Université de Paris

T.D. 5 - Fonctions de répartition, lois à densité

Exercice 1.

Indication : 1. On pourra écrire $\{Y_n \leq t\} = \bigcap_{i=1}^n \{X_i \leq t\}$ et utiliser l'indépendance des X_i .

2. On pourra écrire $\{Z_n \leq t\} = \bigcup_{i=1}^n \{X_i \leq t\}$ et exploiter le passage au complémentaire pour faire apparaître une intersection.

Exercice 2.

Indication : 1. Une fonction f_X est une densité si elle est positive (on en déduit c positif) et si $\int_{\mathbb{R}} f_X(x) dx = 1$. C'est cette dernière égalité que l'on exploitera pour isoler le c et ainsi déterminer sa valeur.

- 2. On rappelle que $F_X(t) := \mathbb{P}(X \leq t) = \int_{-\infty}^t f_X(x) dx$.
- 3. De même on rappelle que pour X ayant une densité f_X :

$$\mathbb{P}(a \le X \le b) = \int_{a}^{b} f_X(x) dx$$

Exercice 3.

Indication: Dans les deux questions on utilisera la caractérisation d'une loi par la fonction de répartition. Par exemple si l'on pose Y := aX pour la première question on cherchera à démontrer que $F_Y = F_Z$ où $Z \sim \mathcal{N}(0, a^2)$. Dans les deux questions, on trouvera un changement de variable adéquat à réaliser dans les intégrales.

Exercice 4.

Indication : 1. On modélisera la durée du trajet (en minutes) de la directrice par une variable aléatoire $X \sim \mathcal{N}(13, 3^2)$ et on cherchera à évaluer $\mathbb{P}(X > 15)$.

- 2. On fera de même avec l'assistant avec deux lois normales $Y \sim \mathcal{N}(16, 2^2)$ et $Z \sim \mathcal{N}(9, 1)$, la probabilité que l'assistant arrive à l'heure est alors donnée par $\mathbb{P}(Y \leq 20, Z \leq 10)$.
- 3. On utilisera directement l'indépendance par rapport aux événements des deux questions précédentes.

Exercice 5.

Indication: 1. Cela découle directement du cours.

- 2. On utilisera la formule pour calculer une probabilité conditionnelle classique et on exploitera la fonction de répartition en écrivant par exemple $P(X > u) = 1 F_X(u)$.
- 3. On appliquera la question 2 avec les données de l'énoncé.

Exercice 6.

Indication: 1. On remarquera que:

$$\{Y \le t\} = \bigcup_{i=1}^{n} \{X_i \le t\}$$

- 2. On reconnaîtra une loi usuelle par sa fonction de répartition (classique) et ainsi son espérance et sa variance.
- 3. On remplacera par les données de l'énoncé les variables des questions précédentes.

Exercice 7.

Indication : 1. Comme dans l'exercice 2, on utilise la définition d'une fonction de densité. En particulier f_X positive implique que K est positif, et la deuxième condition permet de mieux caractériser K : on écrit l'équation $\int_{\mathbb{R}} f_X(x) dx = 1$ et on isole K dans cette équation.

2. On reconnaîtra une loi normale grâce à la factorisation $-(x-a)^2 = -x^2 + 2ax - a^2$.

Exercice 8.

Indication : 1. Le support est donné par $X(\Omega) = [0, 1]$.

- 2. X n'est pas une variable discrète car elle prend un nombre non dénombrable de valeur dans l'intervalle [0,1].
- 3. X n'est pas à densité en évaluant $\mathbb{P}(X=1) \neq 0$.

Exercice 9.

Indication: On procédera comme dans la question 1 des exercices 2 et 7.