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Abstract— Given the central importance of designing
secure protocols, providing solid mathematical founda-
tions and computer-assisted methods to attest for their
correctness is becoming crucial.

Here, we elaborate on the Squirrel Proof Assistant by
formalizing multi-system reasonning, and then by im-
plementing multi-system proofs with more than 2 sys-
tems in the Squirrel Proof Assistant.

Index terms—Security Protocols, Formal Methods,
Computational Security, Interactive Theorem Prover,
Multi Systems

I. Introduction

Providing solid mathematical proofs is essential in order to
avoid having payment protocols allowing an attacker to steal
any amount of money from a locked phone [1]. To prevent
this, some automated and interactive tools such as Tamarin
[2] and ProVerif [3] have been proposed to prove security of
protocols.

Multiple approach exists for this goal using automated or
interactive tools.
Most of them lies in the symbolic model, often called the
“Dolev-Yao model”, due to Dolev and Yao [4], where the at-
tacker is modelised by the rules he can apply (for example, if
he knows a message and its decryption key, he can decrypt it).
This method can find many attacks, and allows for easy auto-
matic proofs. However, this model is not very realistic, and can
miss some attacks [5].

In the meantime, the computational model [6], [7] was de-
vlopped. In this model, the messages are just bitstrings, and
cryptographic primitives are functions over the bitstrings. The
attacker is moddeled by a probabilisitc Turing machine, and
security properties are said to hold when the probability that
it is false is negligeable w.r.t. a security parameter (e.g. the size
of a key) [5].
Instead of describing what the attacker can do, the computa-
tional model specify what the attacker cannot do (more for-
mally, what is very unlikly to be done by the attacker w.r.t. the
security parameter).
This model is more realistic and is the one generally used by

cryptographers. However, automatic proofs are harder to do,
and even assisted proofs were not done until recently.

The Squirrel Prover is an interactive theorem prover in
the computationnal model [8]. It expands on the approach
givien by Bana and Comon [9], [10] to allow mecanization of
proofs in an interactive theorem prover.

The Squirrel Prover works by formally describing proto-
cols, and then interactively proving properties over said pro-
tocols. There are two kinds of such properties :

• Trace properties e.g. only allowed users are accepted by
the protocol.

• Privacy properties, meaning that the protocol does not
leak unwanted information.

In order to prove the latter, we often compare the real protocol
with an idealized one, where private information is replaces
by random value, and then prove that the real and idealized
protocols are equivalent for the attacker. This means that the
attackers cannot distinguish the private information from a
random bitstring, so it doesn’t know the secret information.

So, the Squirrel Prover allow using the diff operator to
easily describe processes that are very similar and differs in a
few places. It is then possible to write once the protocol, and
put a secret key under a diff alongside a randow value, to
prove that this information is not leaked.

However, the tool currently only accepts bi-systems :
processes with only 2 variants, hard-coded to be the left and
right variants. This can be annoying as some proofs become
very repetitive, lemmas and theorem need to be duplicated for
each variant.

Another shortcomming of multi-system operations in the
Squirrel Prover is their lack of proper theorical formalisa-
tion. They are not well-defined, and there is no formal back-
ground for the operations done by the tool. This has been the
source of incorrect behaviour in the tool.

This report contains two main contributions : the formali-
sation of a new logic that allow reasonning on multi-systems,
with some results over what can and cannot be done in multi-
system reasonning, and the generalization of the diff oper-
ation in the Squirrel Prover, to allow for any number of
processes.
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This report is split in three sections :
• First, theory
• Then, implementation
• Finally, the conclusion followed by some perpsectives

II. The new multi-system logic

A. Terms

The base block of this logic is the term. They are very simi-
lar to first-order logic, with the addition of the diff operator.

We use 𝜏  to represent types. In practice, the types are either
“message” or “boolean”, and 𝑙 to represent labels (indentifiers
of projections).

Definition 1 : Inductive definition of the terms

𝑡 ⩴ 𝑥 | 𝑓(𝑡1,…, 𝑡𝑛) | ∀𝑥 : 𝜏 ⋅ 𝑡 | ∃𝑥 : 𝜏 ⋅ 𝑡
| diff(𝑙1 : 𝑡1,…, 𝑙𝑛 : 𝑡𝑛)

(1)

The diff operator assign some tems to some projections. For
example, the term diff(𝑙1 : 𝑥, 𝑙2 : 𝑦) is a term such that, its
value on label 𝑙1 is 𝑥, and its value on label 𝑙2 is 𝑦.

We want to be able to answer the question “What is the
value of the term 𝑡 under the label 𝑙”, but this is not always
easy. For example with imbricated diffs (i.e. a term like 
diff(𝑙1 : diff(𝑙3 : 𝑥, 𝑙4 : 𝑦), 𝑙2 : 𝑥)

So, we will use a typing system to ensure that terms are
“well-formed” :

Definition 2 : Typing system

Γ(𝑥) = 𝜏 ⃗𝑙

Γ ⊢ 𝑥 : 𝜏 ⃗𝑙

Γ ⊢ 𝑡𝑖 : 𝜏
⃗𝑙
𝑖 Γ(𝑓) = 𝜏1 → …→ 𝜏𝑛 → 𝜏 ′

Γ ⊢ 𝑓(𝑡1,…, 𝑡𝑛) : 𝜏 ′
⃗𝑙

… Γ ⊢ 𝑡𝑖 : 𝜏 𝑙𝑖 …
Γ ⊢ diff(𝑙1 : 𝑡1,…, 𝑙𝑛 : 𝑡𝑛) : 𝜏 𝑙1,…,𝑙𝑛

Γ ⊢ 𝑡 : 𝜏 𝑙1,…,𝑙𝑛
Γ ⊢ 𝑡 : 𝜏 𝑙′1,…,𝑙′𝑘

with {𝑙′1,…, 𝑙′𝑘} ⊆ {𝑙1,…, 𝑙𝑛}

Γ(𝑥) = 𝜏 �⃗� ⊢ 𝑡 : bool�⃗�

Γ ⊢ (∀𝑥 : 𝜏 ⋅ 𝑡) : bool�⃗�
Γ(𝑥) = 𝜏 �⃗� ⊢ 𝑡 : bool�⃗�

Γ ⊢ (∃𝑥 : 𝜏 ⋅ 𝑡) : bool�⃗�

(2)

We see that the term diff(𝑙1 : diff(𝑙3 : 𝑥, 𝑙4 : 𝑦), 𝑙2 : 𝑥) cannot
be typed by our typing system, as the term diff(𝑙3 : 𝑥, 𝑙4 : 𝑦)
will be of type 𝜏 𝑙3,𝑙4 .

However, (and opposit to what is implemented in the Squir-
rel Prover tool), we can still write imbricated diffs like 
diff(𝑙1 : diff(𝑙1 : 𝑥, 𝑙2 : 𝑦), 𝑙2 : 𝑦), but this is not an issue as the
second label of the inner diff will never be used, the term can

be simplified as diff(𝑙1 : 𝑥, 𝑙2 : 𝑦). They are theorically write-
able, but definitely useless.

With this, it is now possible to build a “projection” operator,
that gives the value of a term 𝑡 on a label 𝑙𝑖 if Γ ⊢ 𝑡 : 𝜏 𝑙𝑖  :

Definition 3 : Projection operator

𝑡#𝑙𝑖 =
| 𝑥#𝑙𝑖 ≔ 𝑥
| 𝑓(𝑡1,…, 𝑡𝑛)#𝑙𝑖 ≔ 𝑓(𝑡1#𝑙𝑖,…, 𝑡𝑛#𝑙𝑖)
| (∀𝑥 ⋅ 𝑡)#𝑙𝑖 ≔ ∀𝑥 ⋅ (𝑡#𝑙𝑖)
| (∃𝑥 ⋅ 𝑡)#𝑙𝑖 ≔ ∃𝑥 ⋅ (𝑡#𝑙𝑖)
| diff(𝑙1 : 𝑡1,…, 𝑙𝑛 : 𝑡𝑛) ≔ 𝑡𝑖#𝑙𝑖

(3)

Theorem 1 : Substition theorem

Given a term 𝑡1, if 𝑡2 has the good type, then we can sub-
stitute 𝑥 in 𝑡1 with 𝑡2

We can prove some usefull properties :

Theorem 2 : Type augmentation

If Γ ⊢ 𝑡 : 𝜏 𝑙1 ,…, Γ ⊢ 𝑡 : 𝜏 𝑙𝑛  then Γ ⊢ 𝑡 : 𝜏 𝑙1,…,𝑙𝑛

B. Formulas

We can then define formulas over the terms. They add the
new operators [] and equiv.

Intuitively, the [] operator allow to consider a term of type
bool on some labels ⃗𝑙 in the formulas scope.

equiv is the equivalence operator. Intuitively, it is true if an
attacker cannot distinguish 𝑡#𝑙1 from 𝑡#𝑙2. The term in the
equivalence operator must be of type 𝜏 𝑙1,𝑙2  for it to be well-
defined.

Even if the diffs are general enough to work with any
number of labels, we only consider binary equiv here, as it re-
flects the tool. It might be usefull to have more general equiv,
but it is not the scope of this report.

We define formally the formulas of our multi-system logic :

Definition 4 : Inductive definition of the formulas

𝐹 ⩴ ⊤ | ⊥ | 𝐹1 ∧ 𝐹2 | 𝐹1 ⇒ 𝐹2
| [𝑡]𝑙1,…,𝑙𝑛 | equiv(𝑙1,𝑙2)(𝑡)

(4)

We deliberetly chose to not add quantifiers in the formulas
scope, as they already are present within the terms, and thus
are not needed to fully express what is needed in the Squir-
rel Prover.



We can then prove some usefull theorems for our formulas,
that will be usefull to implement multi-system reasonning in
the Squirrel Prover.

Theorem 3 : Inference rules over formulas

[𝜑]𝑙1,…,𝑙𝑛

[𝜑]𝑙
′
1,…,𝑙′𝑘

with {𝑙′1,…, 𝑙′𝑘} ⊆ {𝑙1,…, 𝑙𝑘}

𝐺′ ⊧ 𝐺 𝐹 ′ ⊧ 𝐹
𝐺 ⇒ 𝐹 ⊧ 𝐺′ ⇒ 𝐹 ′

𝐺 ⊧ 𝐺′ 𝐹 ⊧ 𝐹 ′

𝐺 ∧ 𝐹 ⊧ 𝐺′ ∧ 𝐹 ′

(5)

The rule [𝜑]
𝑙1,…,𝑙𝑛

[𝜑]𝑙
′
1,…,𝑙′𝑘

 is particullary usefull in the Squirrel

Prover tool, as it is possible to prove a lemma for the labels 
𝑙1, 𝑙2, 𝑙3, 𝑙4, and then use it for example in an equiv(𝑙1,𝑙4)(𝑡)
proof. We can thus prove very generic lemmas, and then use-
them on specific systems.

III. Diff generalization in the Squirrel Prover

Now that there is a formal background, we can work on the
generalization of the diff operator in the Squirrel Prover.
For this, we first need to see what are the componnennts in
the actual tool.
A. Overview

There are two main scopes to deal with in the Squirrel
Prover :

• Protocol specification
• Lemmas and theorem proving

First in protocol specification, we formally descrbie the pro-
tocol that we will verify. This is where we use the diff op-
erator, and we use keywords such as in and out to describe
the exchange of messages between parties (and eventually an
attacker).

Secondly, we verify properties (either trace properties or
privacy properties) within lemmas or theorem. Here, we use
Coq-like keywords to guide the Squirrel Prover through the
resolution, with some added cryptographic tactics for dealing
with hash functions, signatures etc.

However, in protocol specification we cannot use the diff
operator for more than two systems, and lemmas / theorems
expect to see systems with one or two projections, hard-coded
to be left and right.
B. The issue

To see how this can be an issue, we can look at an example.
We can build a protocol that take an input (input), encrypt

it with one secret key (enckey), and sign it with another se-
cret key (signkey). If we want to prove that an attacker cannot
obtain information about the encrypting and signing key, we
need four variants :

• Two to compare encrypting with the real key, and with
a random value.

• Two to compare signing with the real key, and with a
random value.

Currently, we cannot write them all at once, we need to split
them in an arbitrary manner :
process real_encrypt =
  in(cB, input);
  let crypted = enc(enckey,r,input)
  let signature = sign(crypted, diff(signkey, kS))
  out(cB, (crypted, signature))

process ideal_encrypt =
  in(cB, input);
  let crypted = enc(kfresh,r,input)
  let signature = sign(crypted, diff(signkey, kS))
  out(cB, (crypted, signature))

In the real_encrypt process, we encrypt using the real key,
whereas in the ideal_encrypt process, we encrypt with a
nonce kfresh, and in both, the first projection is signing with
the real key, and the second projection is signing with a nonce
kS.

This get more annoying as the process get more complicated
(in reality, such process can be more than 20 lines long, so re-
peating them can become quite teadious. The goal would be to
be able to write something like :
process objective =
  in(cB, input);
  let crypted = enc(diff(enckey, enckey, kfresh,
kfresh), r, input)
  let signature = sign(crypted, diff(signkey, kS,
signkey, kS))
  out(cB, (crypted, signature))

This make objective a process with 4 projections.
C. Generalization of the diff

The first step is to generalize the various functions in the
code base to work with more than binary diffs. Some of this
word were already done, as it is a wanted feature from already
some time. For example, the OCaml type for the diffs in the
terms can already take as many elements as wanted.

However, it is not possible to build those types with more
than two elements, and most functions that use them expect
bi-terms with the left and right projections.

For most functions, it is just a matter of iterating the already
written logic on a list, and read the actual projections instead
of assuming they will be left / right.

There is however one function that require more work, the
make_normal_multiterm function. This function pushes the
diff as deep as possible. For example, the term diff(if a = b
then x, if a = b then y) become if a = b then diff(x,
y).



This needed generalization of all the checks made for evry
possible case (every kind of terms), and made the function
much more convoluted, ending with a function spanning more
than 300 lines of code, not mentionning the intermediary func-
tion also generalized for the occasion.

While doing such, some sanity checks have been added
to make sure that the terms given to the functions are well-
formed and can fit within the logical operation, and one test
started failing. The list of projections given to the function was
different from the one actually in the term, and unfolding the
test made us find a bug that has since been fixed.
D. Update of the parser

Finally, we needed to update the grammar and the parser of
the Squirrel Prover, and here, some design decisions had to
be made. We needed a new way to describe process and sys-
tems that allow more than binary systems. It would be nice to
be retro-compatible with old process and system declaration
(because forcing evryone to rewrite every squirrel file is not a
great idea).

So, this has been done withe 2 new rules to describe process,
one can now write a process by telling the arity of the term :
process example_process # 4 =
  in(c, input)
  out(c, diff(x, y, z, input))

This will create a process with 4 projections, by default named
1, 2, 3 and 4. But if you want to explicitly name the projec-
tions, it can be done like this :
process example_process [first, second, third] =
  in(c, input)
  out(c, diff(x, y, input))

E. Result

Finally, we can now rewrite our first example within a sin-
gle 4-process, like this :
process objective # 4 =
  in(cB, input);
  let crypted = enc(diff(enckey, enckey, kfresh,
kfresh), r, input)
  let signature = sign(crypted, diff(signkey, kS,
signkey, kS))
  out(cB, (crypted, signature))

IV. Conclusion

The result of this work is a more general way to write
process and systems in the Squirrel Prover. This has been
done in one file, and in addition to the protocol descriptions
being halved, every lemma and theorem can be written only
once instead of twe before, effectively dividing the file size
(and proof time) by 2.

Some work can still be done to ease the life of protocol
provers.

For example, when doing proofs with multi-systems, it is
often needed to finish a proof with the project tactic (divid-
ing a goal into as many subgoals as they are projections, and
proving the goal in evry projections). It often occurs that many
projections are equal, (with a 4-system, where at this point the
first two are equal, and the last two are equal). In this case,
it is needed to repeat the proof in every projection, but the
detections of such similarities can be automated to reduce the
number of added goals.

Generally, some “smartness” could be added to many tactics
to work better with multi-systems.
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