\Phi : X \rightarrow X$ be a measurable transformation. One says that Φ **preserves the measure** μ if

$$\forall A \in \mathcal{A}, \mu(\Phi^{-1}(A)) = \mu(A).$$

Measure-preserving dynamical system

A measure-preserving dynamical system is a dynamical system equipped with a measure and a measure-preserving transformation $(X, \mathcal{A}, \mu, \Phi)$.

How to make a smoothie ?

Strawberry-banana smoothie recipe : 200g of , 100g of . Put it all in a good blender (mixeur) and press the Φ button for long enough.

How to make a smoothie ?

Strawberry-banana smoothie recipe : 200g of , 100g of . Put it all in a good blender (mixeur) and press the Φ button for long enough.

One expects to find, anywhere in the blender, 1/3 of banana and 2/3 of strawberry. One wants the **proportions** of fruits to be the same everywhere

How to make a smoothie ?

Strawberry-banana smoothie recipe : 200g of , 100g of . Put it all in a good blender (mixeur) and press the Φ button for long enough.

One expects to find, anywhere in the blender, 1/3 of banana and 2/3 of strawberry. One wants the **proportions** of fruits to be the same everywhere : for any region R in the blender, one wants

$$\underbrace{\frac{\mu(\Phi^{-n}(\text{strawberry}) \cap R)}{\mu(R)}}_{\text{proportion of strawberry in } R \text{ in time } n} \xrightarrow{n \rightarrow \infty} \underbrace{\mu(\text{strawberry})}_{\text{total proportion of strawberry (2/3)}}.$$

Mixing

Mixing

A (measured) dynamical system $(X, \mathcal{A}, \mu, \Phi)$ is said to be **mixing** if

$$\forall A, B \in \mathcal{A}, \mu(\Phi^{-n}(A) \cap B) \xrightarrow[n \rightarrow +\infty]{} \mu(A)\mu(B)$$

Mixing

Mixing

A (measured) dynamical system $(X, \mathcal{A}, \mu, \Phi)$ is said to be **mixing** if

$$\forall A, B \in \mathcal{A}, \mu(\Phi^{-n}(A) \cap B) \xrightarrow[n \rightarrow +\infty]{} \mu(A)\mu(B)$$

Equivalently (this is a theorem), one can also formulate mixing using L^2 functions :

Mixing, alternative definition

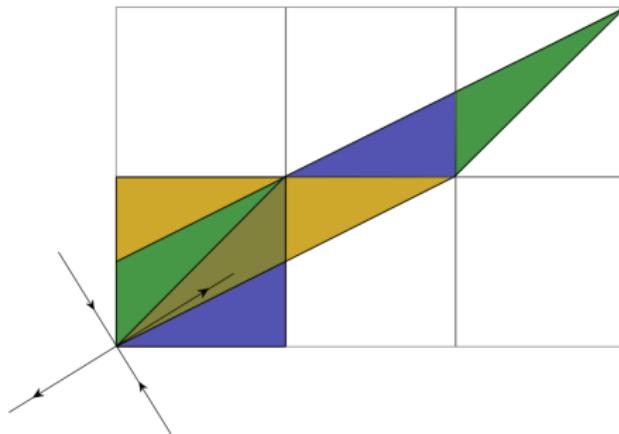
A dynamical system $(X, \mathcal{A}, \mu, \varphi_t)$ is said to be **mixing** if

$$\forall f, g \in L^2(X, \mu), \int_X (f \circ \varphi_t) \cdot g d\mu \xrightarrow[t \rightarrow \infty]{} \int_X f d\mu \int_X g d\mu.$$

For the probabilists in the room, you could say that the random variables $f \circ \varphi_t$ and g become independant as t grows.

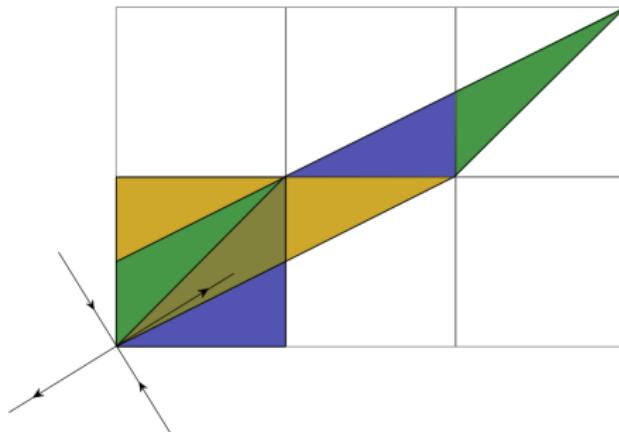
Cat map

The **cat map** is the map induced on \mathbb{T}^2 by the action of the matrix $M := \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$. M has two eigenvalues : $\lambda_1 := \frac{3-\sqrt{5}}{2} \approx 0,4$ and $\lambda_2 := \frac{3+\sqrt{5}}{2} \approx 2,6$. An eigenvector associated to λ_1 is $v_1 := \begin{pmatrix} 1 \\ \frac{\sqrt{5}-1}{2} \end{pmatrix}$.



Cat map

The **cat map** is the map induced on \mathbb{T}^2 by the action of the matrix $M := \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$. M has two eigenvalues : $\lambda_1 := \frac{3-\sqrt{5}}{2} \approx 0,4$ and $\lambda_2 := \frac{3+\sqrt{5}}{2} \approx 2,6$. An eigenvector associated to λ_1 is $v_1 := \begin{pmatrix} 1 \\ \frac{\sqrt{5}-1}{2} \end{pmatrix}$.



Theorem

The cat map is mixing.

Table of Contents

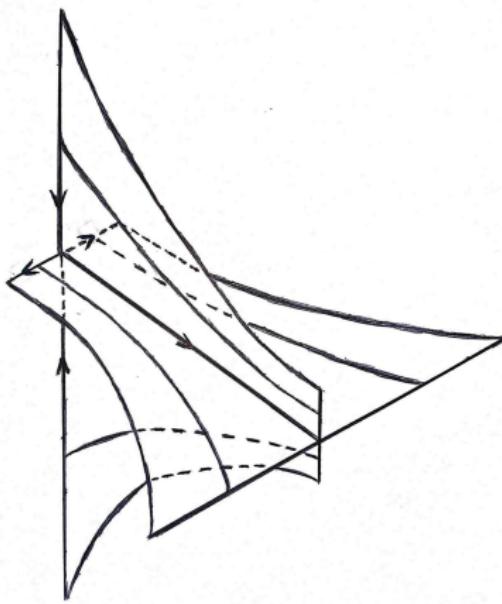
1 Geodesic flow

2 Mixing

3 Mixing of the geodesic flow

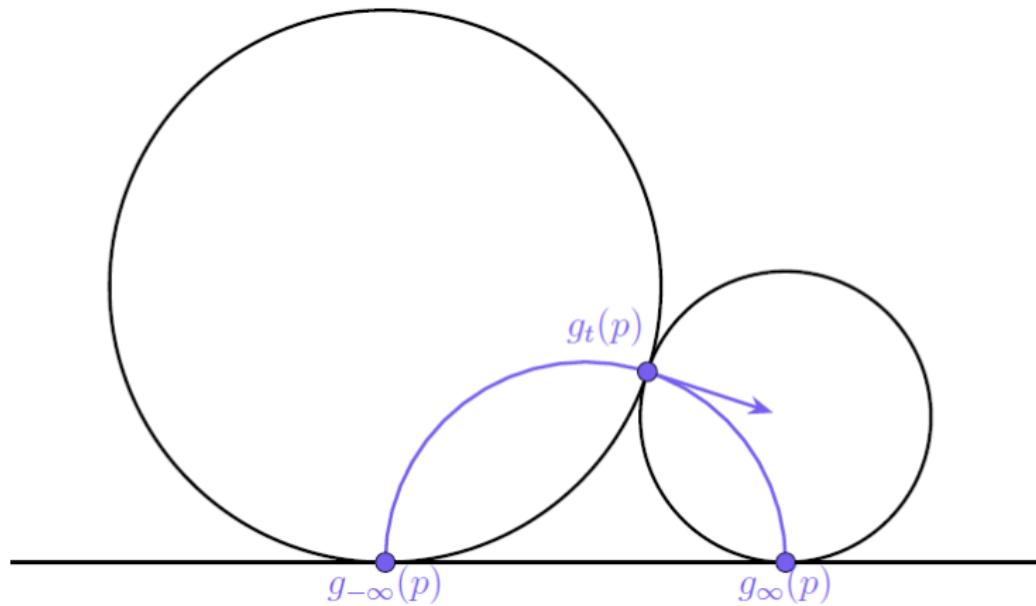
Anosov dynamics

The crucial aspect of the cat map's dynamic is the fact that there are both contracted and dilated directions; this is an aspect specific to a more general class of dynamic systems, the **Anosov systems**.



Anosov dynamics

It turns out that the geodesic flow on hyperbolic surfaces is also Anosov. The dilated/contracted directions are constructed from **horocycles** :



Mixing of the geodesic flow

To prove that the geodesic flow on a hyperbolic surface is mixing, one can

- study horocyclic flows, which are closely related to the geodesic flow,
- use an algebraic model : the flows act on $T^1\mathbb{H}^2 \simeq PSL_2(\mathbb{R})$ and can therefore be seen as one-parameter groups of $PSL_2(\mathbb{R})$. We find ourselves manipulating matrices and venturing into Lie theory !

Mixing of the geodesic flow

To prove that the geodesic flow on a hyperbolic surface is mixing, one can

- study horocyclic flows, which are closely related to the geodesic flow,
- use an algebraic model : the flows act on $T^1\mathbb{H}^2 \simeq PSL_2(\mathbb{R})$ and can therefore be seen as one-parameter groups of $PSL_2(\mathbb{R})$. We find ourselves manipulating matrices and venturing into Lie theory !

Theorem

The geodesic flow on a hyperbolic surface is mixing.

Mixing of the geodesic flow

To prove that the geodesic flow on a hyperbolic surface is mixing, one can

- study horocyclic flows, which are closely related to the geodesic flow,
- use an algebraic model : the flows act on $T^1\mathbb{H}^2 \simeq PSL_2(\mathbb{R})$ and can therefore be seen as one-parameter groups of $PSL_2(\mathbb{R})$. We find ourselves manipulating matrices and venturing into Lie theory !

Theorem

The geodesic flow on a hyperbolic surface is mixing.

...but this is only the beginning of the story !

Table of Contents

- 1 Geodesic flow
- 2 Mixing
- 3 Mixing of the geodesic flow
- 4 Rates of mixing, or how long you should blend your fruits

Correlation coefficients

Given a dynamical system (X, μ, φ_t) and two functions $f, g \in L^2(X, \mu)$, the correlation coefficient between f and g in time t is defined as

$$C_{f,g}(t) := \left| \int_X (f \circ \varphi_t) \cdot g d\mu - \int_X f d\mu \int_X g d\mu \right|.$$

Correlation coefficients

Given a dynamical system (X, μ, φ_t) and two functions $f, g \in L^2(X, \mu)$, the correlation coefficient between f and g in time t is defined as

$$C_{f,g}(t) := \left| \int_X (f \circ \varphi_t) \cdot g d\mu - \int_X f d\mu \int_X g d\mu \right|.$$

To say that a dynamical system is mixing is to say that, for any $f, g \in L^2(X, \mu)$, $C_{f,g}(t) \xrightarrow[t \rightarrow \infty]{} 0$.

Correlation coefficients

Given a dynamical system (X, μ, φ_t) and two functions $f, g \in L^2(X, \mu)$, the correlation coefficient between f and g in time t is defined as

$$C_{f,g}(t) := \left| \int_X (f \circ \varphi_t) \cdot g d\mu - \int_X f d\mu \int_X g d\mu \right|.$$

To say that a dynamical system is mixing is to say that, for any $f, g \in L^2(X, \mu)$, $C_{f,g}(t) \xrightarrow[t \rightarrow \infty]{} 0$.

Question : How fast does it decay for the geodesic flow ?

Theorem (Marina Ratner)

If M is a **compact** hyperbolic surface, the geodesic flow is **exponentially mixing**.

Theorem (Marina Ratner)

If M is a **compact** hyperbolic surface, the geodesic flow is **exponentially mixing**.

The main ingredients of her proof are the representation theory of $SL_2(\mathbb{R})$ and harmonic analysis. The exact results depend heavily on the spectral theory of the laplacian operator (Δ) on the surface.

Theorem (Marina Ratner)

If M is a **compact** hyperbolic surface, the geodesic flow is **exponentially mixing**.

The main ingredients of her proof are the representation theory of $SL_2(\mathbb{R})$ and harmonic analysis. The exact results depend heavily on the spectral theory of the laplacian operator (Δ) on the surface.

When M is not compact, we still have results in some cases (if the volume of M is finite, or if it is a \mathbb{Z} -cover of a compact surface...), but we don't know what happens in general...

Theorem (Marina Ratner)

If M is a **compact** hyperbolic surface, the geodesic flow is **exponentially mixing**.

The main ingredients of her proof are the representation theory of $SL_2(\mathbb{R})$ and harmonic analysis. The exact results depend heavily on the spectral theory of the laplacian operator (Δ) on the surface.

When M is not compact, we still have results in some cases (if the volume of M is finite, or if it is a \mathbb{Z} -cover of a compact surface...), but we don't know what happens in general...

This is where my thesis starts !

What we know so far

Theorem (Marina Ratner)

If M is a **compact** hyperbolic surface, the geodesic flow is **exponentially mixing**.

The main ingredients of her proof are the representation theory of $SL_2(\mathbb{R})$ and harmonic analysis. The exact results depend heavily on the spectral theory of the laplacian operator (Δ) on the surface.

When M is not compact, we still have results in some cases (if the volume of M is finite, or if it is a \mathbb{Z} -cover of a compact surface...), but we don't know what happens in general...

This is where my thesis starts !

And where this presentation ends...

 Thank you very much for your attention !

 Any questions ?