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In this document, we will give an introduction to hyperbolic space and, more generally, hyperbolic
manifolds. Except if specified, (M, g) will always denote a Riemannian manifold, that is a differential
manifold M with a metric tensor that is positive definite at every point. Let’s first enunciate without a
proof the Hopf-Rinow’s theorem that will be used at different moments of this document. This theorem
was proved during the course Istituzioni di Geometria that I followed in 2023 and a proof can be found
in Manifolds by B. Martelli.

Theorem (Hopf-Rinow). Let M be a connected Riemannian manifold. The following are equivalent :
1. M is geodesically complete (that is, every geodesic can be extended on R entirely) ;
2. M is complete.

The major part of this document is largely inspired by the book An introduction to Geometric Topology
by B. Martelli.

1 Hyperbolic space
Note X(M) the space of vector fields on M , denote [X, Y ] the Lie bracket of X, Y ∈ X(M) and ∇

the Levi-Civita connection of (M, g). Recall that the Riemann tensor R is given by

R : X(M) × X(M) × X(M) −→ X(M)
(X, Y, Z) 7−→ R(X, Y )Z := ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z.

Let p ∈ M be a point and W ⊂ TpM be a 2-dimensional vector space. Recall that the sectional curvature
K in (u, v) generating W is given by

K(W ) = K(u, v) = g(R(u, v)v, u)
g(u, u)g(v, v) − g(u, v)2 .

We have the fondamental following definition.

Definition 1.1. A Riemannian manifold (M, g) has a constant sectional curvature K if the sectional
curvature of every 2-dimensional vector space W ⊂ TpM at every point p ∈ M is always K, that is
K(W ) is independent of p ∈ M and of W ⊂ TpM .

Remark 1.2. By rescaling the metric, we may transform every Riemannian manifold with constant
sectional curvature K into one with constant sectional curvature 1, 0, −1.
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In every dimension n ≥ 2 there exists a unique simply connected complete Riemannian manifold
with sectional curvature 1, 0, −1. These are respectively the sphere Sn, the Euclidean space Rn and
the hyperbolic space Hn : we are going to prove this assertion in the case of the hyperbolic space but
similar ideas are used to prove it for the Euclidean space and the sphere.

In this section, we will introduce three models of the hyperbolic space : the hyperboloid, the Poincaré
disk model (also called the conform disk model) and the Poincaré half-plane model. These models will
give some good properties of the hyperbolic space.

1.1 The hyperboloid

As the sphere Sn is the set of all points with norm 1 in Rn+1 with the Euclidean scalar product, the
hypobolic space Hn can be defined as a subset of all points of norm -1 in Rn+1 with the Lorentzian
scalar product.

Definition 1.3. The Lorentzian scalar product on Rn+1 is given by

⟨x, y⟩ :=
n∑

i=1
xiyi − xn+1yn+1.

The hyperboloid model In is defined as the set

In = {x ∈ Rn+1 | ⟨x, x⟩ = −1, xn+1 > 0}.

We can observe that the Lorentzian scalar product has signature (n, 1) and that the hyperboloid is
connected.

Figure 1. The upper sheet I3 of the hyperboloid defined by the equation ⟨x, x⟩ = −1 in dimension 3 :
first model of the hyperbolic space.

Proposition 1.4. The hyperboloid In is a Riemannian manifold.

Proof. Let set Rn+1
+ = {x ∈ Rn+1 | xn+1 > 0}. As it is an open set of Rn+1, it is a submanifold. Let f

be the function
f : Rn+1

+ −→ R
x 7−→ ⟨x, x⟩.

Then, for every x, y ∈ Rn+1
+ , holds the equality

dfx(y) = 2⟨x, y⟩.
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Hence, for all x ∈ In, the differential dfx is a surjection and thus In = f−1({−1}) is a submanifold
of codimension 1.

In addition, the tangent space TxIn at x ∈ In is the hyperplan orthogonal to x for the Lorentzian
scalar product :

TxIn = ker dfx = {y ∈ TxRn+1
+ = Rn+1 | ⟨x, y⟩ = 0} = x⊥.

Since ⟨x, x⟩ = −1 and ⟨x, y⟩ = 0 for every y ∈ x⊥, the restriction of the scalar product on x⊥ is positive
definite and hence defines a metric tensor on In.

The hyperboloid In is a first model of the hyperbolic space Hn. We will now introduce some material
to prove that Hn is complete, simply connected and has constant curvature −1.

Definition 1.5. A k-dimensional subspace of In is the intersection of a (k +1)−dimensional vector
subspace of Rn+1 with In, when it is not empty. In particular, a 1-subspace is a line and a (n − 1)-
subspace is an hyperplane.

Proposition 1.6. A non-trivial complete geodesic in Hn is a line run at constant speed. Concretely,
let p ∈ Hn be a point and v ∈ TpHn a unit vector. The geodesic γ exiting from p with velocity v is
for all t ∈ R defined by

γ(t) = cosh(t) · p + sinh(t) · v.

Proof. Let p ∈ In be a point, v ∈ TpHn a unit vector and γ the geodesic exiting from p with velocity v.
The plane W ⊂ Rn+1 generated by p (seen as a vector starting at the origin) and v is a 2-dimensional
vector space and hence intersects In into a line L = In ∩ W containing p (seen as a point) and tangent
to v. Noticing that Rn+1 = W ⊕ W ⊥, we set the reflection rL to be :

rL|W = id|W , rL|W ⊥= −id|W ⊥ .

This isometry fixes W , so p and v and hence γ (since rL is an isometry and the geodesic is unique).
Thus,

∀t ∈ R, γ(t) ∈ W.

By definition of the geodesic, it has constant speed and the support of γ is included in In, so it is
included in L which is a line : non-trivial geodesics are lines run at constant speed.

We now consider the curve
α(t) = cosh t · p + sinh t · v

for all t ∈ R. We have α(0) = p and α′(0) = v. It remains to prove that α parametrizes L with unit
speed (hence by unicity, α = γ). From

⟨α(t), α(t)⟩ = cosh2(t)⟨p, p⟩ + 2 cosh(t) sinh(t)⟨p, v⟩ + sinh2(t)⟨v, v⟩ = −1,

we deduce that α parametrizes L (it is by definition contained in W ). Now, the velocity is

∥α′(t)∥= ∥sinh(t) · p + cosh(t) · v∥ ≡ 1.

It concludes.

Corollary 1.7. The space Hn is complete.

Proof. The previous proposition proves that the geodesics are completes (defined on R), hence by
Hopf-Rinow’s theorem, the space is complete.
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Remark 1.8. The distance between two points can easily be calculated thanks to the proposition 1.6 :
let p, q be points of In, then cosh(d(p, q)) = −⟨p, q⟩. This can be showed taking the geodesic γ starting
from p at time 0 and arriving at q at time t0 and setting v := γ′(0).

1.2 The Poincaré disk

We now introduction a second model : the Poincaré disk.

Definition 1.9. The Poincaré disk is given by

Dn = {x ∈ Rn | ∥x∥< 1}

with the Euclidean norm but with the metric tensor gD at x ∈ Dn given by

gD
x =

( 2
1 − ∥x∥2

)2
· gE

x

where gE is the Euclidean metric tensor on Dn ⊂ Rn, that is the metric tensor represented by the
identity matrix.

Why this metric tensor ? First, one can observe that the metric tensor character of gE induce one on
gD. Second, we identify Rn with {x ∈ Rn+1 | xn+1 = 0}. Let’s consider the projection

p : In −→ Dn

(x1, . . . , xn+1) 7−→ 1
xn+1 + 1(x1, . . . , xn)

that is a diffeomorphism transporting the metric tensor on In to some metric tensor on Dn. The inverse
of p is

q : Dn −→ In

(x1, . . . , xn) 7−→ 1
1 − ∥x∥2 (2x1, . . . , 2xn, 1 + ∥x∥2)

and the multiplication by the factor 2/(1 − ∥x∥2) appears clearly. We also call the Poincaré disk as
the conformal model because it is a model where the metric differs from the Euclidean one only by
multiplication by a positive scalar that depends smoothly on x.

Definition 1.10. The k-subspaces in Dn are the images of k-subspaces of In by the projection p.

Example 1.11. In R3, the intersection of I2 with the subspaces R2 × {0} gives an hyperbole. The
image of this hyperbole by the projection p is a diameter of D2. Hence, every diameters are 1-subspaces
of D2.

Proposition 1.12. The k-subspaces in Dn are the intersections of Dn with k-spheres and k-planes
of Rn orthogonal to ∂Dn.

Proof. Since every k-subspace is an intersection of hyperplanes, we can restrict the proof to k = n − 1.
A hyperplan in In is an intersection In ∩ v⊥ for some v ∈ Rn+1 spacelike vector (i.e.⟨v, v⟩ > 0).

1. If v has its last coordinate equal to zero, then for all x ∈ In, we have x ∈ v⊥ if and only if
p(x) ∈ v⊥. Hence p(In ∩ v⊥) = Dn ∩ v⊥ which is a hyperplan orthogonal to ∂Dn.
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2. Otherwise, up to rescaling and rotating around xn+1, we may suppose v = (α, 0, . . . , 0, 1) with
α > 1 to get a spacelike vector. The hyperplan of In given by the orthogonal of v is

In ∩ v⊥ = {x ∈ Rn+1 | x2
1 + · · · + x2

n − x2
n+1 = −1 , xn+1 = αx1}.

We now want to find the projection of this set on Dn. The following are equivalent :
• A point y of Rn is in Dn ;
• There is a point x ∈ In such that y = p(x) ;

• There is an x ∈ In such that y = 1
xn+1 + 1(x1, . . . , xn);

• There is an x ∈ In such that ∥y∥2= xn+1 − 1
xn+1 + 1 and y1 = x1

1 + xn+1
.

Hence, as y is a point of Dn and p is a surjection, such a x always exists. In particular, as a point
x ∈ In is orthogonal to v if and only if xn+1 = αx1, we get the equivalence[

y ∈ Dn and ∥y∥2 = −1 + 2αy1
]

⇐⇒
[
∃x ∈ In, y = p(x) and x ∈ v⊥

]
and finally

p(In ∩ v⊥) = Sn−1
eucl ((α, 0 . . . , 0),

√
α2 − 1) ∩ Dn

. The (n − 1)-sphere is orthogonal to ∂Dn.

1.3 The half-space

We introduce here a third model, that is also a conformal model.

Definition 1.13. A diffeomorphism f : M → N between two oriented Riemannian manifolds is
conformal (resp. anticonformal) if for any p ∈ M the differential dfpis the product of a scalar λp > 0
and an isometry that preserves (resp. inverts) the orientation. The scalar must depend smoothly
on p.

Remark 1.14. In a conformal model (that is a model based on a conformal metric), the lengths of
vectors change from the Euclidean ones by multiplication by

√
λp but the angles formed by two adjacent

vectors are preserved.

Let first define some special geometric transformation : inversions.

Definition 1.15. Let S = S(x0, r) be the sphere in Rn centered in x0 and with radius r. The
inversion along S is the map

φ : Rn\{x0} −→ Rn\{x0}
x 7−→ x0 + r2 x − x0

∥x − x0∥2 .

As the map can be extended continuously to Rn ∪ {∞} setting φ(x0) = ∞ and φ(∞) = x0, we can
define φ on a sphere that is identified with Rn ∪ {∞} through the stereographic projection. Note that
for all x ∈ Rn we have

∥φ(x) − x0∥∥x − x0∥= r2.
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Intuitively (see Figure 2. below), the closer x is to the center x0, the closer φ(x) is to ∞ and vice-
versa. Moreover, from the definition of φ we can see that every x ̸= x0 is co-linear to φ(x). Thus in
2-dimension, if we imagine a line as a circle of radius infinite (or containing the point ∞), we can see
that an inversion sends a circle S on a circle S′ and, in particular, if x0 ∈ S, then ∞ ∈ S′ and S′ is a
line and vice-versa.

Figure 2. The inversion through a sphere of center O and radius r moves P to P ′ so that
OP × OP ′ = r2 (left).It transforms a 2-sphere (blue) in a 2-sphere (green) if the blue sphere doesn’t

meet O (center), or in a 1-plan (green) if it meets it (right).

In 3-dimension, we have the same intuition with spheres and planes. The following proposition is the
generalization of this intuition.

Proposition 1.16. The following holds :
1. Every inversion is a smooth and anticoformal map.
2. Inversions send k-spheres and k-planes to k-spheres and k-planes.

Proof. 1. Up to conjugating with translations and dilatations we may suppose x0 = 0 and r = 1 and
thus

φ(x) = x

∥x∥2 .

Algebraically, a map is anticonformal if at every point its Jacobian is a product of a positive scalar and
an orthogonal matrix with negative determinant. Let’s compute the Jacobian of φ in x :

∂φi

∂xj
= δij∥x∥2−2xixj

∥x∥4 implies Jac(φ)x = 1
∥x∥2

(
In − 2

∥x∥2 xxT
)

=: 1
k

Q.

The matrix Q is symmetric and is such that

QQT = In − 4
k

xxT + 4
k2 kxxT = In.

In addition, since the eigenvalues of xxT are {k, 0, . . . , 0}, the eigenvalues of Q are {−1, 1, . . . , 1} and
so the determinant of Q is −1. Hence, the matrix Jac(φ)x is the product of the positive scalar 1/∥x∥2

and an orthogonal matrix of negative determinant.
2. This proof is not really relevant for the subject as it is globally a Euclidean geometric proof in
dimension 2. A proof can be found in section 37 of Geometry : Euclid and Beyond by Robin Hartshorne.

We can now introduce the half-space model.
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Definition 1.17. Let the half-space model be the space

Hn = {x ∈ Rn | xn > 0}

obtained from the disk model Dn by the inversion in Rn with center C = (0, . . . , 0, −1) and radius
r =

√
2

The definition makes sense because, in Rn, the disk model is an n-sphere that passes through the
center C : its inversion is an n-plane. The boundary ∂Dn that is the (n − 1)−sphere Sn−1 (which passes
through C) is send to ∂Hn that is the (n − 1)-plane {xn = 0} ∪ {∞}. It is shown in dimension 2 in the
following figure.

Figure 3. The inversion along the sphere with center C = (0, −1) and radius r =
√

2 transforms the
Poincaré disk D2 into the half-space model H2.

Proposition 1.18. The hyperbolic space Hn is simply connected

Proof. There are homeomorphisms between each of the three models of Hn and an open ball which is
simply connected.

Definition 1.19. The k-subspaces of Hn are the inversion of the one in Dn.

We have in particular the following proposition.

Proposition 1.20. The k-subspaces of Hn are the k-planes and k-spheres in Rn orthogonal to
∂Hn.

Proof. The orthogonality comes from the fact that the inversion is an anticonformal map and hence
preserves angles.

As it was done for the disk, let give a look at the metric tensor of the half-space model. Recall that
the metric tensor of the disk model is gD

x =
(

2
1−∥x∥2

)
· gE

x at every point x of the disk.

7



Proposition 1.21. The metric tensor on Hn at a point x is given by

gH
x = 1

x2
n

· gE
x

with gEthe Euclidean metric tensor on Hn ⊂ Rn.

Proof. The inversion φ : Dn → Hn that defines Hn is the anticonformal map

φ(x1, . . . , xn) = C + r2 x − C

∥x − C∥2 = (0, . . . , 0, −1) + 2 (x1, . . . , xn−1, xn + 1)
∥(x1, . . . , xn−1, xn + 1)∥2

= (2x1, . . . , 2xn−1, −∥x∥2+1)
∥x∥2+2xn + 1

where the norm is the Euclidean one. As seen in the proof of proposition 1.16, the Jacobian can be
written as the multiplication of the scalar dilatation of the inversion r2/∥x − C∥2 that is here

1
β

:= 2
∥x∥2+2xn + 1

by an orthogonal matrix Q = {(qij)} :=
{(

1
β

∂φi

∂xj

)}
. Hence, the metric tensor on Hn is given by the

pullback

gH
x = (φ∗gD

x ) =
( 2

1 − ∥x∥2

)2
· (φ∗gE

x ).

where the pullback is

(φ∗gE
x )ij =

n∑
k,l=1

gE
x,kl

∂φk

∂xi

∂φl

∂xj
=

n∑
k,l=1

δkl
∂φk

∂xi

∂φl

∂xj
=

n∑
k=1

∂φk

∂xi

∂φk

∂xj
= β

n∑
k=1

qkiqkj = βδij = β2gE
x,ij

Thus,

gH
x =

( 2
1 − ∥x∥2

)2
·
(

∥x∥2+2xn + 1
2

)2

gE
x = 1

φn(x)2 gE
x .

Let’s have a look at the geodesics.

Definition 1.22. A vertical geodesic in the half-space model Hn is a geodesic that remains constant
in the horizontal directions (x1, . . . , xn−1) and varies only in the vertical direction xn > 0. Its general
form is

γ(t) = (x1, . . . , xn−1, y(t)),

where the first n − 1 coordinates are constants and y(t) is always strictly positive.

Actually, we have the following proposition.

Proposition 1.23. The vertical geodesic in Hn passing through the point (x1, . . . , xn−1, 1) at time
t = 0 pointing upward with unit speed is

γ(t) = (x1, . . . , xn−1, et).
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Proof. Given the initial point (x1, . . . , xn−1, 1) and the initial speed 1 (with the metric gH), there exist
a unique vertical geodesic satisfying those initial data. The function γ satisfiesγ(0) = (x1, . . . , xn−1, 1)

∥γ′(t)∥H = ∥(0, . . . , 0, et)∥H = 1
et

∥(0, . . . , 0, et)∥E = 1.

It remains to prove that γ is a geodesic. The proposition 1.21 gives the metric of the half-space model.
Hence the Christoffel symbols

Γi
jk = 1

2
∑
m

gH,im
x

(
∂gH

x,mj

∂xk
+

∂gH
x,mk

∂xj
−

∂gH
x,jk

∂xm

)

are reduced to 
Γn

ii = 1
xn

for all i = 1, . . . , n − 1

Γi
ni = Γi

in = − 1
xn

for all i = 1, . . . , n

Γk
ij = 0 otherwise

Moreover, the derivatives of γ are d
dtγi = 0 if i ̸= n and d

dtγn = d2

dt2 γn = et. Thus, the formula of the
geodesic becomes

d2

dt2 γi(t) +
∑
j,k

Γi
jk

d
dt

γj
d
dt

γk = 0 + Γi
nne2t = 0 if i ̸= n;

d2

dt2 γn(t) +
∑
j,k

Γn
jk

d
dt

γj
d
dt

γk = et − Γn
nne2t = et − et = 0.

Hence the function satisfies the geodesic equation and is the unique vertical geodesic passing through
the initial data given.

The hyperbolic tangent and its derivative are, for ervy t ∈ R :

tanh(t) = sinh(t)
cosh(t) = et − e−t

et + e−t
, tanh′(t) = 1 − tanh2(t).

Proposition 1.24. The geodesic in Dn passing through the origin at time t = 0 and pointing
towards x ∈ Sn−1 at unit speed is

γ(t) = et − 1
et + 1 · x = tanh

(
t

2

)
· x.

Proof. The function γ verifies γ(0) = 0, and

∥γ′(t)∥D =
(

2
1 − ∥γ(t)∥2

E

)2

∥γ′(t)∥E =
(

2
2 tanh′ t

2

)2 (
tanh′ t

2

)2
= 1.

We can make the same proof as the previous one or more simply observe that we can suppose that
x = (0, . . . , 0, 1) and obtain the curve γ from the vertical line in Hn through inversion.

We obtain in particular the expression of the exponential map that is defined by the following
definition.
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Definition 1.25. Let p be a point of a smooth manifold M and v a vector of TpM . There is a
unique geodesic γv such that γv(0) = p and γ′

v(0) = v. We call Iv the domain of the geodesic γv

and V the subset of the tangent bundle

V = {v ∈ TM | 1 ∈ Iv}.

The exponential map is defined by

exp : V −→ M
v 7−→ γv(1).

Remark 1.26. Let’s recall that expp : v ∈ TpM 7→ γv(1) ∈ M is a local diffeomorphism at the origin
since its differential is the identity. Let’s call the invectivity radius injp(M) > 0 of M at a point p of M
the supremum of all r > 0 such that expp|B(0,r) is a diffeomorphism onto its image.

Corollary 1.27. The exponential map exp0 : T0Dn → Dn at the origin is the diffeomorphism

exp0(x) = e∥x∥ − 1
e∥x∥ + 1

· x

∥x∥
=
(

tanh ∥x∥
2

)
· x

∥x∥
,

with the Euclidean norm.

Proof. Let x be a point of T0Dn, the vector v = x/∥x∥ is in Sn−1 and the previous proposition gives
the geodesic γv(t∥x∥). The proposition results from the definition of the exponential map.

It remains to prove that the hyperbolic space has constant sectional curvature -1. The area of a disc
is necessary to obtain a proof.

Proposition 1.28. The disc of radius r in H2 has area

A(r) = π
(
er/2 − e−r/2

)2
= 4π sinh2 r

2 = 2π (cosh r − 1) .

Proof. The volume form is
ω =

√
det gD · dx1 · · · dxn,

where the square-root means the square-root of the determinant of the matrix associated. Let D(r) be
a disc in Hn of radius r. If we center it in 0 in the disc model, its Euclidean radius is tanh r

2 by the
previous observations. Thus,

A(r) =
∫

D(r)

√
det gD · dx1dx2 =

∫
D(r)

( 2
1 − x2 − y2

)2
dxdy

=
∫ 2π

0

∫ tanh r/2

0

(
r

1 − s2

)2
s · dsdθ = 2π

[ 2
1 − s2

]tanh r/2

0

= 4π sinh2
(

r

2

)
.
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Corollary 1.29. The hyperbolic space Hn has sectional curvature -1.

Proof. For a ball B(p, ε), the following formula gives a connexion between its area and the gaussian
curvature of a surface :

Area(B(p, ε)) = πε2 − πε4

12 K + O(ε4).

Observe first that in H2 we can already conclude :

A(r) = 2π(cosh r − 1) = 2π

(
r2

2 + r4

4! + o(r4)
)

= πr2 + πr4

12 + o(r4),

which gives K = −1. In the more general case, let’s pick p ∈ Hn and W ⊂ TpHn a 2-dimensional
subspace. The image expp(W ) is diffeomorph to the hyperbolic plan H2 and hence has constant sectional
curvature -1.

2 Hyperbolic manifolds
Once proved the fact that the hyperbolic space is a complete simply connected Riemmanian manifold

with constant sectional curvature -1, an interesting fact is to understand how are made the manifolds
that have this kind of properties.

2.1 The group of isometries

2.1.1 Isometries and coverings

Definition 2.1. A diffeomorphism f : M → N between two Riemannian manifolds (M, g) and
(N, h) is an isometry if it preserves that scalar product :

∀p ∈ M, ∀(v, w) ∈ TpM, g(v, w) = h(dfp(v), dfp(w)).

The map f is said to be a local isometry if every point p ∈ M has an open neighbourhood U such
that f |U is an isometry onto its image.

Let’s introduce some properties that will be usefull for the second subsection.

Theorem 2.2. Let f, g : M → N be two isometries (resp. local isometries) between two connected
Riemannian manifolds. If there is a point p ∈ M such that f(p) = g(p) and dfp = dgp, then f = g
everywhere.

Proof. The proof consists of demonstrate that the set S = {p ∈ M | f(p) = g(p), dfp = dgp} is open
and closed. The fact that S is closed is obvisous since the equality conditions are closed. Remains to
prove that every p ∈ S has an open neighbourhood Vp ⊂ S. By the remark 1.26, there is an open
neighbourhood Up ⊂ TpM of the origin where expp is a diffeomorphism onto its image. Let’s show that
the open set Vp := expp(Up) is entirely contained in S. First, recall that p is contained in Vp since it is
the image of 0. A point q ∈ Vp is the image of a vector v ∈ Up hence q = expp(v) = γv(1). The maps
f and g are isometries (resp. local isometries) and hence send geodesics to geodesics : here f ◦ γv and
g ◦ γv start from

f ◦ γv(0) = f(p) = g(p) = g ◦ γv(0)
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with the velocity
dfγv(0) ◦ γ′

v(0) = dfp(v) = dgp(v) = dgγv(0) ◦ γ′
v(0).

Thus they are the same geodesic : f(q) = g(q) and so f |Vp= g|Vp thus their differential also coincide
and finally Vp ⊂ S.

Corollary 2.3. Let U, V ⊂ Hn be two connected open subsets, and let f : U → V be a local
isometry. Then f extends uniquely to a global isometry f̃ : Hn → Hn.

Sketch of the proof. The map f is necesseraly differentiable and analytic. Linking x ∈ Hn to y ∈ U by
a geodesic (possible since Hn is complete), we can extend f along the geodesic to a map defined on
open neighbors of x that preserves the metric. The unicity of the extension comes from the previous
proposition.

Proposition 2.4. Let G act on a Hausdorff connected space X. The following are equivalent :
1. G acts freely and properly discontinously ;
2. the quotient X/G is Hausdorff and X → X/G is a covering.

Sketch of the proof. Let’s call π the map π : X → X/G

1. ⇒ 2. Let’s take x and y in two differents orbits and let’s consider Ux, Uy open neighbors of x, y relatively
compacts. Applying the definition of properly discontinuous to the adherence of Ux ∪Uy, the open
Ux intersects only a finite numbers of translated of Uy : note a1, . . . , an ∈ G the elements such
that Ux ∩ aiUy ̸= ∅. As X is Hausdorff, there exists open neighbors U i

x, U i
y of x, y such that

U i
x ∩ aiU

i
y = ∅. Consider U = Ux

⋂
i U i

x and V = Uy
⋂

i U i
y. By consrtuction, U and V are open

neighbors that do not intersect any translated : the quotient is Hausdorff. The quotient X/G as
the quotient topology and π is a continuous surjection. By both hypothesis on the action, the
map π is locally an injection. Hence, for every y ∈ X/G there is an x ∈ X such that π(x) = y and
an open neighbor U of x such that π|U is an homeomorphism. Thus, π is a covering.

2. ⇒ 1. The quotient is Hausdorff : if x, y are from different orbits, there are two open disjoint sets U, V
such that x ∈ U and y ∈ V . Thus, for every couple (x, y) ∈ X × X, there are U, V such that
g · U ∩ V ̸= ∅ The action is properly discontinuous : let K be a compact subset of X. A cover of
K × K is a finite number of open sets U × V verifying the previous property. The action is free :
for every x ∈ X, for every g ∈ G\{e} we have g · x ̸= x by the fact that π is a covering (comes
from the definition and the injectivity of the restrictions).

Remark 2.5. With similar arguments, we can show that if 1. is valid, the group X/G inherits an
unique structure of manifold such that the quotient map π : X → X/G is a local diffeomorphism.

Lemma 2.6. Consider M a Riemannian manifold. Let Γ be a subgroup of Isom(M) that acts freely
and properly discontinuously on M . There is a unique Riemannian structure on the manifold M/Γ
such that the covering π : M → M/Γ is a local isometry.

Proof. The fact that M/Γ is a manifold come from remark 2.5. Let U ⊂ M/Γ be a well-covered set : we
have π−1(U) = ⊔i∈IUi and π|Ui an homeomorphism for every i ∈ I. Pick an i ∈ I and transport along
π the smooth and Riemannian structure of Ui ⊂ M induced by the one on U (induced itself by the one
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on M). The resulting structure on U does not depend on the chosen i because the open sets {Ui}i∈I are
related by isometries of Γ that preserve the metric. The uniqueness of the Riemannian structure comes
from the fact that we define it from the one on M that makes π a local isometry.

Proposition 2.7. Let f : M → N be a local isometry. The following hold :
1. If f is a covering, then M is complete if and only if N is complete.
2. If M is complete, then f is a covering.

Proof.

1. Since f is a local isometry, every geodesic in M projects to a geodesic in N . If f is also a covering,
the converse holds : every geodesic in N can be lifted to a geodesic in M . Hence, every geodesics
in M can be extended to R is and only if every geodesic in N can and we can conclude using
Hopf-Rinow’s theorem.

2. Since M is complete, every geodesic in N can be lifted to a geodesic in M . Let’s show that the
ball B = B(p, injpN) is a well covered open set for all p ∈ N , that is

f−1(B(p, injpN) =
⊔

q∈f−1(p)
B(q, injpN).

Let’s do that by double inclusion.
⊂ Given a point r ∈ f−1(B), the geodesic in B connecting f(r) to p lifts to a geodesic connecting

r to some q ∈ f−1(p) ;
⊃ For every q ∈ f−1(p), the map f sends geodesics exiting from q to ones exiting from p : it

sends isometrically B(q, injp(N)) onto B.

2.1.2 Isometries in dimensions two and three

Consider the Riemann sphere S = C ∪ {∞} homeomorphic to S2. The group PSL2(C) acts on S as
follows : a matrix

(
a b
c d

)
∈ PSL2(C) determines the Möbius transformation :

z 7→ az + b

cz + d
,

which is an orientation-preserving diffeomorphism of S and the Möbius anti-transformation :

z 7→ az + b

cz + d
,

which is an orientation-reversing diffeomorphism of S.

Remark 2.8. The composition of two anti-transformations is a Möbius transformation.

Definition 2.9. These two types of maps together form a group Conf(S).

Let’s now consider the following :
• the half-plane H2 ⊂ C as H2 = {z ∈ C | ℑm(z) > 0} ;
• the half-space H3 ⊂ C × R = {(z, t) | z ∈ C, t ∈ R} as H3 = {(z, t) | t > 0} ;
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With those identifications, let’s denote Conf(H2) the subgroup of Conf(S) consisting of all maps that
preserve H2 and let’s identify ∂H3 with the Riemann sphere C ∪ {∞}.

Proposition 2.10. The following hold :
1. Isom(H2) = Conf(H2) and in particular Isom+(H2) = PSL2(R);
2. Isom(H3) = Conf(S) and in particular Isom+(H3) = PSL2(C).

Sketch of the proof. Let’s first observe that the group Isom(Hn) is generated by inversions and reflec-
tions since it is generated by the reflections along hyperplanes introduced in the proof of proposition
1.6.

1. Both groups are generated by inversions along circles and reflections along lines orthogonal to
∂H2 = R. In particular, Isom+(H2) = PSL2(R) since Isom+(H2) is a subgroup of Isom(H2) of
index two and the Möbius transformations in Conf(H2) is a subgroup of index two naturally
isomorphic to PSL2(R).

2. The group Isom(H3) is generated by inversions along spheres and reflections along planes or-
thogonal to ∂H3. Their traces are inversions along circles and reflections along lines in S. These
generate Conf(S). In this case, the Möbius transformations in Conf(S) is a subgroup of index two
naturally isomorphic to PSL2(C).

2.2 Unicity up to isometry

Definition 2.11. A hyperbolic manifold is a connected Riemannian n-manifold that may be covered
by open sets isometric to open sets of Hn.

Remark 2.12. A hyperbolic manifold has constant sectional curvature -1. The cover by open balls
together with their isometries form a special case of atlas (where every open set inherits of the hyperbolic
geometry) : hence, the cover can always be chosen countable.

Theorem 2.13. Every complete simply connected hyperbolic manifold M is isometric to Hn.

Proof. Pick a point x ∈ M and choose an isometry D : U → V between an open ball U ⊂ M containing
x and an open ball V ⊂ Hn. We show that D extends (uniquely) to an isometry D : M → Hn. The
idea is the same as the one in 2.3 : extend the isometry along a curve that join a point x ∈ U and a
point y ∈ M\U .
For every y ∈ M , choose an arc

α : [0, 1] −→ M
0 7−→ x
1 7−→ y

that always exists by simple-connectedness. Since M is supposed to be hyperbolic, it is locally isometric
to Hn : set {Ui}i∈N the open cover of M such that for each i ∈ N there exists an isometry Di : Ui → Vi

with Vi open balls of Hn. By compactness of [0, 1], there is a partition 0 = t0 < · · · < tk = 1 such that
α([ti, ti+1]) ⊂ Ui for every i ∈ N. We may suppose that U0 ⊂ U and D0 = D|U0 .

Inductively on i ∈ N, we want to modify Di so that Di−1 and Di coincide on the component C of
Ui−1 ∩ Ui containing α(ti) as shown in Figure 3.
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Figure 3.

To do so, note that
Di−1 ◦ D−1

i : Di(C) → Di−1(C)

is an isometry of open connected sets in Hn and hence extends to an isometry D̃i of Hn (Corollary
2.3). Then considering D′

i := D̃i ◦ Di we have to isometries Di−1 and D′
i that coincide on C. Finally we

define D(y) = Dk−1(y).
Remains to prove that D(y) does not depend of the partition chosen of [0, 1] : if β is another such

path, the simple connectedness of M furnishes an homotopy connecting α and β. The image of the
homotopy is compact and hence covered by finitely many open balls Ui that are isometric to some
Vi ⊂ Hn via some isometries Di. By the Lebesgue number theorem, there is a number N > 0 such that
in the grid of [0, 1]2 made of 1

N2 squares, the image of each square is entirely contained in at least one
Ui. We now modify the maps Di as above inductively on the grid so that they all glue up and show
that D(y) does not depend on the path.

The resulting map D : M → Hn is a local isometry by construction : since M is complete, by the
proposition 2.7 D is a covering. Thus, it is a global isometry since Hn is simply connected.

Remark 2.14. The isometry constructed in the proof above is called a developing map. The same
proof shows that every complete simply connected flat (or elliptic) n-manifold is isometric to Rn (or
Sn).

This theorem determines the unique complete simply connected hyperbolic manifold up to isometry.
Let’s now look at complete hyperbolic manifolds with arbitrary fundamental group.

Definition 2.15. Let p : X̃ → X be a covering map between two path-connected topological
spaces. A deck trasformation or automorphism for p is a homeomorphism f : X̃ → X̃ such that
p ◦ f = p. The deck transformations form a group Aut(p) called the deck transformation group of
p.

Theorem 2.16. Every complete hyperbolic n-manifold M is isometric to Hn/Γ for some subgroup
Γ of Isom(Hn) acting freely and properly discontinuously.

Proof. The universal covering M̃ of M inherits a Riemannian structure that is complete (by the pro-
position 2.7) hyperbolic (because M̃ inherits the metric from M) and simply connected (by definition).
By the previous theorem, M̃ is isometric to Hn. The deck transformations Γ of the covering Hn → M
are necessarily local isometries because the deck transformations of the universal covering are local
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diffeomorphisms and thus preserve the local structure. Therefore they are global isometries since they
are bijections that are locally isometries. The group Γ acts freely and properly discontinuously and thus
we conclude that M = Hn/Γ from the lemma 2.6.

Remark 2.17. Note that Γ is isomorphic to the fundamental group π1(M). Hence, the fundamental
group of a complete hyperbolic manifold has no torsion since a subgroup of Isom(Hn) that acts freely
and properly discontinuously has no torsion.

There is no classification of simply connected non-complete hyperbolic manifolds. However, the first
part of the proof of the theorem 2.13 still applies and provides the following proposition.

Proposition 2.18. Let M be a non-complete simply connected hyperbolic n-manifold. There is a
local isometry D : M → Hn which is unique up to post-composing with a element of Isom(Hn).

Proof. Construct D as in the proof of the theorem 2.13 : the completeness of M was used only to
apply the proposition 2.7 to show that the developing map was a covering.

As a local isometry, by definition the map D is determined by its first order behaviour at any point
p ∈ M : it is unique up to post-composing with an isometry of Hn.
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