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Introduction

The classification of manifolds varies greatly with dimension, revealing a rich and diverse landscape in
low-dimensional topology.

In dimension one, the picture is crystal clear: every connected smooth 1-manifold is diffeomorphic
to either an interval of the real line or the circle. This complete classification reflects the simplicity of
one-dimensional topology. Its proof is given for completeness of the document.

In dimension two, the structure becomes richer, yet remains entirely classifiable. Closed orientable
surfaces are distinguished up to homeomorphism by their Euler characteristic, a topological invariant
that not only classifies them but also determines the type of geometry they can admit. A closed
orientable surface supports a spherical, Euclidean, or hyperbolic geometry depending on whether its
Euler characteristic is positive, zero, or negative, respectively.

The study of 3-manifolds is far more intricate. While still within the realm of accessible classification
theory, three-dimensional topology exhibits a deep and subtle richness. In contrast to dimension two,
where a single homological invariant suffices for classification, dimension three requires different tools to
get a satisfactory classification, combining the notion of Seifert manifolds and their Euler characteristic
and Euler number.

In dimension four, the landscape shifts drastically. Here, the distinction between topological and
smooth categories becomes essential: for the first time, some topological 4-manifolds admit no smooth
structure, while others admit infinitely many. A central object in the study of 4-manifolds is the
intersection form, a bilinear form that encapsulates crucial information about the manifold’s topology.

This report was written as part of a Master’s internship at the University of Pisa under the supervision
of Prof. Bruno Martelli. It offers a broad, introductory survey of low-dimensional manifolds. Rather
than presenting original results or in-depth technical developments, the goal is to collect and outline
key ideas, constructions, and theorems that exemplify the depth and beauty of this field. Many results
are stated without proof, especially when their demonstration relies on advanced techniques beyond the
scope of this exposition. Readers seeking more rigorous treatments or deeper insights are encouraged
to consult the references provided in the bibliography.

To fully appreciate the content of this document, a solid background in geometry and topology such
as hyperbolic geometry, Riemannian geometry and algebraic topology is recommended. In particular,
it would be beneficial to have followed courses such as Istituzioni di Geometria by Prof. Bruno Martelli
and Elementi di Topologia Algebrica by Prof. Filippo Callegaro at the University of Pisa (respectively
corresponding to Differential Topology and de Rham Cohomology I & II by Prof. Juan Souto and
Algebraic Topology by Prof. Bernard Le Stum at the University of Rennes). These prerequisites are
also well-covered in standard references such as Algebraic Topology by A. Hatcher [5] and Manifolds
by B. Martelli [8].

This document draws inspiration from the book "An Introduction to Geometric Topology" [9] and
the lecture notes "Four Manifolds" [7] by Bruno Martelli, and from the lecture notes of the 4-manifolds
course given by Marco Marengon at the University of Pisa in 2025 [6]. All illustrations are taken from
Prof. Martelli’s book, except for Figures 2 and 3, which originate from Prof. Marengon’s course notes.



Part I

One-manifolds
One-dimensional manifolds form the simplest nontrivial class of topological spaces in the theory of man-
ifolds. Despite their simplicity, their classification provides a useful starting point for understanding
how manifold structures behave across dimensions. This part presents a brief overview of their classifi-
cation and serves as a preliminary step toward subsequent discussion of higher-dimensions. Thus, our
objective for now is to prove the following theorem.

Theorem 1.1. Any smooth connected 1-dimensional manifold is diffeomorphic either to the circle
S1 or to some interval of real numbers.

Since any interval is diffeomorphic either to [0, 1], (0, 1] or (0, 1) via some map t 7→ a tanh(t) + b, the
theorem implies that there are only four distinct smooth connected 1-manifolds:

Compact
Boundary Yes No

Yes [0, 1] S1

No [0, 1) (0, 1)

From now on, let M be a smooth connected 1-dimensional manifold and let I be any real interval.
First, recall the definition of parametrization by arc-length.

Definition 1.2. A map f : I → M is a parametrization by arc-length of M if it is a diffeomorphism
from I onto an open subset of M , and if for each s ∈ I the velocity vector dfs(1) ∈ Tf(s)M has unit
length.

Any given local parametrization I → M can be transformed into a parametrization by arc-length by
a straightforward change of variables.

Lemma 1.3. Let f : I → M and g : J → M be parametrizations by arc-length. Then the
intersection f(I) ∩ g(J) has at most two components. If it has only one component, then f can be
extended to a parametrization by arc-length of the union f(I) ∪ g(J). If it has two components,
then M must be diffeomorphic to S1.

Proof. Let’s denote h = g−1 ◦ f . The map h sends some relatively open subset of I diffeomorphically
onto a relatively open subset of J . Furthermore, the derivative of h is equal to ±1 everywhere.

Consider the graph
Γ := {(s, t) ∈ I × J ; f(s) = g(t)} .

Then Γ is a closed subset of I×J made up of line segments of slope ±1 which cannot end in the interior
of I × J , but must extend to the boundary since h is a local diffeomorphism. There can be at most
one of these segments ending on each of the four edges of the rectangle I × J . Hence Γ has at most
two components. Furthermore, if there are two components, the two must have the same slope. If Γ is
connected, then h extends to a linear map L : R → R. Now defining the extension:

F : I ∪ L−1(J) → f(I) ∪ g(J),
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where F |I= f and F |L−1(J)= g ◦ L, we get a parametrization by arc-length of f(I) ∪ g(J) as required.
If Γ has two components, with slope say +1, they must be arranged as follows.

a b c d

β

α

δ

γ

Translating the interval J = (γ, β) if necessary, we may assume that γ = c and δ = d, so that

a < b ≤ c < d ≤ α < β.

Now setting θ = 2πt/(α− a), the required diffeomorphism φ : S1 → M is defined by the formula

φ(cos θ, sin θ) =
{
f(t) for a < t < d,

g(t) for c < t < β.

The function is well defined since f = g on [c, d]. The image φ(S1) being compact and open in M ,
must be the entire conncted manifold M . This proves the lemma.

Proof of the Theorem. Any parametrization by arc-length can be extended to one f : I → M which
is maximal in the sense that f cannot be extended over any larger interval as a parametrization by
arc-length (in particular, it is open). If M is not diffeomorphic to S1, we will prove that f is onto, and
hence is a diffeomorphism. Assume by contradiction that the open set f(I) is not all of M . Then, there
is a limit point x of f(I) in M \ f(I). Parametrizing a neighborhood of x by arc-length and applying
the lemma, we see that f can be extended over a larger interval. This contradicts the assumption that
f is maximal and hence completes the proof.

Remark 1.4. We will not provide any application of this theorem here, but numerous examples exist.
In particular, it plays a key role in degree theory, where it is used, for instance, to prove Brouwer’s
fixed point theorem: every continuous function from the closed unit disc Dn to itself has at least one
fixed point. A standard reference for those topics is the lecture notes of [10]. This latter well-known
fact has infinitely many applications: one is explicitely used in the next part to get a classificaion of
diffeomorphisms of 2-manifolds (see Definition 3.24).

Remark 1.5. We did not mention orientability since every 1-manifold has a natural orientation that
is the direction in which the curve "is traveled".
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Part II

Two-manifolds
This part is devoted to surfaces, that are two-dimensional differentiable manifolds. Using the Euler
characteristic, one can show that any compact and connected surface is diffeomorphic to a connected sum
of g tori, denoted Sg, possibly with some discs removed. Afterwards, the idea is to decompose Sg using its
Euler characteristic, in a way that brings out its geometric structure. Although a surface admits many
possible metrics, the Teichmüller space and its coordinates provide a rather simple expression of those
different geometric structures. Finally, the Brouwer’s theorem used on Thurston’s compactification of
Teichmüller spaces offers a good classification of self-diffeomorphisms on surfaces.

2 Surfaces
In this document, we will manipulate surfaces using various cut-and-paste tools such as boundary
gluings or removal of discs and points. Detailed definitions and constructions will not be provided here
and the interested reader is referred to the notes by [9]. One of the fundamental operations frequently
used throughout this text is the connected sum of two manifolds: a two-step process that involves
removing embedded balls from each manifold and then identifying the resulting boundary spheres via
a orientation-reversing diffeomorphism.

Figure 1: A connected sum of closed surfaces

We only take a short detour to examine handle decompositions, but a more complete reference is,
for instance, [2].

2.1 Handle decomposition

An important tool is recalled here: the handle decomposition. The idea is to break manifolds into
smaller and topologically trivial chunks that are handles.

Definition 2.1. Let M be a compact n-manifold with boundary and 0 ⩽ k ⩽ n be an integer. A
k-handle is a manifold Dk ×Dn−k attached to M along a diffeomorphism

φ : Sk−1 ×Dn−k → Y ⊂ ∂Mn.

The result is a new manifold
M ′ = M ∪φ (Dk ×Dn−k).

Example 2.2. For instance, a 0-handle is a n-disc attached to nothing. A 1-handle is a D1 × Dn−1

attached to two copies of Dn.
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Definition 2.3. The integer k ⩾ 0 of the previous definition is the index of the handle. The
attaching region is ∂Dk × Dn−k, the attaching sphere is ∂Dk × {0}, the core is Dk × {0}, the belt
region is Dk × ∂Dn−k, the belt sphere is {0} × ∂Dn−k and the co-core is {0} ×Dn−k.

The figure below illustrate the last definitions.

Figure 2: Illustration of attaching sphere, core and attaching region.

Figure 3: Illustration of belt sphere, cocore and belt region.

Definition 2.4. A handle decomposition of a compact manifold M (possibly with boundary) is a
description of M as the result of attaching finitely many handles:

M = H1 ∪φ2 H2 ∪φ3 · · · ∪φh
Hh,

where H1 is a 0-handle, and the handle Hj+1 is attached to the manifold

Mj = H1 ∪φ2 H2 ∪φ3 · · · ∪φj Hj

via some map φj+1.

We often omit the maps for simplicity and write

M = H1 ∪ · · · ∪Hh.

Remark 2.5. If M is closed, the last handle Hh is necessarily an n-handle. The attaching sphere of
Hj+1 is contained in the manifold ∂Mj . Every level manifold ∂Mj+1 is obtained from the previous one
∂Mj by surgery along the attaching sphere of Hj+1.

Such a decomposition is, however, not unique. In fact, we can modify a handle decomposition through
a series of geometric operations, without altering its homotopy type. These operations typically include:

• reordering handles. Handles may always be reordered so that the lower index handles are attached
first, and handles of the same index are attached simultaneously. So we can think of a decom-
position as the appearing of some 0-handles, then the simultaneous attaching of some 1-handles,
then of some 2-handles, and so on.
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• Turning a decomposition upside-down. A handle decomposition of a closed manifold may be
turned upside down, by reversing all arrows and interpreting every k-handle as a (n−k)−handle.

• Handle sliding. Two handles h1, h2 of the same index k can be slid replacing the attaching sphere
of hk1 by a new one that follows the original path of hk1 and then loops around hk2.

• Cancelling pairs of complementary handles. Two handles of consecutive index k and k + 1 can
be cancelled if the attaching sphere of the (k + 1)−handle intersects the core of the k-handle
transverely in exactly one point.

Handle pairs in canceling position is a pair of a k-handle and a (k+ 1)-handle whose attaching regions
intersect transversely in exactly one point: we can do a handle cancellation.

We have the following important theorem.

Theorem 2.6. Every compact smooth manifold may be described via some handle decomposition.

Actually, we can simplify the decomposition as described below.

Proposition 2.7. Every compact connected manifold M has a handle decomposition with a single
0-handle.

Proof. Let’s start the decomposition with some 0-handles H0
1 . . . , H

0
i0 . If i0 = 1 we are done. If not,

they form a disconnected set. The addition of a k-handle with k > 0 does not modify the number
of connected components of a manifold, except when k = 1 and the 1-handle is attached to distinct
0-handles. Since M is connected, there must be at least one such 1-handle. The geometric intersection
of this 1-handle and one adjacent 0-handle is 1, so the pair may be canceled: the same thing is done
until remains only one 0-handle.

Remark 2.8. By turning the handle decomposition upside-down, we can prove analogously that every
closed connected manifold Mn has a handle decomposition with one 0-handle and one n-handle.

Proposition 2.9. If M has a handle decomposition with ni handles of index i then the Euler
characteristic is given by

χ(M) =
n∑
i=0

(−1)ini.

2.2 Classification and geometrisation of surfaces

The first aim of this part is to classify surfaces. Even if orientable and non-orientable surfaces are
studied separately - involving connected sums of tori for the former and of projective planes for the
latter case - the resulting classifications are structurally analogous.

2.2.1 The orientable case

We begin by defining the genus of a surface: an integer that, intuitively, corresponds to the number of
“holes” the surface has.
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Definition 2.10. Let the surface Sg be the connected sum

Sg = T# . . .#T︸ ︷︷ ︸
g

of g tori T = S1 × S1. By convention S0 = S2 is the sphere and S1 = T is the torus. The number
g is the genus of the surface.

Figure 4: Three different ways to represent S3.

Remark 2.11. We have χ(Sg) = 2 − 2g.

Theorem 2.12. Every closed connected orientable surface is diffeomorphic to Sg for some g ⩾ 0.

Proof. By the previous subsection, the surface S has a handle decomposition with one 0-handle, a
certain number k of 1-handles, and one 2-handle. We get by Proposotion 2.9 that χ(S) = 2 − k. We
prove by induction on k that k = 2g is even and that S is diffeomorphic to Sg.

If k = 0, then S is obtained by gluing two discs (the 0- and 2-handle), and is hence a sphere. In fact,
the two discs are copies of D2 ⊂ C glued along a diffeomorphism ϕ : S1 → S1. Up to mirroring one we
may suppose that ϕ is orientation-reversing, and that ϕ(z) = z. The resulting surface is diffeomorphic
to a sphere.

If k > 0, then the 0-handle is a disc and the 1-handles are rectangles attached to its boundary as in
Figure 5-(left). Note that since S is orientable, every rectangle is attached without a twist, otherwise
it would create a Möbius strip. The 0- and 1-handles altogether form a compact surface S′ ⊂ S with
only one boundary component, to which the 2-handle is attached.

Since ∂S′ is connected, every rectangle is linked to some other rectangle as in Figure 5-(centre). A
pair of linked rectangles forms a subsurface S′′ ⊂ S′ ⊂ S with connected boundary. If we cut S along
the curve ∂S′′ and then cap off with two discs, we perform the inverse of a connected sum.

Therefore, S = S1#S2, where S1 is S′′ with a disc attached, i.e., a torus, as Figure 5-(right) shows.
The surface S2 decomposes into a 0-handle, k−2 1-handles, and one 2-handle. We conclude by induction
on k.

Figure 5: Illustration for the proof of Theorem 2.2.1.

We want to extend this theorem to surfaces that may not be compact or that may have boundary.
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Definition 2.13. Let g, b, p ⩾ 0 be three natural numbers. The surface of finite type Sg,b,p is the
surface obtained from Sg by removing the interior of b discs and p points. We say that g is the
genus, b the number of boundary components and p the number of punctures.

Remark 2.14. We have χ(Sg,b,p) = 2 − 2g − b− p.

Theorem 2.15. Every compact connected orientable surface with boundary is diffeomorphic to
Sg,b,0 for some g, b ⩾ 0.

Proof. Let S be a compact orientable surface with some b boundary components. If we glue b discs
to ∂S we get a closed orientable surface, hence diffeomorphic to Sg for some g ⩾ 0. The original S is
obtained from Sg by removing the interiors of b disjoint open discs.

Hence, the compact connected orientable surfaces with non-negative Euler characteristic are the
sphere S2 = S0 and the disc D2 = S0,1, which have an elliptic structure, while those with zero Euler
characteristic are the annulus A = S0,2 and the torus T = S1, which have many flat structures. Note
that the annulus and S0,0,2 are homeomorphic but not diffeomorphic. In particular, there are no cusps
in the elliptic and flat geometries so we do not consider surfaces with puncture when studying surface
with χ ⩾ 0.

We now construct hyperbolic structures on surfaces of negative Euler characteristic, starting with
simpler blocks: pair-of-pants S0,3,0, S0,2,1, S0,1,2 or S0,0,3.

Figure 6: From left to right: S0,3,0, S0,2,1, S0,1,2 and S0,0,3

Remark 2.16. Let’s observe that χ(S0,3,0) = χ(S0,2,1) = χ(S0,1,2) = χ(S0,0,3) = −1 < 0.

Proposition 2.17. Given three real numbers a, b, c ⩾ 0 there is, up to isometries, a unique complete
finite-volume hyperbolic pair-of-pants with geodesic boundary curves of length a, b and c.

Sketch of proof. First, one has to prove that given three real numbers a, b, c ⩾ 0 there exists, up to
isometries, a unique possibly degenerate -that is a, b or c can be zero- hyperbolic right-angled hexagon
with three alternate sides of length a, b, and c (that is constructed by hand). To prove the uniqueness,
we use the compactness to construct orthogeodesics (i.e., geodesics that meet the boundary of the
surface orthogonally at both endpoints) that subdivide the pair-of-pants into isometric hexagons: we
use the uniqueness up to isometries of hexagons to conclude.

Those blocks are important because they can be used to construct topologically all finite type of
surfaces of negative Euler characteristic.

Proposition 2.18. If χ(Sg,b,p) < 0 then the surface Sg,b,p can be decomposed topologically into
−χ(Sg,b,p) possibly degenerated pairs-of-pants. In particular, Sg,b,p admits a complete hyperbolic
metric with b geodesic boundary components of arbitrary length.
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Proof. If b + p = 0, then g ⩾ 2 and the surface decomposes easily in many ways, see for instance the
figure below.

Figure 7: Since χ(S3) = −4, S3 decomposes into 4 pair-of-pants.

If b + p > 0 and χ(Sg,b,p) < −1, a decomposition for Sg,b,p may be obtained from one of Sg,b−1,p or
Sg,b,p−1 by inserting one more (possibly degenerate) pair-of-pants.

If χ(Sg,b,p) = −1, the surface is either a pair-of-pants, or a torus with a puncture or boundary
component, which is in turn obtained by gluing two boundary components of a pair-of-pants (see one
of the extremities of Figure 7).

2.2.2 The non-orientable case

The classification of all the finite-type non-orientable surfaces is very similar to the previous work.

Definition 2.19. Let the surface Snog be the connected sum

Snog = RP2# . . .#RP2︸ ︷︷ ︸
g

of g ⩾ 1 copies of the projective plane RP2.

Remark 2.20. We have χ(Snog ) = 2 − g.

Theorem 2.21. Every closed, connected, non-orientable surface is diffeomorphic to Snog for some
g ⩾ 1.

Proof. Pick a handle decomposition of the surface S. Since it is non-orientable, at least one 1-handle is
twisted and forms a Möbius strip. We have proved that S contains a Möbius strip, and we now remove
it and substitute it with a disc to get a new surface S′. We have S = S′#RP2 and we conclude by
induction on −χ(S′).

As we did for orientable surfaces, we define Snog,b,p the surface obtained from Snog by removing the
interiors of b discs and p points. Again, compact non-orientable surfaces with non-negative Euler
characteristic admit a geometric structure: the projective plane RP2 = Sno1 has an elliptic structure
while the Möbius strip and the Klein bottle, respectively Sno1,1 and Sno2 , have flat structures.

We now construct hyperbolic structures on surfaces of negative Euler characteristic, still with pairs-
of-pants.
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Proposition 2.22. If χ(Snog,b,p) < 0 then the surface Snog,b,p can be decomposed topologically into
pairs-of-pants. In particular, it admits a complete hyperbolic metric with b geodesic boundary
components of arbitrary length.

2.3 Curves on surfaces

For the next sections simple but crucial concepts are the following.

Definition 2.23. A non-separating curve is a curve that does not separate the surface in two
or more disconnected component. A Jordan curve is a simple closed curve. An arc of endpoint
p and q in a surface S is a continue application α : [0, 1] → S such that α(0) = p, α(1) = q
α((0, 1)) ⊂ int(S) and such that α is injective on (0, 1).

Definition 2.24. A multicurve µ in Sg is a finite set of disjoint non-trivial Jordan curves. It is
said essential if it has no parallel components. The set of all simple closed multicurves is denoted
by M .

We have the following result that is intuitively obvious: one can deform any curve through an isotopy
into a geodesic by "straightening" it.

Proposition 2.25. Let g ⩾ 2 and Sg have a hyperbolic metric. Every essential multicurve can be
isotoped to a unique geodesic essential multicurve.

Another important concept is the one of earthquake that is twisted metrics on surface along some
simple closed geodesics. Let m be a metric on a surface S and γ be a simple closed geodesic in S. Fix
an angle θ ∈ R. Informally, a new metric mθ on S is constructed by cutting S along γ and regluing it
with a counterclockwise twist of angle θ. More formally, we have the following definition.

Definition 2.26. Letm be a complete hyperbolic, flat or elliptic metric on an oriented surface S and
γ be a simple closed geodesic in S. Let the R-annulus of γ be parametrized as S1 × [−R,R], where
each slice {eit}× [−R,R] corresponds to a geodesic segment orthogonal to γ at γ(eit), parametrized
by arc-length. Fix an angle θ ∈ R. Let f be a smooth function and φ a diffeomorphism such that:

φ : S1 × [−R,R] −→ S1 × [−R,R](
eit, s

)
7−→

(
ei(t+f(s)), s

)
,

where
f : [−R,R] −→ R

t 7−→
{

0 if t ∈ [−R,−R/2] ,
θ if t ∈ [R/2, R] .

Then the earthquake of m is a new metric mθ that coincides with φ∗m on the R-annulus of γ and
coincides with m on the complement of S1 ×

[
−R

2 ,
R
2

]
.
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Figure 8: Earthquake

Remark 2.27. The metric tensor mθ is well-defined and gives a complete hyperbolic, flat, or elliptic
metric to Sg.

We define the Earthquake map as:
Eγ,m : θ 7→ mθ.

2.4 The mapping class group

While studying the self-diffeomorphisms of Sg,b,p, a group appears naturally: it is called the Map-
ping Class Group. Each element of this group has a particularly nice representative given by the
Nielsen–Thurston classification theorem, which is a nonlinear analogue of the Jordan canonical form
for matrices and will be stated in the next section. As such, it constitutes a fundamental component
of the theory.

2.4.1 Definitions and first examples

Definition 2.28. The mapping class group of Sg,b,p is the group

MCG(Sg,b,p) = Diffeo+(Sg,b,p)/ ∼

where Diffeo+(Sg,b,p) indicates the group of all orientation-preserving self-diffeomorphisms of Sg,b,p
that fix pointwise the boundary. The quotient is on the equivalence relation given by: ψ ∼ φ if and
only if φ and ψ are connected by an isotopy that fixes the bounadary pointwise at every level.

Remark 2.29 (Case of non-negative Euler characteristic). We can compute that the groups MCG(S2),
MCG(S0,0,1) and MCG(D2) are trivals.

The group MCG(Sg,b,p) acts on H1(Sg,b,p,Z) since homotopic functions induce the same maps in
homology. We obtain a group homomorphism:

MCG(Sg,b,p) −→ Aut+(H1(Sg,b,p,Z)) = Aut+(Zn) = SLn(Z)

with n = 2g + max{b + p − 1, 0}. Again, Aut+ is the group of orientation-preserving automorphisms.
This homomorphism is, in general, neither injective nor surjective. Its kernel is called the Torelli group
of Sg,b,p. For instance, the Torelli group of the torus is trivial and MCG(T ) ∼= SL2(Z). Other such
isomorphisms exist.

Proposition 2.30 (Case of zero Euler characteristic). Let’s denote T = S1 the torus, A = S0,2
the annulus, D = S0,1,1 the once-punctured disk and S = S0,0,2 the twice-punctured sphere. The
following holds.

MCG(T ) ≃ SL2(Z), MCG(D) ≃ {0}, MCG(S) ≃ Z/2Z and MCG(A) ≃ Z.
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It is still unknown whether the mapping class group MCG(Sg,b,p) is linear, i.e. isomorphic to a
subgroup of GL(n,C) for some integer n.

At this stage, we limit our attention to an explicit description of some particular elements of
MCG(Sg,b,p), called Dehn twists.

2.4.2 Dehn twists

Dehn twists are the simplest infinite-order elements of the mapping class group. They play the role of
elementary matrices in linear algebra. Strictly speaking, they have already been introduced, as they
are a particular case of earthquakes.

Definition 2.31. Let γ be a nontrivial simple closed curve in the interior of Sg,b,p. Choose a
tubular neighborhood of γ that is orientation-preservingly diffeomorphic to S1 × [−1, 1], such that
γ corresponds to S1 × {0}. The Dehn twist along γ is the element Tγ ∈ MCG(Sg,b,p) defined as
follows.

Tγ : S1 × [−1, 1] −→ S1 × [−1, 1](
eit, s

)
7−→

(
ei(t+f(s)), s

)
,

where
f : [−1, 1] −→ R

t 7−→
{

0 if t ∈ [−1,−1/2] ,
2π if t ∈ [1/2, 1] .

More precisely, a Dehn twist is an earthquake of angle 2π: Tγ = Eγ,2π. As such, Tγ ∈ MCG(Sg,b,p)
is well-defined and depends only on the isotopy class of γ.

Remark 2.32. Note that instead of using +2πt we could have used −2πt. Our choice is a left twist,
while the other is a right twist.

Figure 9: Dehn twist along a curve: a transverse arc µ onto an arc which makes a complete left turn.

Via the isomorphism of 2.30, the Dehn twists along the (1, 0)−curve and the (0, 1)−curve in T map
to the matrices

Tm :=
(

1 −1
0 1

)
and Tl :=

(
1 0
1 1

)
.

Proposition 2.33 (Dehn twists on the torus). The two Dehn twists Tm and Tl generate MCG(T ).

More generally, we have the following theorem.

Theorem 2.34. For every g, b ⩾ 0, the group MCG(Sg,b,0) is generated by Dehn twists.
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Proof. First, some preliminary facts that will not be demonstrated here (see [8] for more details)

Facts. The non-separating curves in Sg,b,0 are all related, that is there is a combination of isotopies
and Dehn twists transforming a Jordan curve into another. The arcs in Sg,b,0 with endpoints at p and
q are all related.

Let φ be a self-diffeomorphism of Sg,b,0 fixing pointwise the boundary. We prove that φ is generated
by isotopies and Dehn twists. We first consider the case g = 0 and proceed by induction on b. We know
that MCG(S0,1,0) is trivial, so we suppose b ⩾ 2. Let p, q be points on distinct boundary components
of S0,b,0, and let α be an arc connecting them. All such arcs with endpoints in p and q are related
by isotopy, and hence α and φ(α) are isotopic (φ fixe pointwise the boundary). Therefore, up to
composing with Dehn twists and isotopies, we may suppose that φ is the identity on α, and hence also
on a tubular neighbourhood of α. Cutting S0,b,0 along α, we obtain S0,b−1,0, with φ transformed into a
self-diffeomorphism of S0,b−1,0. By induction on b, the new φ is generated by Dehn twists and isotopies,
so the original φ is as well.

We now consider the case g > 0, and proceed by induction on g. Let α be a non-separating Jordan
curve. Since all such curves are related by diffeomorphisms, up to isotopies and Dehn twists, we may
suppose that φ is the identity on α. As before, we can cut Sg,b along α, obtaining Sg−1,b+2, and conclude
by induction on g.

3 The Teichmüller space

3.1 Introduction

We know that Sg admits an elliptic, flat, or hyperbolic metric if and only if g = 0, g = 1, or g ⩾ 2
respectively. The elliptic metric on the two-sphere is unique up to isometries, but the flat and hyperbolic
metrics on the other surfaces are not. This is the essence of the notion of the Teichmüller space.

3.1.1 Definitions

We want to define the space of all flat or hyperbolic metrics on Sg when g ⩾ 1.

Definition 3.1. The Teichmüller space of Sg is defined as the set

Teich(Sg) = {(X,ϕ)} / ∼

where:

⋆) (X,ϕ) is a structure on Sg, that is, a Riemannian surface X on which there is a complete
hyperbolic (resp. flat) metric together with a diffeomorphism ϕ : Sg → X.

⋆) the relation ∼ defines an homotopy equivalence: two structures (ϕ,X) and (ψ, Y ) are homo-
topic if there is an isometry φ : X → Y such that φ ◦ ϕ and ψ are homotopic.

In order to introduce the notion of moduli space, we first show that MCG(Sg) acts on the Teichmüller
space of Sg.

Proposition 3.2. A diffeomorphism φ : Sg → Sg transports a metric m on Sg into a new metric
φ∗m by pushing it forward.

Remark 3.3. This is what was done to define earthquakes. For a proof, see [8].
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Definition 3.4. The moduli space is the quotient space

M(Sg) = Teich(Sg)/MCG(Sg).

3.1.2 The torus case

The Teichmüller space of the torus is explicit and easy to understand.

Proposition 3.5. By sending the flat metric on T to z ∈ H2, we get a bijection

Teich(T ) → H2.

Proof. The map is well-defined: two metrics related by an isometry isotopic to the identity produce the
same z. Now, recall that T = C/Γ where Γ is a lattice isomorphic to Z2 with a basis (a, b). The inverse
H2 → Teich(T ) is constructed by identifying T with C/⟨1, z⟩ sending (m, l) to (1, z).

Figure 10: A z ∈ H2 determines a flat metric on the torus constructed by identifying the opposite sides
of the parallelogram 0, 1, z, z + 1 which is a fundamental domain of the lattice generated by 1 and z.

Proposition 3.6. The action of MCG(T ) on Teich(T ) is the following action of SL2(Z) on H2 as
Möbius transformations: (

a b
c d

)
: z 7−→ az − b

−cz + d
·

Proof. The metric z assigns to T the structure R2/Γ with Γ = ⟨1, z⟩, and the pair (m, l) is mapped to the
translations (1, z). Pick φ =

(
a b
c d

)
∈ SL2(Z) = MCG(T ). Then its inverse is given by φ−1 =

(
d −b

−c a

)
.

In the new metric φ∗z, the pair (m, l) is mapped to the translations (d− cz,−b+ az). These can be
transformed, via rotation and scaling, into the pair

(
1, az−b

−cz+d

)
.

Remark 3.7. We note in particular that MCG(T ) acts via isometries on the hyperbolic plane H2. The
kernel is {±I}, thus two opposite matrices A and −A act in the same way on Teich(T ).

Recall that an orbifold is a generalization of a manifold that admits possible singularities: heuristi-
cally, for each element of a collection {Ui, φi} corresponds a set Vi invariant under a faithful linear action
of finite groups Γi and the charts are diffeomorphisms between Vi/Γi and Ui (some good properties not
mentioned here must be verified to call it an atlas).

Corollary 3.8. The moduli space of T is the orbifold

M(T ) = H2/PSL2(Z).
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3.2 Coordinates for compact surfaces and topology

Let now fix g ⩾ 2. We want to construct a parametrization (i.e., some coordinates) for Teich(Sg) to
identify it with some RN .

3.2.1 The Fenchel-Nielsen coordonates

The goal here is to introduce the Fenchel-Nielsen map:

FN : Teich(Sg) −→ R3g−3
>0 × R3g−3

m 7−→ (l1, . . . , l3g−3, θ1, . . . , θ3g−3).

Let m ∈ Teich(Sg) be a hyperbolic metric. The 3g− 3 length parameters li are defined using the length
functions: the multicurve µ has a unique geodesic representative

µ̄ = γ̄1 ⊔ · · · ⊔ γ̄3g−3

in the metric m (by Proposition 2.25) such that µ̄ decomposes Sg into geodesic pairs-of-pants. The
parameters li are the length of the γ̄i. Note that these parameters depend only on µ.

The torsion angles θi are more subtle to define: the angle θi measures somehow the way the two
geodesic pairs-of-pants are glued along the closed geodesic γ̄i. The precise definition of θi needs an
auxiliary multicurve ν. We fix i = 1 for simplicity and define θ1.

Figure 11-left shows the two geodesic pants adjacent to γ̄1. The second multicurve ν intersects these
pants in four blue arcs, two of which λ, λ′ intersect γ̄1: we pick one, say λ. We fix a lift P̃ ∈ H2 of
P = γ̄1 ∩ λ and we lift all the curves incident to P : the geodesic γ̄1 lifts to a line γ̃1 and λ lifts to a
(non-geodesic) curve λ̃ that connects two lifts γ̃2 and γ̃3 of the closed geodesics γ̄2 and γ̄3. See Figure
11-right (which is represented in the Poincaré disc model of H2).

We draw as in the figure the unique orthogeodesics connecting γ̃1 to γ̃2 and γ̃3 and we denote by s1
the signed length of the segment in γ̃1 comprised between these two orthogeodesics, with positive sign
if (as in the figure) an observer walking on an orthogeodesic towards γ̃1 sees the other orthogeodesic
on its left (here we use the orientation of Sg). Note that if we pick λ′ instead of λ we find a segment of
the same length s1.

By repeating this construction for each γ̄i, we find some real numbers si. Finally, the torsion param-
eter θi is

θi = 2πsi
li

.

Figure 11: A closed geodesic and the two adjacent pairs-of-pants. The torsion parameter θ1 measures
the distance between the two orthogeodesics coloured in green.

Theorem 3.9. The map FN is well-defined and is a bijection.
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Proof. A hyperbolic metric m′ isometric to m through a diffeomorphism φ isotopic to the identity has
the same parameters li and θj , since they depend only on the isotopy classes of µ and ν. Therefore, FN
is well-defined.

⋆) We prove that FN is surjective. For every vector (l1, . . . , l3g−3) ∈ R3g−3
>0 , we may use Proposition

2.17 and construct a metric on Sg by assigning to each pair-of-pants of the pants decomposition µ
the (unique) hyperbolic metric with boundary lengths li. We obtain a metric with some arbitrary
torsion angles θ, which can be changed arbitrarily by an earthquake along µ: it is easy to check
that an earthquake with angles θ′ changes the torsion angles from θ to θ + θ′, hence any torsion
parameter can be realised and FN is surjective.

⋆) We prove that FN is injective. If FN(m) = FN(m′), then up to acting via earthquakes we may
suppose that FN(m) = FN(m′) = (l1, . . . , l3g−3, 0, . . . , 0). Since the torsion parameters are zero,
we can find two orthogeodesics that match and project in Sg to a geodesic multicurve ν̄ isotopic
to ν and orthogonal to µ̄. Therefore, Sg \ (µ̄∪ ν̄) is a tessellation of Sg into right-angled hexagons,
determined by the lengths li. Both metrics m and m′ have the same tessellation and are hence
isometric, via an isometry which is isotopic to the identity.

Remark 3.10. We have considered only closed surfaces Sg but the arguments presented here are
extendable to all surfaces Sg,b,p of finite type with negative Euler characteristic.

3.2.2 Topology

When g ⩾ 2 we could use the Fenchel-Nielsen coordinates and give Teich(Sg) the topology of R6g−6 but
for simplicity we prefer to equip the Teichmüller space with an intrinsic topology and then prove that
the Fenchel-Nielsen coordinates are homeomorphisms.

Definition 3.11. We indicate by S = S (Sg) the set of all the non-trivial Jordan curves in Sg,
considered up to isotopy and orientation reversal: we say that the curves are unoriented.

Each element γ ∈ S induces a length function lγ : Teich(Sg) → R>0 defined as follows: to each
metric m ∈ Teich(Sg), the length lγ(m) is the length of the unique closed geodesic homotopic to γ.
Note that to get a well-defined length function we may have to rescale m to have unit area.

Definition 3.12. We indicate by RS the set of all functions S → R and give it the product
topology.

Remark 3.13. The natural map m ∈ Teich(Sg) 7−→ (γ 7→ lγ(m)) ∈ RS is injective and hence we may
consider Teich(Sg) as a subset of RS and assign it the subspace topology.

Remark 3.14. Since every product of Hausdorff spaces is Hausdorff and every countable product
of second-countable spaces is second-countable, the topological space RS is Hausdorff and second-
countable.

In fact, in this topology, the following holds.

Proposition 3.15. The Fenchel-Nielsen map

FN : Teich(Sg) → R3g−3
>0 × R3g−3

is a homeomorphism.
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3.3 Compactification

In this next section, we introduce the compactification of the Teichmüller space. We will see that it is
actually a closed disc, similarly as how Hn compactifies.

Definition 3.16. Let γ1 and γ2 be two Jordan curves on an orientable surface S. The geometric
intersection i(γ1, γ2) is defined as the minimum number of intersection points of two transverse
Jordan curves (that is, each point of intersection is a transversal point) γ′

1, γ
′
2 that are homotopic

to γ1 and γ2, respectively.

To define the compactification, there are some steps.

i) We start with the natural projection π : RS \ {0} → P(RS ).

ii) The injection Teich(Sg)
i
↪→ RS of Remark 3.13 gives an embedding π ◦ i : Teich(Sg) → P(RS ).

iii) The map j : γ ∈ S 7→ (η 7→ j(γ)(η) := i(γ, η)) ∈ RS gives another embedding π◦j : S → P(RS ).

We can now state Thurston’s compactification theorem.

Theorem 3.17. The closure Teich(Sg) of Teich(Sg) in P(RS ) is homeomorphic to the closed disc
D6g−6. Its interior is Teich(Sg), and its boundary sphere contains S as a dense subset.

We will not prove this theorem but only introduce some notions useful not only for its demonstration
but also for the rest of the document. From now on, we will consider geodesics as follow.

Definition 3.18. Let M be a complete hyperbolic manifold. We call geodesic an element of the
set G (M) of the supports of all the complete non-trivial geodesics R → M . The geodesic is said
closed if it is the support of a closed geodesic S1 → M , and open otherwise.

Definition 3.19. Let Sg = H2/Γ have a hyperbolic metric. A geodesic current on Sg is a locally
finite Γ-invariant Borel measure on G = G (H2). The set of all currents in Sg is indicated by C (Sg).

Remark 3.20. We can interpret every closed geodesic in Sg as a particular geodesic current with
discrete support. In particular we get an embedding S ↪→ C .

Definition 3.21. A geodesic lamination λ is a set of disjoint simple complete geodesics in a hyper-
bolic surface S = H2/Γ, whose union is a closed subset of S. Each geodesic (which may be closed
or open) is called a leaf. Their union is the support of λ.

Example 3.22. For instance, geodesic multicurves in S and set of disjoint lines in H2 are laminations.

Definition 3.23. Let λ ⊂ S be a geodesic lamination in a hyperbolic surface S. A complementary
region (shortly, a region) is a connected component of the open complement S \ λ. A lamination is
said to be full if every region is an ideal polygon.

We denote ML the set of all the measured geodesic laminations on Sg. We get the sequence of
inclusions

S ⊂ M ⊂ ML ⊂ C .
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3.4 Nielsen-Thurston classification

The main goal of this subsection is to understand how individual elements of MCG(Sg) look like, in
the same way that the Jordan canonical form of a matrix gives us a geometric picture of what a linear
transformation looks like.

Let Sg have a genus greater that 1. The mapping class group MCG(Sg) acts naturally on the whole
space C of currents and in particular on the compactification Teich(Sg) ≃ D6g−6 of the Teichmüller
space.

Definition 3.24. Let φ ∈ MCG(Sg) be a non-trivial element. By Brouwer’s fixed point theorem,
φ fixes at least one point in Teich(Sg). We say that it is:

1. finite order if it fixes a hyperbolic metric m ∈ Teich(Sg);

2. reducible if it fixes a multicurve µ ∈ M ;

3. pseudo-Asonov in all the other cases.

3.4.1 Finite order elements

Proposition 3.25. A non-trivial element φ ∈ MCG(Sg) is finite order if and only if it has finite
order in MCG(Sg).

Proof. Suppose that φ preserves the isotopy class [m] ∈ Teich(Sg) of a hyperbolic metric m on Sg. We
can choose a representative for φ that fixes m. This representative is an isometry of (Sg,m). Since the
isometry group of a closed hyperbolic manifold is finite, we have φn = id for some n > 1, and hence φ
has finite order in MCG(Sg).

Conversely, let φ be an element of finite order in MCG(Sg). The subgroup ⟨φ⟩ generated by φ cannot
act freely on Teich(Sg) ∼= R6g−6, otherwise it would quotient R6g−6 to an aspherical manifold (that is
the universal cover of the manifold is contractible) with finite fundamental group, contradicting the
fact that the fundamental group of an aspherical manifold has no torsion. Therefore, some non-trivial
power of φ has a fixed point in Teich(Sg).

If φ has prime order, we easily conclude that φ itself has a fixed point, and we are done. However,
if φ has order p1 · · · ps for some primes piWe proceed by induction on s. In fact, φ′ = φp1···ps−1 has a
fixed point [m] ∈ Teich(Sg), and is hence represented by an isometry of (Sg,m).

The isometry φ′ quotients Sg to a hyperbolic orbifold, and the fixed point set Fix(φ′) of φ′ in
Teich(Sg) can be naturally identified with the (suitably defined) Teichmüller space of this orbifold,
which is homeomorphic to RN for some N > 0, as in the surface case.

Since φ and φ′ commute, φ acts as a mapping class on Fix(φ′) with order p1 · · · ps−1. By induction
on s, we conclude that φ has a fixed point in Teich(Sg).

Corollary 3.26. If φ ∈ MCG(Sg) has a finite order k, it may be represented by a diffeomorphism
φ : Sg → Sg such that φk = id.

Proof. The class ϕ has a representative ϕ : Sg → Sg that is an isometry for some hyperbolic metric; the
isometry ϕk is isotopic to the identity and is hence the identity since distinct isometries of a finite-volume
complete hyperbolic manifold are not homotopic.
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3.4.2 Reducible elements

We must explain the terminology. If ϕ fixes a multicurve µ, one can cut Sg along µ and look at the
restriction of ϕ to the resulting pieces: after extending all the theory to surfaces with boundary, one
can hence study inductively each piece, and this explains the word reducible. Note that there are
isometries of hyperbolic surfaces that preserve some multicurves. On the other hand, there are finite
order elements that are not reducible and reducible mapping classes that are not of finite order: for
instance, Dehn twists.

3.4.3 Pseudo-Asonov elements

The mapping class group MCG(Sg) of a surface of genus g acts on the currents space and hence on the
measured geodesic laminations. In particular, the following holds.

Proposition 3.27. If φ ∈ MCG(Sg) fixes a non-trivial point in ML , that is φ(µ) = µ for some
µ ∈ ML \ {0}, then φ is either finite order or reducible.

A pseudo-Anosov element is by definition neither finite order nor reducible. Hence, it acts freely
on ML \ {0}, but this does not prevent it from having some fixed points in PML . In fact, we now
state that there are two fixed points there, one attracting and one repelling, so that the pseudo-Asonov
element looks very much like a hyperbolic isometry on the hyperbolic space.

Theorem 3.28. Let φ ∈ MCG(Sg) be a pseudo-Anosov element. There are two measured geodesic
laminations µs, µr ∈ ML and a real number λ > 1 such that

φ(µs) = λµs, φ(µr) = 1
λ
µr.

The laminations µs, µr are full and they altogether fill Sg.

Note that there is a converse to the previous theorem.

Theorem 3.29. If φ ∈ MCG(Sg) is such that φ(µ) = λµ for some real number λ > 1 and full
lamination µ ∈ ML , then φ is pseudo-Asonov.

For a reference of both of the previous theorems , see [8].
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Part III

Three-manifolds
This part gives an idea of what we know about classification of three-manifolds. First, we will give a
prime decomposition of compact oriented 3-manifolds in the idea of the well-known prime decomposition
of natural numbers. Then, we introduce the notion of incompressibility which leads to that of Haken
manifolds. Finally, we will scratch the surface of the concept of Seifert manifold, which is an essential
tool for the geometrization of 3-manifolds.

4 Prime decomposition

4.1 Irreducibility

In this section, we will call disc and ball respectively the closed discs D = D2 and B = D3. In
dimension 3, we can freely remove and add balls without affecting much the topology of the manifold.
In particular, by removing the interior of a ball from S3 we get another ball B, and by attaching a ball
to B we get S3 back.

Definition 4.1. Let M be a connected and oriented 3-manifold with (possibly empty) boundary.
The manifold M is irreducible if every sphere S ⊂ int(M) bounds a ball.

Intuitively, an irreducible manifold does not contain any "air bubble". The first natural 3-manifold
to look at is R3: we would like to prove that it is irreducible. To do that, we need some Morse theory.

Definition 4.2. Let s ⊂ R3 be a closed surface and f(x, y, z) = z the height function. It is a Morse
function for S if f |S has finitely many critical points and if at each critical point the Hessian of f |S
is non-singular.
The critical point is, as usual, said to be a local minimum, saddle or local maximum according to
the signature of the Hessian. These critical points have index 0,1 and 2 respectively.

Theorem 4.3 (Alexander’s Theorem). The space R3 is irreducible.

Proof. Let S ⊂ R3 be a 2-sphere. Up to a small rotation we suppose that the height function f |S is a
Morse function, and after a further small rotation we may suppose that the k critical points of f |S stay
at distinct heights z1 < · · · < zk. Pick a regular value ui ∈ (zi, zi+1) for every i = 1, . . . , k − 1. The
horizontal plane P at height ui intersects S transversely into circles. Starting from the innermost ones,
we cut S along these circles and cap them off by adding pairs of discs as in Figure 12. The resulting
surface is disjoint from P .

Figure 12: The plane P intersects S into circles. Cutting S along the circles and capping them off by
adding pairs of discs we get a resulting surface that does not intersect P anymore.
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This operation decomposes a sphere into two spheres. If we do this for every i = 1, . . . , k− 1 we end
up with many spheres of the types shown in Figure 13, that clearly bound balls in R3.

Figure 13: After capping off at each ui we end up with many spheres of these basic types, which
bound balls.

Now we reverse the process and undo all the cuts: we prove inductively that at each backward step we
have a set of spheres bounding balls.In fact, the reverse operation replace two spheres S1, S2 bounding
balls B1, B2 with one sphere S. If the interiors of B1 and B2 are disjoint, then S bounds the ball
B1 ∪ B2. If they are not disjoint, then one is contained in the other, say B1 ⊂ B2 and S bounds the
ball B2 \ int(B1).

Corollary 4.4. Let p : M → N be a covering of 3-manifolds. If M is irreducible then N also is.
Hence, elliptic, flat, hyperbolic 3-manifolds are irreducible.

We can deduce that every sphere in S3 bounds a ball on both sides. The situation in higher dimensions
is much more problematic: it is still unknown whether every smooth 3-sphere in R4 bounds a smooth
4-disc.

4.2 The decomposition

If p ∈ N is prime, every decomposition in natural numbers p = a · b implies that a = 1 or b = 1. We
can define a prime manifold analogously.

Definition 4.5. A connected sum M#N is trivial if either M or N is a sphere.

Definition 4.6. A connected 3-manifold M is prime if every connected sum M = M1#M2 is
trivial.

For oriented manifolds, being prime is equivalent to being irreducible, with a single exception.

Proposition 4.7. Every oriented 3-manifold M ̸= S2 × S1 is prime if and only if it is irreducible.

Proof. The inverse operation of a connected sum M = M1#M2 consists of cutting along a separating
sphere S ⊂ M and then capping off the two resulting manifolds N1, N2 with balls. The capped Ni is
S3 if and only if Ni is a ball. Therefore the connected sum is trivial if and only if S bounds a ball on
one side. Therefore M is prime if and only if every separating sphere S ⊂ M bounds a ball.

If M is irreducible, then it is clearly prime. If M is prime and not irreducible, there is a non-separating
sphere S ⊂ M . There is a simple closed curve α ⊂ M intersecting S transversely in one point. Pick two
tubular neighborhoods of S and α as in the figure below: their union is a manifold N with a boundary
sphere ∂N = S′. The sphere S′ is separating and M is prime, hence S′ bounds a ball B on the other
side and M = N ∪B.
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We now prove that M = S2 × S1. We embed S ∪ α naturally in S2 × S1 as S = S2 × {y} and
α = {x} ×S1. Decompose S2 = D ∪D′ into two discs and S1 = I ∪ I ′ into two intervals. The manifold
N also embeds as S2 × I ∪D × S1 and its complement B = D′ × I ′ is a ball. Therefore M = S2 × S1.

Notwithstanding the previous proposition, we have the following.

Proposition 4.8. The manifold S2 × S1 is prime.

Proof. Let S ⊂ S2 × S1 be a separating sphere: we must prove that it bounds a ball. It separates
S2 × S1 into two manifolds M and N , and on fundamental groups we get Z = π1(M) ∗ π1(N). This
implies easily that either π1(M) or π1(N) must be trivial: suppose the first.

Since M is simply connected, a copy M ′ of M lifts to the universal cover S2 × R of S2 × S1. We
identify S2 × R = R3 \ {0}. Then M ′ now lies in R3, and ∂M ′ = S2 implies that M ′ is a ball by
Alexander’s theorem.

We now state that the connected sum operation on oriented three-manifolds behaves like the product
of natural numbers: every object decomposes uniquely into prime factors.

Theorem 4.9 (Prime decomposition). Every compact oriented 3-manifold M with (possibly
empty) boundary decomposes into prime manifolds:

M = M1# . . .#Mk.

This list of prime factors is unique up to permutations and adding or removing copies of S3.

Sketch of proof of the existence. For the existence, if M contains a non-separating sphere, then the
proof of Proposition 4.7 shows that M = M ′#(S2 × S1). Since H1(M) = H1(M ′) ⊕ Z, up to factoring
finitely many copies of S2 × S1 (that is prime, by Proposition 4.8), we may suppose that every sphere
in M is separating.

If M is prime we are done. If not, it decomposes as M = M1#M2. We keep decomposing each
factor until all factors are prime: this process must end, because a decomposition M = M1# · · · #Mk

gives rise to a system of k− 1 spheres, where k cannot be arbitrarily big (which is a fact that require a
proof).

5 Incompressible surfaces

5.1 Incompressibility

Throughout all this section M denotes a compact orientable 3-manifold with (possibly empty) boundary
and S ⊂ M a properly embedded surface.
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Definition 5.1. The surface S is ∂-parallel if it is obtained by slightly pushing (done by a trans-
lation) inside M the interior of a compact surface S′ ⊂ ∂M , possibly with boundary.
We say that:

• a sphere is essential if it does not bound a ball;

• a disc is essential if it is not ∂-parallel.

The manifold M is:

• irreducible if it does not contain essential spheres;

• ∂-irreducible if it does not contain essential discs.

Definition 5.2. A compressing disc for the surface S is a disc D ⊂ M with ∂D = D∩S , such that
∂D does not bound a disc in S. If χ(S) ⩽ 0, S is said to be compressible if it has a compressing
disc, and incompressible otherwise (see Figure 14). The operation of compression is illustrated in
Figure 15.

Figure 14: A surface S is incompressible if the existence of a disc D implies the existence of another
disc D′ ⊂ S as illustrated. If in addition M is irreducible, the two discs D and D′ form a sphere which

bounds a ball, and hence by substituting D′ with D we get two isotopic surfaces.

Figure 15: We can surger a surface S along a disc D with ∂D = D ∩ S. The operation consists of
removing an annular tubular neighbourhood of ∂D in S and adding two parallel copies of D. We get a

new surface S′.

Definition 5.3. Let S ⊂ M be a properly embedded, orientable surface in a 3-manifold M . A
∂-compressing disc for S is a disc D such that ∂D = α ∪ β, where α ⊂ S and β ⊂ ∂M . We also
require that there are no sub-disc D′ ⊂ S with ∂D′ = α ∪ β′ and β′ ⊂ ∂S. If χ(S) ≤ 0, S is said
to be ∂-compressible if it admits a ∂-compressing disc, and ∂-incompressible otherwise (see Figure
16).
The operation of ∂-compression is illustrated in Figure 17.
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Figure 16: A surface S is ∂-incompressible if the existence of a disc D implies the existence of another
disc D′ ⊂ S as illustrated. If in addition M is ∂-irreducible, the two discs D and D′ form a disc which

is ∂-parallel, and hence by substituting D′ with D we get two isotopic surfaces.

Figure 17: We can surger a surface S along a disc D touching the boundary in a segment. The result
is a new properly embedded surface S′.

The ∂-compression transforms a surface S into a surface S′ ⊂ M simpler than S.

Proposition 5.4. The surface S′ may have one or two components S′
i, and χ(S′

i) > χ(S) for each
component.

Proof. We have χ(S′) = χ(S) + 1. If S′ has only one component, the result is immediate. Suppose
instead that S′ = S′

1 ⊔ S′
2. Since α did not bound a disc in S, no S′

i is a disc; hence χ(S′
i) ≤ 0. This

implies χ(S′
i) > χ(S) for i = 1, 2.

Proposition 5.5. There are no incompressible surfaces in R3.

Proof. Let S be a surface in R3. As in the proof of Alexander’s Theorem, we find that S transforms
into spheres after surgerying along discs. Therefore S compresses somewhere.

A direct consequence of this proposition if the following.

Corollary 5.6. There are incompressible surfaces neither in S3 nor in the ball B.

5.2 Haken manifolds

There are two classes of irreducible closed three-manifolds: those that contain incompressible surfaces,
and those that do not. We already know that R3, S3 and B are in the second class. The manifolds
belonging to the first class are called Haken manifolds and are somehow easier to study.

Definition 5.7. A Haken manifold is a compact, connected and oriented 3-manifold with (pos-
sibly empty) boundary, which is irreducible, ∂-irreducible, and contains an incompressible and
∂−incompressible surface.

Proposition 5.8. Every boundary component X of a Haken manifold M has negative Euler char-
acteristic and is incompressible.
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Proof. No component X of ∂M is a sphere: if it were so, it would bound a ball B and we would
have M = B, contradicting corollary 5.6. Hence χ(X) ≤ 0 and X is incompressible because M is
∂-irreducible.

There are plenty of Haken manifolds.

Proposition 5.9. Let M be oriented, compact, irreducible, and ∂-irreducible.

⋆) If H2(M,∂M ;Z) ̸= {e}, then M is Haken.

⋆) If ∂M ̸= ∅ and M ̸= B, then M is Haken.

Proof. The second item is a consequence of the first one. The first come from the fact that every
non-trivial homology class α ∈ H2(M,∂M ;Z) is represented by a disjoint union of incompressible and
∂-incompressible oriented surfaces.

To understand better those Haken manifolds, we can cut them into smaller pieces that are simpler
to study: the procedure to cut an Haken manifold is called a hierarchy.

Definition 5.10. A hierarchy for a Haken 3-manifold M is a sequence of 3-manifolds

M = M0
S0−→ M1

S1−→ M2
S2−→ . . .

Sh−1−−−→ Mh

where each Mi+1 is obtained by cutting Mi along a properly embedded (possibly disconnected)
surface Si ⊂ Mi, such that the following hold.

• Every component of Si is an incompressible and ∂-incompressible surface or an essential disc,
for all i.

• The final manifold Mh consists of balls.

The number h is the height of the hierarchy.

The hierarchy is not unique: the height is not defined as the minimum number of steps necessary to
decompose the manifold in ball. In particular, one can prove the following.

Theorem 5.11. Every Haken manifold has a hierarchy of height 3.

We can use hierarchy to prove theorems on Haken manifolds, for example we state the following.

Proposition 5.12. A Haken manifold has infinite fundamental group. In particular, elliptic 3-
manifolds are not Haken.

Remark 5.13. Flat 3-manifolds are always Haken but hyperbolic 3-manifolds may or may not be
Haken.

Staying within the framework of decomposing manifolds to better understand their structure, one can
further decompose any irreducible and ∂-irreducible 3-manifold along a canonical collection of set. The
resulting pieces are either simple or belong to a special class known as Seifert manifolds. We introduce
this class in the next section.
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6 Seifert manifolds
Seifert manifolds are important because they appear naturally not only decomposing 3-manifolds but
also studying their geometry. In fact, of the eight three-dimensional geometries, six of them are realised
precisely by this class of manifolds.

6.1 Dehn-filling

If a 3-manifold has a spherical boundary component, we can cap it off with a 3-ball, much like placing
a cap on an open bottle. However, if it has a torus boundary component, there is no canonical way
to do so. This is precisely where Dehn-filling comes into play. Let M be a 3-manifold having a toric
boundary component, that is, ∂M contains a torus T .

Definition 6.1. A Dehn-filling of M along T is the operation of gluing a solid torus D× S1 to M
via a diffeomorphism ϕ : ∂D × S1 → T . The result of this operation is a new manifold denoted
Mfill.

Remark 6.2. The closed curve ∂D×{pt} is glued to some Jordan curve γ ⊂ T . We say that the Dehn-
filling kills the curve γ since it is exactly happening in the fundamental group: π1(Mfill) = π1(M)/N(γ)
where N(γ) is the smallest normal subgroup of π1(M) containing γ.

Definition 6.3. A slope on a torus T is the isotopy class of an unoriented homotopically non-
trivial Jordan curve. If we fix a basis (m, l) of H1(T ;Z) = π1(T ), every slope may be written as
γ = ±(pm+ ql) for some coprime pair (p, q).

Remark 6.4. The definition gives a 1-1 correspondence sending an element γ of the set of slopes to a
rational point p

q ∈ Q ∪ {∞}. In particular, if T is a boundary component of M , every p
q determines a

Dehn-filling of M that kills the corresponding γ: from now, we will refer to a (p, q)−Dehn-filling.

6.2 Circle bundles

We now introduce a class of 3-manifolds: the orientable circle bundles over some compact surface. First,
recall that if M is a smooth manifold with boundary, its double is obtained by gluing two copies of
M together along their common boundary: the double is M × {0, 1}/ ∼ where (x, 0) ∼ (x, 1) for all
x ∈ ∂M . Moreover, as expected, a circle bundle is a fiber bundle where the fiber is the circle S1.

Definition 6.5. Let S be a compact connected surface. As every connected manifold, it has a
unique orientable line bundle S×I or S×̃I depending on whether S is orientable or not. We denote
by

S × S1 or S×̃S1

respectively the double along the boundary of

S × I and S×̃I.

If we do not know whether S is orientable or not, we use the symbols S
(∼)
× I and S

(∼)
× S1 to denote

these objects. The second one is an orientable circle bundle over S, called the trivial one.

If the base surface S has non-empty boundary, every bundle over S is a 3-manifold with boundary
where the boundary consists of tori (one fibering above each circle in ∂S) because the torus is the
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unique orientable surface that fibres over S1. The following property says that there is essentially only
one bundle over S.

Proposition 6.6. If ∂S ̸= ∅, the orientable circle bundles on S are all isomorphic.

If the base surface is closed (in particular has empty boundary), we can parametrise the oriented
circle bundles over the surface thanks to an interger called the Euler number.

Let S be a compact surface with non-empty boundary. Pick M = S
(∼)
× S1 and fix an orientation for

M . Since a section is determined by its image, we denote by S the zero-section of M . Every boundary
component T of M is an oriented torus, which contains two natural unoriented simple closed curves:
the boundary m = T ∩ ∂S of the section S, and the fiber l of the bundle. If oriented, the curves m
and l form a basis (m, l) for H1(T,Z). We choose the orientation such that (m, l) forms a positively
oriented basis: there is a unique choice up to reversing both m and l.

Suppose now that S has only one boundary component and let Mfill be obtained by the (1, q)-Dehn-
filling of M . Let Ŝ be the closed surface obtained by capping S with a disc.

Proposition 6.7. The circle bundle M → S extends to a circle bundle Mfill → Ŝ. Every oriented
circle bundle on Ŝ is obtained in this way, and distinct values of q yield vector bundles that are not
orientation-preservingly isomorphic.

Proof. The meridian of the torus is m′ = m+ ql. The fibre l has geometric intersection 1 with m′, and
is hence a longitude for the torus. We may represent the torus as D × S1 with m′ = S1 × {y} and
l = {x} × S1. The circle bundle M → S extends to a circle bundle Mfill → Ŝ with Ŝ = S ∪D.

Every closed circle bundle N → Ŝ arises in this way: the bundle above a disc D ⊂ Ŝ is the trivial
D×S1, and if we remove it we get M → S back. The number q is intrinsically determined: the meridian
m does not depend on the section of M → S and the equality m′ = m + ql determines q. Therefore,
distinct values of q yield non-isomorphic bundles.

Definition 6.8. The integer q of the previous proposition is called the Euler number of the circle
bundle.

This integer measures how "twisted" the bundle is. In the case of the tangent bundle of a smooth
manifold, it generalizes the classical notion of Euler characteristic.

Corollary 6.9. For every e ∈ Z and every closed surface S, there is a unique oriented circle bundle
over S with Euler number e.

Remark 6.10. A change of orientation for M transforms e into −e. An oriented circle bundle over a
closed surface is trivial if and only if e = 0, if and only if the bundle has a non-zero section. Hence, the
Euler number can be interpreted as an obstruction for having a section.

6.3 Seifert manifolds

A particular case of Dehn-fillings of trivial bundles over surfaces with boundary are the Seifert manifold.

Let M be the oriented bundle S
(∼)
× S1 over a compact connected surface with boundary and let S

denote the zero-section. Let T1, . . . , Tk be the boundary tori of M . As before, on each Ti we choose an
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orientation for the meridian mi = Ti ∩ ∂S and for the fiber li of the bundle so that the basis (mi, li) for
H1(Ti;Z) is positively oriented.

Definition 6.11. A (pi, qi)−Dehn-filling on Ti is said fiber-parallel if pi = 0.

Definition 6.12. A Seifert manifold is any 3-manifold N obtained from M by Dehn-filling some
h ⩽ k boundary tori in a non-fiber parallel way: pi ̸= 0 for all i = 1, ..., k.

Remark 6.13. The Seifert manifold is closed if h = k, and has k−h boundary tori otherwise. Moreover,
it is not important to know which h tori are filled. In fact, every permutation of the boundary tori is
realised by a self-diffeomorphism of M preserving pairs ±(mi, li).

The pairs (pi, qi) are determined up to sign, so we can always suppose pi > 0 and we fully encode
the Seifert manifold N using the following notation:

(6.1) N = (Ŝ, (p1, q1), . . . , (ph, qh)),

where Ŝ is S with h boundary components capped off.
Let (p, q) be two coprime integers with p > 0.

Definition 6.14. A standard fibered solid torus with coefficients (p, q) is the solid torus

D × [0, 1]/ψ

where ψ : D × {0} → D × {1} is a rotation of angle 2π qp .

The fibration into vertical segments {pt} × [0, 1] extends to a fibration into circles of the solid torus.
The central fibre, obtained by identifying the endpoints of {0} × [0, 1], is the core of the solid torus,
and every non-central fibre winds p times around the core of M .

Figure 18: A standard fibered solid torus with p = 5. Every non-central fibre (green) winds 5 times
along the core (red).

Definition 6.15. A Seifert fibration is a partition of a compact oriented 3-manifold N with (possi-
bly empty) boundary into circles, such that every circle has a fibered neighbourhood diffeomorphic
to a standard fibered solid torus.

If we denote S the topological space obtained from N by quotienting circles to points, the map
N → S is in fact what we call a Seifert fibration. The notation

(6.2) N = (S, (p1, q1), . . . , (ph, qh))
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defines a Seifert fibration N → S and a Seifert manifold N . We can now extend the definition of Euler
number.

Definition 6.16. We define the Euler number of the fibration 6.2 to be the rational number

e(N) :=
h∑
i=1

qi
pi
.

Remark 6.17. The Euler number is only defined modulo Z when N has boundary.

Proposition 6.18. The universal cover of a closed Seifert manifold is shown in Table 1.

χ > 0 χ = 0 χ < 0

e = 0 S2 × R R3 R3

e ̸= 0 S3 R3 R3

Table 1. The universal cover of a closed Seifert manifold depends on its invariants e and χ.

Proof. The universal cover of a circle bundle over a surface S with χ(S) ⩽ 0 is a line bundle over the
universal cover R2 of S. The line bundle is trivial since R2 is contractible and we get R3.

7 The eight geometries
Previously, it has been established that every compact, orientable 3-manifold admits a unique de-

composition as a connected sum of prime manifolds. This reduces the study of closed 3-manifolds to
the classification of prime 3-manifolds.

In parallel, in Part II, we proved Poincaré’s Uniformization Theorem, stating that every connected,
simply connected surface can be uniformized, meaning that it can be given one of three canonical
geometries: the spherical geometry, the Euclidean geometry or the hyperbolic geometry.

This theorem admits a three-dimensional analogue, known as the Geometrization Conjecture, formu-
lated by William Thurston in 1976 and proven by Grigori Perelman in 2003. More precisely, we have
the following statement.

Theorem 7.1 (Thurston’s conjecture). Every oriented prime closed 3-manifold can be cut along
tori, so that the interior of each of the resulting manifolds has a geometric structure with finite
volume.

Note that this conjecture implies other, the most famous being the Poincaré conjecture. The signifi-
cation of "having a geometric structure" as well as the list of the possible geometries is the heart of this
section. First, some vocabulary.

7.1 Surface bundles

Recall that a fiber bundle is a structure (E,B, π, F ) where E,B and F are topological spaces and
π : E → B is a continuous surjection satisfying the following local triviality condition: for every x ∈ B,
there is an open neighborhood U ⊂ B such that there is a homeomorphism φ : π−1(U) → U × F in
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such a way that π agrees with the natural projection onto the first factor p1 : U ×F → U . Namely, the
following diagram commutes:

π−1(U) U × F

U

φ

π
p1

The space F is called the fiber of (E,B, π, F ).

Definition 7.2. A surface bundle over S1 is a fiber bundle M → S1 where M is a compact and
orientable 3-manifold (possibly with boundary), and the fiber Σ is a connected, compact, orientable
surface.

If M has boundary, then so does Σ, and ∂M consists of tori fibering over S1.

Definition 7.3. Let Σ be a non-orientable surface, with orientable double cover p : Σ̃ → Σ and
deck transformation τ that gives Σ = Σ̃/τ . We have

Σ
∼
× (−1, 1) = (Σ̃ × (−1, 1))/(τ,ι)

with ι(x) = −x. A local semi-bundle is the map Σ
∼
× (−1, 1) → [0, 1) that sends (p, x) to |x|. The

fiber over 0 is Σ. The one over a point x ∈ (0, 1) is Σ̃. A semi-bundle M → [−1, 1] is a map which
is a local semi-bundle when restricted to [−1, 1 − ε) and (ε, 1]. The fiber over ±1 is Σ and the fiber
over a point x ∈ (−1, 1) is Σ̃.

A connected Riemannian manifold M is homogeneous if for every p, q ∈ M there is an isometry of
M sending p to q, and is isotropic if at each point p every isometry of TpM is realized by an isometry
of M . It is easy to prove that a complete isotropic manifold is also homogeneous and has constant
sectional curvature: the fundamental examples of isotropic spaces are Sn, Rn, and Hn that are the
three geometries used for the classification in dimension 2.

Definition 7.4. We define the following notions.

⋆) A manifold X is a geometric model if it is a smooth and simply connected manifold on which
acts freely and transitively a discrete subgroup Γ < G of a Lie group G and whose stabilizers
are compact. Such a geometry is said maximal if G is the biggest group that acts on X this
way.

⋆) A geometric structure on a manifold M is a diffeomorphism from M to some X/Γ where X
is a geometric model.

Thurston showed that there exists 8 geometric models X in dimension 3 that are maximal and for
which there exists a compact manifold with geometric structure X. The eight models are the following
homogeneous simply-connected complete Riemannian 3-manifolds:
(7.1) S3, R3, H3, S2 × R, H2 × R, Nil, S̃L2, Sol.

The first three manifolds are isotropic and have constant sectional curvature; the other five are not.

Definition 7.5. Let X be one of the eight model manifolds listed in 7.1. We say that a Riemannian
3-manifold M has a geometric structure modelled on X if M is locally isometric to X, that is, if
every point p ∈ M has an open neighbourhood isometric to some open set in X.
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Remark 7.6. This definition implies in particular that M is locally homogeneous. If M is complete,
then M = X/Γ for some discrete group Γ < Isom(X) acting freely.

7.2 Elliptic three-manifolds

Let’s start with elliptic 3-manifolds, that are manifolds modelled on S3.

Theorem 7.7. A closed 3-manifold admits an elliptic metric if and only if it is a Seifert manifold
with e ̸= 0 and χ > 0.

In this situation, the idea is that the manifold M is elliptic and hence M = S3/Γ. Either Γ is a
particular cyclic group implying that M is a lens space, or, up to conjugaison, Γ preserves the Hopf
fibration of S3 which descends to a Seifert fibration. Thus, the universal cover of such a manifold is S3

and hence χ > 0 and e ̸= 0 by Table 1.

Remark 7.8. Every elliptic 3-manifold is orientable.

7.3 Flat three-manifolds

Let’s continue with flat 3-manifolds, that are manifolds modelled on R3.

Theorem 7.9. A closed orientable 3-manifold admits a flat metric if and only if it is a Seifert
manifold with e = χ = 0.

In this situation, the manifold M is flat and thus M = R3/Γ for some crystallograpic group Γ <
Isom(R3) acting freely. Every element in Γ is either a translation or a rotation. Hence, one can consider
the exact sequence

0 −→ H −→ Γ −→ r(Γ) −→ 0

where H ◁ Γ is the translation subgroup and r(Γ) < SO(3) is the image of Γ by the homomorphism
that sends every isometry to its rotational part. The group r(Γ) is finite and one has to prove that Γ
preserves a foliation of R3 into parallel lines that projects to a Seifert structure on M . By Bieberbach’s
theorem (stating that every closed flat n-manifold is finitely covered by a flat n-torus), the idea is to
show that χ(S) = 0 and e = 0 if and only if M is covered by the 3-torus.

For the other implication, one has to study every possible Seifert manifold with χ = e = 0 and
construct a flat metric for each of them.

7.4 Product geometries

7.4.1 S2 × R

We give S2 × R the product metric. There are very few manifolds modelled on S2 × R. In particular,
thanks to the fact that its sectional curvature is not constant, we have

Isom(S2 × R) = Isom(S2) × Isom(R).

Theorem 7.10. An orientable manifold admits a finite-volume S2 × R geometry if and only if it
is a closed Seifert manifold with e > 0 and χ > 0.
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Proof. The possible closed Seifert manifolds with e = 0 and χ > 0 are only S2 ×S1 and RP2×̃S1. They
are diffeomorphic to (S2 × R)/Γ where Γ is generated respectively by

{(id, τ)} and {(ι, r), (ι, r′)}

where τ is any translation, ι is the antipodal map, and r, r′ are reflections with respect to distinct points
in R.

Conversely, pick an orientable manifold M = (S2 × R)/Γ where Γ < Isom(S2) × Isom(R). Then,
Γ preserves the foliation into spheres S2 × {x}, which descends into a foliation into spheres and/or
projective planes for M . Therefore M decomposes into orientable interval bundles S2 × I and RP2×̃I,
and is hence either S2 × S1 or RP2×̃S1.

7.4.2 H2 × R

We give H2 × R the product metric. Again,

Isom(H2 × R) = Isom(H2) × Isom(R).

Before giving the principal theorem in this case, let’s consider the following exact sequence:

0 → Isom(R) → Isom(H2 × R) p→ Isom(H2) → 0.

The following proposition holds.

Proposition 7.11. A discrete group Γ < Isom(H2 × R) is cofinite, that is H2 × R/Γ has finite
volume, if and only if both p(Γ) and Γ ∩ ker(p) are discrete and cofinite.

The proof of this proposition relies on notions from hyperbolic geometry, including horocycles and
fundamental domains. While it appears in this subsection, it will later be adapted to various other
geometric models.

Theorem 7.12. The interior of a compact orientable manifold admits a finite-volume complete
H2 × R geometry if and only if it is a Seifert manifold with χ < 0 and either ∂M ̸= ∅ or e = 0.

To prove the direct implication of this theorem, one has to write int(M) = (H2 ×R)/Γ with Γ cofinite:
by the previous proposition, the group Γ ∩ ker(p) quotients every line {x} × R to a circle in M , giving
a Seifert fibration M → S onto S = H2/p(Γ) which has finite-area. We have χ(S) < 0, and either
e(M) = 0 or ∂M ̸= ∅ because H2 × {y} projects to a section for M → S.

For the other implication, we consider a sectionM → S (that exists by hypothesis) which is the fibre of
a bundle M → O over a 1-orbifold O. We may write S = H2/Γ identifying π1(S) with Γ and analogously
consider π1(O) inside Isom(R). This would give an injective map π1(M) → Isom(H2) × Isom(R) which
has a discrete image that acts freely on H2 × R, inducing a H2 × R structure on M .

7.5 Nil

The Heisenberg group in dimension 3 consists of all matrices of type:1 x z
0 1 y
0 0 1

 , x, y, z ∈ R,
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together with the usual multiplicative operation on matrices. This is a nilpotent but non-abelian Lie
group also called Nil which is diffeomorphic to R3: we identify Nil with R3 using the coordinates (x, y, z).
There is a Lie group exact sequence

0 −→ R −→ Nil −→ R2 −→ 0

where R = [Nil,Nil] is the centre of Nil and consists of all matrices with x = y = 0. Therefore Nil is a
line bundle over R2.

First of all, one has to find and study its isometry group Isom(Nil). We will not do it here, but we
state that the following sequence is exact:

0 → R → Isom+(Nil) p→ Isom(R) → 0,

where the map p assigns to each isometry of Nil its induced action on the vertical direction. The
following proposition states that, in this context, cocompact groups Γ < Isom(R2), that is groups Γ
such that R2/Γ is compact, do not lift.

Proposition 7.13. Let Γ < Isom(R2) be a discrete and cocompact group. There is no homomor-
phism f : Γ → Isom+(Nil) such that p ◦ f = id.

Futhermore, Proposition 7.11 holds for Γ < Isom+(Nil). Now, we get the following theorem.

Theorem 7.14. The interior of a compact orientable manifold admits a finite-volume complete Nil
geometry if and only if it is a closed Seifert manifold with χ = 0 and e ̸= 0.

For the proof, the first implication is similar to the previous subsection: writing int(M) = Nil/Γ
with Γ cofinite, we get a Seifert fibration M → S over a finite-area orbifold S = R2/p(Γ). Finite-
area flat orbifolds have χ(S) = 0 and are closed, since there are no cusps in flat geometry. Hence,
M is closed. We must have e ̸= 0, otherwise (up to passing to a finite-index subgroup) we would
get M = T × S1, contradicting Proposition 7.13. To prove the converse implication, we must take
a such Seifert manifold, denoted M = (S, (p1, q1) . . . , (ph, qh)). We fix any flat structure on S and
get an injection π1(S) ↪→ Isom+(R2). From that, the idea is to lift this map to get an injection
π1(M) ↪→ Isom+(Nil) such that the following diagram commutes:

π1(M) Isom+(Nil)

π1(S) Isom+(R2)

7.6 S̃L2

Recall that the tangent bundle TM of a Riemannian manifold M has a natural Riamannian structure
and that the unit tangent bundle UM ⊂ TM consists of all unitary tangent vectors and inherits a
Riemannian structure as well. Focusing on the case M = H2 where we represent H2 as the upper-half-
plane model H2, we get TH2 = H2 × C and UH2 = H2 × S1.

Let S̃L2 be the universal cover of SL2(R). Being the universal cover of a Lie group, it is itself a Lie
group and we have the following exact sequence:

S̃L2 −→ SL2(R) −→ PSL2(R) = Isom+(H2).

The group PSL2(R) acts freely and transitively on the unit tangent bundle UH2, so we can identify
PSL2(R) with UH2. With this identification, PSL2(R) inherits a left-invariant Riemannian metric,
which lifts to a left-invariant Riemannian metric on S̃L2: we may identify the latter with H2 × R.
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Again, one has to find and study the isometry group of S̃L2 which will not be done here. We only
state that the following sequence is exact:

0 → R → Isom(S̃L2) p→ Isom(H2) → 0.
Proposition 7.11 holds for Γ < Isom+(S̃L2) and Proposition 7.13 holds for Γ < Isom(H2) and f : Γ →
Isom+(S̃L2).

Proposition 7.15. The interior of a compact orientable manifold admits a finite-volume complete
S̃L2 geometry if and only if it is a Seifert manifold with χ < 0 and either ∂M ̸= ∅ or e ̸= 0.

Similarly to the two previous theorems, the idea of the first implication is the following: writing
int(M) as S̃L2/Γ with Γ cofinite, we get a Seifert fibration M → S over the finite-area orbifold S =
H2/p(Γ). If M is closed, we get e ̸= 0: otherwise, up to taking a finite-index subgroup, we would have
M = S × S1. The converse implication use exactly the same idea as for the Nil geometry.

7.7 Sol

The Sol geometry is the least symmetric one among the eight. Hence, before defining it we must
introduce some new concepts.

7.7.1 Asonov monodromy

Proposition 7.16. Every surface bundle over S1 is constructed by taking Σ × [0, 1] and gluing
Σ × {0} to Σ × {1} via an orientation-preserving diffeomorphism ψ.

Proof. Such a gluing clearly gives rise to a surface bundle over S1. Conversely, cutting a surface bundle
over S1 along a fiber yields a surface bundle over the interval, which is diffeomorphic to the product
Σ × [0, 1].

The diffeomorphism ψ is called the monodromy of the surface bundle denoted Mψ.
Remark 7.17. Since isotopic gluings produce diffeomorphic manifolds, the three-manifold Mψ depends
only of the class of ψ in the mapping class group MCG(Σ) of Σ. More than that, it actually depends
only on its conjugacy class.

Definition 7.18. A torus bundle is a surface bundle M → S1 which fiber is a torus T .

Every matrix A ∈ SL2(Z) defines a torus bundle MA with monodromy A. To understand when MA

is a Seifert manifold, we have the following proposition.

Proposition 7.19. Let M = MA be a torus bundle with monodromy A ̸= ±I. The following
holds:

• if |trA| < 2 then M is a Seifert manifold with e = 0 and χ = 0,

• if |trA| = 2 then M is a Seifert manifold with e ̸= 0 and χ = 0,

• if |trA| > 2 then M is not a Seifert manifold.

When |trA| > 2, we say that the monodromy A is Anosov.

Every semi-bundle is doubly covered by a canonical bundle. A torus bundle is said to be of Anosov
type if its monodromy is Anosov. A torus semi-bundle is of Anosov type if its double covering is.
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7.7.2 Sol geometry

The Sol group has a bundle structure, but with a one-dimensional basis: it is a R2-bundle over R.
Again, the geometry is fully governed by a Lie group Sol which is the space R3 equipped with the
following operation:

(x, y, z) · (x′, y′, z′) =
(
x+ e−zx′, y + ezy′, z + z′) .

The subgroup R2 consisting of all elements (x, y, 0) is the center of Sol, and by setting p(x, y, z) = z,
we get an exact sequence:

0 −→ R2 −→ Sol p−−→ R −→ 0.
Therefore, Sol is a plane bundle over R. We define a metric on Sol by assigning the scalar producte2z 0 0

0 e−2z 0
0 0 1


at the point (x, y, z). This metric is left-invariant, and every plane {z = k} is isometric to the Euclidean
R2. This is the geometry with the smallest amount of symmetries.

Again, we will not study its isometry group. Nevertheless, now we can understand the following
theorem.

Theorem 7.20. The interior of a compact orientable manifold admits a finite-volume complete Sol
geometry if and only if it is a torus (semi-)bundle of Anosov type.

7.8 Summary

If we sum up all the theorems stated, we get the following.

Theorem 7.21. A closed orientable 3-manifold has a geometric structure modelled on one of the
following six geometries

S3, R3, S2 × R, H2 × R, Nil, S̃L2

if and only if it is a Seifert manifold of the appropriate commensurability class, as prescribed by
Table 2. It has a Sol geometric structure if and only if it is a torus (semi-)bundle of Anosov type.

χ > 0 χ = 0 χ < 0

e = 0 S2 × R R3 H2 × R

e ̸= 0 S3 Nil S̃L2

Table 2. The closed manifolds modelled on six geometries are precisely the six commensurable classes
of Seifert manifolds, distinguished by the numbers e and χ.

As expected, the geometries are mutually exclusive: recall that two manifolds are said commensurable
if there is a manifold that covers both of them with finite degrees.

Proposition 7.22. Two closed 3-manifolds admitting different geometries are not diffeomorphic,
and not even commensurable.

The main goal of this part was to give some mathematical culture about 3-manifolds. A lot of technical
proof were skipped and a lot of choices were made. In fact, we did not mentioned the construction
of three-manifolds or the Mostow rigidity theorem, for instance. Complementary information can be
found in references such as [9], [12] or [11].
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Part IV

Four-manifolds
Recall that a topological manifold is a second countable, Hausdorff topological space locally homeomor-
phic to {x ∈ Rn |xn ⩾ 0} where the boundary corresponds to {xn = 0}. For n ⩽ 3, a smooth structure
on a manifold exists on every topological manifold: the notions coincide (n = 2: Radò, 1925, n = 3:
Moise, 1952). This is no longer true in four-dimensional spaces. For instance, smooth manifolds admit
an essentially unique triangulation but not all topological manifolds are triangulable (Casson, 1990).
We will first introduce the h-cobordism theorem, whose proof rely on handle decomposition and then
give some idea of classifications for topological and smooth manifolds thanks to the intersection forms.
This part is largely inspired by lectures notes from Bruno Martelli [7] and Marco Marengon [6].

8 Handles and h-cobordism
Let’s denote CAT the category of manifolds that we consider: CAT = C∞ or TOP. Recall from sub-
section 2.1 that every compact smooth manifold may be described via some handle decomposition.

Theorem 8.1. A TOP-handle decomposition of a TOP-4-manifold M exists if, and only if, W is
smoothable.

Idea of the proof. The reverse implication is clear: if the manifold is smooth then it admits a C∞

handle decomposition that is in particular a TOP handle decomposition. For the direct implication,
any homeomorphic embedding of smooth 3-manifolds is uniquely smoothable, so a handle decomposition
of a topological 4-manifold determines a smooth structure.

Since we will use handle decompositions, for the rest of this section we only consider smooth manifolds.

8.1 Revisiting Handle Decomposition

Handle decomposition was already introduced in the sub-section 2.1. We give a closer look in dimension
4.

a) One-handles Let M be a connected compact smooth 4-manifold, possibly with boundary. The
manifold M has a handle decomposition with one 0-handle and at most one 4 handle. The boundary of
the 0-handle is S3. Every 1-handle is attached to S3, more specifically it glues D3 ×D1 to two 3-discs
in S3 along D3 × S0. We can therefore encode each 1-handle by drawing couples of 3-discs in S3.

Remark 8.2. Recall that the boundary-connected-sum is defined by two embeddings ϕ : Dn−1 → ∂M
and ψ : Dn−1 → ∂N and by the construction M ∪ψ◦ϕ N denoted M♮N.

Definition 8.3. Let’s denote #kM the connected sum of k copies of M setting #0M
n = Sn.

Analogously, let ♮kMn be the ∂−connected sum of k copies of M setting ♮0Mn = Dn.

Using only 0- and 1-handles, we can actually construct few manifolds.

Proposition 8.4. Let a connected 4-manifold M decompose into 0-handle and 1-handles. Then,
M = ♮k(D3 × S1) and ∂M = #k(S2 × S1) for some k ⩾ 0.
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Proof. First, by proposition 2.7, we can suppose there is one 0-handle only. Now we claim that if Mn

has connected boundary and Nn obtained from M by attaching a 1-handle, then N = M♮(Dn−1 ×S1).
This would prove the proposition. To prove the claim, observe that the 1-handle is attached along
two (n− 1)-discs D1, D2 ⊂ ∂M. The Cerf Lemma claims that there is a unique orientation-preserving
embedding between a disc Dn and any connected oriented manifold Mn, up to self homeomorphisms
of M . Hence, these two discs D1 and D2 are contained in a bigger (n− 1)-disc D ⊂ ∂M . If we cut N
along D we get M and Dn−1 × S1 as required.

b) Two-handles By definition, a 2-handle is the product D2 × D2 attached along the solid torus
S1 × D2. Different 2-handles are attached along disjoint solid tori. The attaching sphere is a circle of
the form S1 × {0} which can be depicted as a circle embedded in S3.

However, the gluing of the solid torus D2 × S1 is not fully determined by the image of the attaching
circle alone. Attaching such a torus requires choosing a framing of the normal bundle that means fixing
two independent sections of the normal bundle that form a basis at each point. In practice, one section
suffices: the second is then determined up to homotopy and up to sign, but these do not affect the way
the 2-handle is attached.

c) Three- and four-handles To know whether we can attach 3- and 4-handles to close up a manifold,
we use the following.

Lemma 8.5. Let a 4-manifold N decompose into 0-, 1-, and 2-handles. It is possible to get a closed
manifold by attaching 3- and 4-handles to N if and only if ∂N ∼= #k(S2 × S1) for some k ⩾ 0.

Proof. Handles of index 3 and 4 may be turned upside down. They become 1- and 0-handles. Therefore,
together they form a manifold as in Proposition 8.4, whose boundary is diffeomorphic to #k(S2×S1).

There are many ways to attach those 3- and 4-handles to close up the manifold, but they luckily all
lead to the same one, thanks to the following.

Proposition 8.6 (Laudenbach-Poenaru). If M and M ′ are two closed manifolds obtained by
attaching 3- and 4-handles to the same manifold N with boundary, then M ∼= M ′.

d) Without 1- and 3-handles Many interesting manifolds admit a decomposition without 1- and
3-handles. That is, we have one 0-handle, some 2-handles, and maybe one 4-handle to close the manifold
up. A manifold having a decomposition of this type is necessarily simply connected; conversely, we still
do not know if every closed simply connected 4-manifold may be described in this way:

Does every simply connected compact 4-manifold have a decomposition without 1-handles?

8.2 h-cobordism theorem

Recall the notation −M for an oriented manifold M with the opposite orientation.

Definition 8.7. A cobordism W from Mn to Nn that are compact without boundary oriented
n-manifolds is a compact oriented (n+ 1)−manifold with boundary ∂W = (−M) ∪N . If such a W
exists, M and N are called CAT-cobordant.

Remark 8.8. Since ∂W = (−M) ∪ N = −(−N) ∪ (−M), W is also a cobordism from −N to −M :
this is called the upside down cobordism. Note that we haven’t changed the orientation of W .
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Remark 8.9. We got a natural cobordism I ×M from M to M , called the identity cobordism.

Definition 8.10. A cobordism W from M to N is a h-cobordism if both the inclusions M ↪→ W
and N ↪→ W are homotopy equivalences.

Let’s first state the h-cobordism theorem in high dimension and give the idea of its proof.

Theorem 8.11 (h-cobordism, Smale 1960s). Let Wn+1 be a CAT-cobordism from M to N with
π1(W ) = π1(M) = π1(N) = 1 and H∗(W,M ;Z) = 0. If n ⩾ 5, there exists a CAT-isomorphism
W ∼= I ×M which is the identity on M → {0} ×M . Thus,

M ∼=
CAT

N.

Idea of the proof. We consider only the case CAT = C∞ for simplicity: we can use handle decomposition
without worrying that the smooth techniques go through (tangent bundles, transversality,...). The TOP
version is done by Kirby-Siebenmann.

Pick a handle decomposition for W with starting point M . The goal is to modify it removing handles
to arrive at the identity cobordism I ×M . Without loss of generality, we can suppose that W :

1. has no 0-handles. In fact, connctedness is completely determined by 0- and 1- handles: every
0-handle is connected to another 0-handle or to M by a 1-handle, necessarily geometrically com-
plementary. We cancel them.

2. has no 1-handles. In fact, simply-connctedness is completely determined by 1- and 2-handles.
A 1-handle gives a loop γ, which can be pushed in M2: γ = ∂D2 with D2 ↪→ Wn+1 (Whitney
embedding). Without loss of generality, we can suppose that γ is neither in an attaching sphere
not in an attaching belt since belt spheres have dimension n− 3, they miss 2-dimensional objects
in Mi. Using the fact that π1(W ) = 1, we can use a 2−handle to cancel the geometrically
complementary 1-handle given by γ.

3. has no n- and (n+1)−handles. We can use the two previous points on the upside down cobordism.

The handles define a handle chain complex by Ck := Z⟨k − handles⟩ and by:

∂k : Ck −→ Ck−1
hk 7−→

∑
hk−1 #

(
Ak−1 ∩Bn+1−k)hk−1.

where the number in the sum is the algebraic intersection of the attaching sphere and the belt sphere
in Mk−1. This construction gives an homology H∗(Ck) is isomorphic to the singular holomogy of
(W,M) (the proof of this fact is the same as the one for cellular homology). Since, by hypothesis,
H∗(W,M ;Z) = 0, each k-handle is paired with either a (k − 1)- or (k + 1)-handle and they are alge-
braically complementary. If we can make them geometrically complementary, then we can cancel them
all and win.

Facts. Mk is simply connected if n ⩾ 4 and Mk \ (Ak ∪Bn−k) is simply connected if n ⩾ 5.

Using the fact, if we consider x, y ∈ Ak∩Bn−k of opposite signs, the path γ from x to y passing through
Ak and from y to x passing through Bn−k is homotopically trivial. By Whitney’s embedding theorem
(here n ⩾ 2 · dimD2 + 1), we can assume D2 ⊆ Mk embedded. Hence, we can define an isotopy of Ak
supported in a neighbourhood of D2 that removes the two intersections.
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In 1982, Freedman showed that the h-cobordism holds in CAT= TOP in dimension 4. The theorem
is a powerfull tool to the classification of manifolds.

Theorem 8.12 (Topological h-cobordism in dimension 4). Let W 5 : M4 → N4 be TOP-cobordism
with π1(W ) = π1(M) = π1(N) = 1 and H∗(W,M ;Z) = 0. Then, there exists an isomorphism
W ∼=TOP I ×M which is the identity on M → {0} ×M . Thus,

M ∼=
TOP

N.

Sketch of proof. The beginning is the same as in dimension n ⩾ 5:

⋆) Take a TOP-handle decomposition of W rel M , which exists by a theorem of Quinn,

⋆) Rearrange handle and cancel all 0-, 1- , 4- , and 5-handles: W consists of only 2- and 3- handles.

⋆) The handle complex is 0 → C3
∂3−→ C2 → 0, and since H∗(W,M ;Z) = 0, the map ∂3 is an

isomorphism: after change of basis (achieved by handleslides) 2- and 3-handles are paired-up.

⋆) h2 and h3 are algebraically complementary, but now the Whitney trick fails.

Again, we consider γ a path from x to y on A and from y to x on B. The 4-manifold after the 2-handles
and before the 3-handles M2 is still simply connected: there exists an immersed disc D in M2 with
boundary γ. There might have problems due to the fact that the dimension is strictly smaller than 5:

⋆) D might intersect A∪B: we know that M2 \A and M2 \B are simply connected, so by a theorem
from Freeman, there exist spheres that are geometrically dual to A and B. After some "Casson
moves" we get a knew collection of A′ and B′ such that π1

(
M2 \ (A′ ∪B′)

)
= 1.

⋆) D might have a wrong framing: there exists an immersed sphere TD algebrically dual to D such
that TD · TD = ±1, we take D ∪ TD and we get a new disc with the right framing.

⋆) D might have double points: near a double point, there are two branches. Connect them with
a loop γ′ (that goes from the double point to itself). If γ′ = ∂D′, an embedded disc in the
complement of (A ∪B ∪D), then apply the Whitney trick and get rid of the double point (using
kink).

However, in finding D′ we run in the same 3-problem as before.

1) Making the complement of D simply connected (so there exist D′ immersed). Fact: the comple-
ment of D has perfect π1.

2) Finding a framing of D′: can be fixed with an algebraically dual sphere to D.

3) Double points of D′: we push the problem to D′′.

By iterating the procedure, we construct an infinite object called a Casson handle C. We know that this
Casson handle is homotopically equivalent and homeomorphic to D2 ×R2 hence is a genuine topological
Whitney disc and can be used to cancel interaction between A and B.

9 Topological 4-manifold
Much topology in dimension 4 is controlled by an important object, which is absent in lower dimensions:
the intersection form.
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9.1 Intersection forms

On a simply connected 4-manifold X, all the homology is concentrated in the free second homology
group H2(X,Z). In fact, the homology groups Hk(X;Z) are trivial for k /∈ {0, 2, 4}. For k /∈ {0, 4},
these homology groups are canonically identified with Z. The only remaining homology group carries
a symmetric bilinear form called intersection pairing.

Definition 9.1. If X is a compact oriented topological 4-manifold, its intersection form is

QX : H2(X, ∂X;Z) ×H2(X, ∂X;Z) −→ Z
(α, β) 7−→ ⟨α ∪ β,X⟩ := (α ∪ β)([X]).

where [X] ∈ H4(X,Z) is the fundamental class associated to the orientation.

Remark 9.2. Using properties of the embedding, we can extend the definition to the case where X is
not connected and/or not compact. In the case where X is not orientable, there still exists a definition
of QX over Z/2Z.

Remark 9.3. Changing the orientation replaces the intersection form by its negative: Q−X = −QX .

A geometric way to see the intersection form is given by the following.

Theorem 9.4. Let X be a compact oriented smooth manifold and let α, β be elements of
H2(X, ∂X). If [Σα], [Σβ] ∈ H2(X) are the Poincaré duals, then

QX(α, β) = #(Σα ⋔ Σβ)

Proof. We can represent α by a 2-form ηα supported in a neighbourhood of Σα. In coordinates, if
Σα = {x = y = 0}, then ηα can be chosen as

ηα = f(x, y)dx ∧ dy

where f(·, ·) is a bump function near 0 with integral on R2 equal to 1. Analogously, choose a similar
ηβ for β and we get∫

X
α ∪ β =

∑
p∈Σα∩Σβ

∫
ν(p)

f(x, y) · f(z, w) · (±dx ∧ dy ∧ dz ∧ dw) =
∑
p

sgn(p) = #(Σα ⋔ Σβ).

The sign in the integral depending on the sign of the intersection.

It follows from the definition some properties of the intersection form.

Proposition 9.5. The intersection form is symmetric and vanishes on the torsion part of
H2(X, ∂X;Z).

Remark 9.6. The determinant of QX is well-defined.

Example 9.7. Let’s give some examples.

• QS4 : since H2(S4) = 0, the intersection form is trivial;

• QCP2 = (1). In fact, since H2(CP2) = Z, any projective line represents a generator. By Bezout’s
theorem, any two lines intersect in exacty ont point, thus the matrix representing QCP2 is [1] ;
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• QCP2#CP2 = QCP2 ⊕ −QCP2 = [1] ⊕ [−1] =
( 1 0

0 −1
)
;

• QS2×S2 = ( 0 1
1 0 ). Indeed, H2(S2 ×S2;Z) = Z[{pt} ×S2] ⊕Z[S2 × {pt}]. Hence, the generators are

represented by fibers of the projections onto the factors. As fibers of the same projection do not
intersect and fibers of different projections intersect in exactly one point, the intersection form is
represented by the hyperbolic plane.

The intersection form has some invariant.

Definition 9.8. For a compact oriented topological 4-manifold X, we define

• The rank as rkQX = rkZ(H2(X, ∂X;Z)), the second Betti number.

• The signature σ(X) = σ(QX ⊗Z R), which is equal to the number of positive eigenvalues
minus the number of negative eigenvalues. We also define b±

2 as the rank of the maximal
(±)−definite subspace. Hence, the signature is b+

2 − b−
2 .

• the parity: QX is even if QX(x, x) ≡ 0 (mod 2) for all x ∈ H2 and is odd otherwise.

Remark 9.9. QX is even if, and only if, all diagonal entries of the associated matrix are even.

Remark 9.10. We can define the same notions of rank, signature and parity for any symmetric bilinear
form Q : Λ × Λ → Z by replacing H2 by Λ. The first is the rank of Λ as a module over the intergers
and the second is well defined thanks to Sylvester’s law of inertia.

Example 9.11. The intersection forms QCP2 and QS2×S2 are ever while QCP2#CP2 is odd.

Definition 9.12. Let Λ = Zn, and Q : Λ × Λ → Z be a symmetric bilinear form. Then Q is called
unimodular is x ∈ Λ 7→ Q(x, ·) ∈ Λ∗ is an isomorphism.

Remark 9.13. Given a basis b for Λ and its dual basis b∗ for Λ∗, the matrices associated to Q and L
are the same. It follows that Q is unimodular if and only if its determinant is ±1.

Actually, there was a reason why we gave the definition only for intersection forms and not for generic
bilinear forms: it is stated without proof in the following theorem.

Theorem 9.14. Every symmetric bilinear form is the intersection form of some compact simply
connected 4-manifold with boundary.

9.2 The quadratic form E8

There are finitely many isomorphism types of unimodular forms on each rank r. Every form of rank
r ⩽ 8 is constructed by summing the elementary forms [1], [−1], H, where H = ( 0 1

1 0 ), except the
following form of rank r = 8.

E8 :=



2 1
1 2 1

1 2 1
1 2 1

1 2 1 1
1 2 1

1 2 1
1 2


.
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Proposition 9.15. The matrix E8 is even, definite, positive. Its principal determinants are re-
spectively 2,3,4,5,6,7,8,1 where 1 = det(E8), and its signature is σ(E8) = 8.

Proof. These are calculus except for the first assertion that holds thanks to Remark 9.9

Remark 9.16. The only even forms we may obtain with [1], [−1], andH are nH where nH = H⊕· · ·⊕H
if n > 0, nH = (−H) ⊕ · · · ⊕ (−H) if n < 0 and 0H is the zero rank (empty) form. All the nH have
signature zero: therefore E8 is a new form. By using E8 and H, we may construct more even forms.

9.3 Freedman’s theorems

The main results of Freedman presented here are highly non-trivial and are thus only stated. They
furnish a beautiful and simple description of the world of topological 4-manifolds.

9.3.1 Homology spheres

We introduce here some notions that are essential to the comprehension of Freedman’s results: homology
spheres.

Definition 9.17. A homology sphere is a closed n-manifold N having the same Z−homology as a
sphere Sn. That is, having Hi(N,Z) = {e} for all i = 1, ..., n− 1.

Proposition 9.18. Let M be an oriented compact simply connected 4-manifold with boundary
such that ∂M is connected. The intersection form Q on H2(M,Z) is unimodular if and only if ∂M
is a homology sphere.

Proof. Consider the exact sequence (over the integers)

H3(M,∂M) ∂−→ H2(∂M) i−→ H2(M) j−→ H2(M,∂M) ∂−→ H1(∂M) i−→ H1(M)

Since M is simply connected, the first and last modules are trivial. Therefore we have

0 ∂−→ H2(∂M) i−→ H2(M) j−→ H2(M,∂M) ∂−→ H1(∂M) i−→ 0

The module H2(M,∂M) is canonically identified with H2(M), which can in turn be identified with
the dual module H2(M)∗ since there is no torsion (because M is simply connected). The map j can
therefore be interpreted as a map

j : H2(M) → H2(M)∗

and this map is in fact the adjunction of the intersection form on H2(M). By definition, the intersection
form is unimodular if and only if j is an isomorphism. This holds if and only if both H2(∂M) and
H1(∂M) vanish, as required.

A particular case of the proposition is the following.

Corollary 9.19. The boundary of a contractible 4-manifold is a homology sphere.

There are actually plenty of contractible smooth 4-manifolds. Note that we need 1-handles to con-
struct them: by using 0- and 2-handles we only get D4 (since the Euler characteristic must be 1).
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Remark 9.20. The only smooth contractible manifold currently known bounded by S3 is D4: whether
this is the only one or not, the question is equivalent to the still open smooth 4-dimensional Poincaré
conjecture:

Let M4 be smooth and homotopy equivalent to S4. Is M diffeomorphic to S4?

9.3.2 Freedman’s theorems

The previous sub-section raised natural questions:

⋆) Which intersection forms are realized by 4-manifolds?

⋆) Are 4-manifolds completely determined by their intersection forms?

Freedman’s theorem can be considered as the first thunderbolt that struck 4-manifold theory by replying
those questions.

Theorem 9.21 (Freedman). Every homology sphere bounds a topological contractible 4-manifold.

Sketch of proof. Let Σ be a homology 3-sphere. Take Σ × [0, 1].

1) By doing some topological surgery, transform Σ× [0, 1] into a manifold S with the same boundary
and homology, but simply connected.

2) Take countably many copies S1, S2, . . . , Sk . . . of S, glue them altogether and compactify with one
point. The resulting object is clearly contractible. Much less clearly, it is a topological manifold:
the cone point has indeed a neighborhood homeomorphic to a 4-ball.

Remark 9.22. This theorem is not valid in the smooth category. For instance, Poincaré homology
sphere does not bound any smooth contractible 4-manifold.

Corollary 9.23 (Freedman). Every symmetric unimodular bilinear form is the intersection form
of a simply connected closed topological 4-manifold.

Proof. By Theorem 9.14 every symmetric unimodular bilinear form Q is the intersection form of a
simply connected 4-manifold M with boundary. By Proposition 9.18 the boundary ∂M is a homology
sphere. It therefore bounds a contractible topological manifold N . Glue M and N together. Since N
is contractible, the resulting manifold has the same fundamental group and 2-homology as M .

Again, this result is far from being true in the smooth setting. This leads to plenty of topological
4-manifolds having no smooth structure.

Theorem 9.24. Every even (resp. odd) symmetric unimodular bilinear form is the intersection form
of precisely one (resp. two) simply connected topological closed 4-manifold, up to homeomorphism.

Example 9.25. The form [1] is odd. There are therefore two topological manifolds with this form.
One is CP2, while the other one is denoted by ∗CP2. Both such manifolds can be constructed as follows:
take a knot. Its boundary is a homology sphere, which can be closed up via a contractible topological
manifold. The trivial knot is homeomorphic to CP2 while the trefoil knot gives ∗CP2.
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Example 9.26. The form E8 is even. There is only one topological closed, simply connected manifold
with form E8 and is named the E8-manifold. It does not admit a smooth structure. One can prove
it by absurd using Rokhlin’s theorem: "If a smooth compact 4-manifold has a spin structure, then the
signature of its intersection form is divisible by 16". We will neither explain what a spin is nor give more
details about this result, the curious reader can see lectures notes of [6] or [3] for further information.

As a corollary of Freedman’s theorem, we have the following result that responds to Remark 9.20 in
the topological category.

Corollary 9.27 (Poincaré conjecture in dimension 4). A closed topological manifold homotopically
equivalent to S4 is homeomorphic to S4.

10 Smooth 4-manifolds
For the smooth category, some important theorems about 4-manifolds were stated and proved before
1970. In particular, there are Whitehead’s theorem, which says that the homotopy type of a closed
simply connected 4-manifold is entirely determined by its intersection form; Wall’s theorem, which says
that two simply-connected smooth manifolds become diffeomorphic after summing with some copies
of S2 × S2 and Rohlin theorem, which says that an oriented 4-manifold with zero signature bounds a
5-manifold.

10.1 The Whitehead theorem

A way to prove Whitehead’s theorem is to use a famous construction determining various homotopy
groups of spheres.

10.1.1 The Thom-Pontryagin construction and wedge product of spheres

Except if specified, X denote a smooth closed manifold.

Definition 10.1. A framed submanifold Y k ⊂ Xm+k of X is a smooth submanifold equipped with
a trivialization of the normal bundle (that is, a framing on the normal bundle), i.e. it is a smooth
submanifold with an identification of NY with Y × Rm.

Definition 10.2. A cobordism of two framed k-manifolds Y0, Y1 of X is a properly embedded
framed (k + 1)−manifold Z ⊂ X × [0, 1], whose intersection with X × {0} and X × {1} coincides
with Y0 × {0} and Y1 × {1} as framed manifolds.

Fix a point p ∈ Sm and let f : Xm+k → Sm be a smooth map which is transverse to p. Its
counterimage f−1(p) is a smooth submanifold Y k ⊂ X. Take a small disc Dm around p. Over this disc,
the map looks like a projection Y ×Dm → Dm and this equips the manifold Y with a framing.

Proposition 10.3 (Thom-Pontrjagin construction). This operation defines a bijection

[Xm+k, Sm] −→ Ωframed
k (X)

between the set [Xm+k, Sm] of maps from Xm+k to Sm seen up to homotopy, and the set Ωframed
k (X)

of k-dimensional framed submanifolds in X seen up to cobordism.

43



Proof. We prove that the function

Ψ : [Xm+k, Sm] −→ Ωframed
k (Xm+k)

introduced above is well-defined. Given f , the trivialization on Y = Ψ(f) is well-defined only up to
homotopy; however, homotopic trivializations are easily seen to be cobordant, so this is not a problem.
Let f0 and f1 be two functions, both transverse to p, linked by a homotopy F : X × I → Sm. They
define two framed manifolds Y1 and Y2. We can perturb F so that it is also transverse to p. The
preimage F−1(p) is thus a framed manifold Z ⊂ X × I which connects Y1 and Y2: these are thus
cobordant, as required.

We define an inverse
Φ : Ωframed

k (Xm+k) −→ [Xm+k, Sm]

as follows. Let Y k ⊂ Xm+k be a framed manifold. A tubular neighborhood is identified with Y k ×Dm.
Let Dm → Sm be the surjective map which sends 0 to p and collapses ∂Dm to the antipodal point q.
By projecting Y k ×Dm onto its second factor we get

Y k ×Dm −→ Dm −→ Sm.

Extend this map to the whole of X by sending every point in Xk+m \ (Y k ×Dm) to q. We get a map
X → Sm, as required. If Y k changes by cobordism, the resulting map changes by homotopy. This
defines Φ.

The map Ψ ◦ Φ is clearly the identity. We prove that Φ ◦ Ψ also is. A map f0 induces a framed
Y = Ψ(f0), which in turn induces another map f1 = Φ(Y ). The maps f0 and f1 coincide (up to
homotopy) on a fixed tubular neighborhood Y × Dm, which is sent to a disc D ⊂ Sm, and may differ
a lot on the complement X \ (Y × Dm). However, such a complement is sent by both f0 and f1 to
the complementary disc Sm \ int(D). Two maps with values in a disc are homotopic (relative to their
boundary), and hence we are done.

The following generalization of Pontryagin-Thom construction will be needed in the proof of White-
head’s theorem. Let ∨hS2 be a wedge product of h spheres. Fix points p1, . . . , ph in distinct spheres,
disjoint from the vertex v of the wedge. Let f be a continuous map

f : Xm+k −→ ∨hS2

which is everywhere smooth except at f−1(v), and is transverse to p1, . . . , ph. The counterimages
f−1(p1), . . . , f−1(ph) define h disjoint (not necessarily connected) framed k-submanifolds of X. Futher-
more, one can prove the following.

Proposition 10.4. This operation defines an isomorphism of groups

π3(∨hS2) −→ S(h,Z) ∼= Z
(h+1)h

2

where S(h,Z) is the group of all symmetric integer matrices of rank h.

10.1.2 The Whitehead theorem

Let’s first state some prerequisites to the main proof of this sub-section.

Theorem 10.5 (Whitehead, homology). Let f : X → Y be a continuous map between simply
connected CW-complexes. It is a homotopy equivalence if and only if it induces isomorphisms
f∗ : Hn(X,Z) → Hn(Y,Z) on all homology groups.
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Theorem 10.6 (Hurewicz). Let X be a conncted CW-complex. If π1(X) = · · · = πn(X) = 0 for
some n ⩾ 1, then fn+1 : πn(X) → Hn(X;Z) is an isomorphism.

Corollary 10.7. If X is a simply connected 4-manifold, every element in H2(X4,Z) can be realized
as an immersed sphere.

Proof. By Hurewicz Theorem the map π2(X) → H2(X;Z) is an isomorphism. Therefore every element
in H2(X;Z) is realized as a map f : S2 → X which can be perturbed to an immersion.

Theorem 10.8 (Whitehead). Let M and N be two closed smooth oriented simply connected 4-
manifolds. They are homotopically equivalent if and only if their intersection forms QM and QN
are isomorphic.

Proof. Two homotopically equivalent manifolds have the same cohomology ring and thus the same
intersection form. Conversely, let M and N have isomorphic intersection forms. Let Ṁ be M with the
interior of a 4-disc removed. The only non-trivial homologies of Ṁ are H0 = Z and H2 = Zh. Since
M is simply connected, Hurewicz theorem guarantees that every element in H2 is represented by an
immersed sphere. In particular, a basis {α1, . . . , αh} is represented by immersions fi : S2 → M with
i = 1, . . . , h. We can form a bouquet of these immersions (we homotope them so that they all touch a
fixed point in M) and get a map

f : ∨hS2 → Ṁ.

This map induces isomorphisms on homologies H0 and H2, and is thus a homotopy equivalence by
Whitehead’s Homology theorem. The manifold M is obtained from Ṁ by attaching a 4-cell. The
attaching map translates via the homotopy equivalence to an attaching map ψ : ∂D4 → ∨hS2, well-
defined up to homotopy. The homotopy equivalence extends to an equivalence between M and the
CW-complex ∨hS2 ∪ψ D4. The map ψ defines an element in π3

(
∨h S2). By proposition 10.4, the

map ψ is determined up to homotopy by the corresponding matrix Q. It remains to show that Q
represents the intersection form QM . Following Thom-Pontryagin construction, take a point pi in each
2-sphere. Let Fi be an oriented surface properly embedded in D4 bounding a link defined by the pi. By
collapsing ∂Fi to a point we get an oriented surface Fi in ∨hS2 ∪ψ D4 and hence a homology element
in H2(∨hS2 ∪ψ D4) ∼= H2(M). The homology elements we get are dual to α1, . . . , αh, thus they form a
basis. The way they intersect (transversely) in D4 transports to M : therefore Q represents QM .

10.2 Wall theorem

We know from Whitehead theorem that two closed simply connected smooth oriented 4-manifolds with
isomorphic intersection forms are homotopy equivalent. Actually, we know from Freedman theorem
that they are homeomorphic. Moreover, a theorem of Wall shows that they become diffeomorphic after
summing with some copies of S2 × S2. A tool for the proof is the following theorem.

Theorem 10.9. Two closed oriented 4-manifolds are cobordant if and only if they have the same
signature.

Recall now that QCP2#CP2 ̸= QS2×S2 : in terms of invariants the first is odd while the second is even.
We anticipate Serre theorem 11.6 to say that they are not isomorphic. They are both S2−bundles over
S2 but they are different since their intersection forms are different. We denote S2×̃S2 := CP2#CP2.
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Remark 10.10. One can prove that the Rk-bundles over Sh up to isomorphism are in 1−1 correspon-
dance with πh−1(SO(k)). Since π1(SO(3)) = Z2, then S2×̃S2 and S2 ×S2 are the only two R3−bundles
over S2.

Lemma 10.11. Let N5 be obtained by adding a 2−handle to D5. Then ∂N5 is either S2 × S2 or
S2×̃S2.

Proof. The attaching sphere of the 2-handle is a loop, and all loops are isotopic in S4. Represent D5

as D2 ×D3 and take S1 × {0} as a loop. Attach the handle along S1 ×D3. The result is the attaching
of two copies of D2 ×D3 which extends to a D3-fibering over S2. Its boundary is a S2-fibering over S2.
It remains to use Remark 10.10 to conclude.

Theorem 10.12 (Wall). Let M4 and N4 be two closed simply connected smooth oriented 4-
manifolds with isomorphic intersection forms. There is a natural number h such that M4#h(S2×S2)
is diffeomorphic to N4#h(S2 × S2).

Proof. Since they have the same signature, the two manifolds are cobordant. We thus get a five-
dimensional cobordism W 5 with ∂W = M ∪N . Take a handle decomposition of this cobordism. As in
the proof of the h-cobordism, we can modify the handle decomposition to end up with 2- and 3-handles
only. Let Z4 be the level manifold between 2- and 3-handles. We show that the attaching of a 2-handle
changes the level manifold by a connected sum with either S2 ×S2 or S2 ×̃S2. Every (five-dimensional)
2-handle is attached along a loop in the (four-dimensional) level manifold. This four-dimensional level
manifold is simply connected, and hence the loop is isotopic to the trivial one. Therefore the loop
is contained in a 4-disc, and the level manifold is changed via a connected sum with the manifold of
Lemma 10.11, which is indeed either S2 × S2 or S2 ×̃ S2. Therefore we get

Z ∼= M#h(S2 × S2)#k(S2 ×̃ S2) ∼= N#l(S2 × S2)#m(S2 ×̃ S2).

10.3 Cobordism groups

In this section, we will only give some ideas of the proof of two important results: every closed 3-
manifold bounds a 4-manifold, and every closed 4-manifold of zero signature bounds a 5-manifold. The
steps are the following:

(1) Embed Mn in Rn+k, or equivalently in Sn+k;

(2) If T is the tubolar neighborhood of Mn in Sn+k and Ṫ its interior, then find a section of M in
∂T which is homologically trivial in the complement Sn+k \ Ṫ ;

(3) The section bounds a cycle: try to represent it by a manifold.

The third step works if k ⩽ 3, as the following states.

Lemma 10.13. Let Zn+k be a compact smooth manifold and Mn ⊂ ∂Zn+k a closed oriented
connected submanifold which is homologically trivial, i.e., [Mn] = 0 in Hn(Zn+k,Z). If k ⩽ 3, there
is a properly embedded smooth oriented submanifold Wn+1 ⊂ Zn+k such that ∂Wn+1 = Mn.

The second step works if k ⩽ 2, as the following states.
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Theorem 10.14. Every oriented connected smooth manifoldMn ⊂ Rn+2 bounds a smooth oriented
Seifert manifold Wn+1 ⊂ Rn+2.

We are left with the point (1) of our program. If we can embed Mn in Rn+2, we are done. However,
Whitney’s theorem only provides embeddings in the much larger R2n. When n = 3, we get an embedding
of a 3-manifold in R6 instead of the required R5.

Whitney’s theorem provides an immersion of Mn in R2n−1 and even if there are manifolds that do
not embed in R2n−1, up to cobordism, they do.

Theorem 10.15. Every closed oriented manifold Mn is cobordant to a closed oriented manifold
embedded in R2n−1.

We are now ready to enunciate the following.

Corollary 10.16. Every oriented 3-manifold bounds an oriented 4-manifold. (That is, Ω3 = 0.)

Proof. A closed oriented 3-manifold is cobordant to a closed oriented 3-manifold embedded in R5. Such
a manifold bounds an oriented 4-manifold by Theorem 10.14.

Let’s first enunciate the following.

Theorem 10.17 (Cobordism, Rokhlin). Let W be smooth, closed, and oriented. Then W = ∂M
for some compact, smooth, oriented 5-manifold if and only if σ(W ) = 0. That is, the signature
σ : Ω4 → Z is an isomorphism.

The main idea is that all the arguments used in the 3-dimensional case may be adapted to the
4-dimensional one up to summing up with some copies of CP2.

11 Classification of intersection forms
The classification of all forms that arise as intersection forms of smooth 4- manifolds is not yet complete.
However, much is known.

Theorem 11.1. Given two compact topological manifolds X1 and X2, then QX1#X2
∼= Qx1 ⊕QX2 .

Proof. Removing a ball B4 and gluing along a sphere S3 does not change the second homology (and
hence the intersection form).

Remark 11.2. In CAT= TOP, the converse (for simply connected manifolds) holds: if π1(X) = {e}
and QX ∼= Q1 ⊕ Q2, then there exist two topological manifolds X1, X2 such that Qxi

∼= Qi and
X ∼=TOP X1#X2.

The converse of Theorem 11.1 does not hold in CAT = C∞: for instance, one can compute QK3.
But we have the following.

Theorem 11.3 (Freedman-Taylor). Let X4 be smooth, compact and simply connected. Suppose
that QX ∼= Q1 ⊕ Q2, then there exist two smooth manifolds X1, X2 such that Qxi

∼= Qi and
X ∼=C∞ X1 ∪Y X2, where Y is a ZHS3, i.e. a 3-manifold with the same Z-homology as S3.
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The study of intersection forms is divided in two categories of bilinear forms: definite and indefinite.

Definition 11.4. A bilinear symmectric unimodular form Q is indefinite if it has both positive and
negative eigenvalues. It is definite otherwise.

In number theory, Meyer’s lemma state that if the equation Q(x) = 0 has a non-zero real solution,
then it has a non-zero rational solution. Up to multiplication by the denominators, an integral solution
x may also be found. This result is usually deduced from the Hasse–Minkowski theorem (which was
proved later) and from the following statement: "A rational quadratic form in five or more variables
represents zero over the field Qp of p-adic numbers for all p". We state it properly.

Lemma 11.5 (Meyer’s lemma). Let Q : Λ × Λ → Z be a bilinear symmectric unimodular form. If
it is indefinite, then there exists an element x0 in Λ such that Q(x0, x0) = 0.

Meyer’s lemma, that is admitted, is used to prove the following classification result (already mentioned
above Remark 10.10).

Theorem 11.6 (Serre). Two symmetric bilinear unimodular forms Q,Q′ both indefinite are such
that the following holds.

Q ∼= Q′ if and only if


rkQ = rkQ′

σ(Q) = σ(Q′)
have same parity

⋆) If Q is odd, then Q ∼= a+[1] ⊕ a−[−1] with a± = rkQ±σ(Q)
2 .

⋆) If Q is even, then Q ∼= b · E8 ⊕ c ·H with b = −σ(Q)
8 and c = rk(Q)−|σ(Q)|

2 .

Remark 11.7. To give a sense to the theorem, we first have to check that a±, b and c are well defined
(i.e., are natural numbers).

Remark 11.8. Note that rk(Q) ≡ σ(Q) (mod 2) if Ann(Q) = {0}. Thus, in Serre theorem, a± and c
are always natural numbers.

11.1 The odd case

Given a submodule B ⊂ A and a symmetric bilinear form Q, we define the Q-orthogonal B⊥ as usual.
In general, we cannot split A as B⊕B⊥ as we often do with vector spaces. In fact, we can split precisely
when Q|B is unimodular, as the following shows.

Lemma 11.9. We have A = B ⊕ B⊥ if and only if Q|B is unimodular. If this holds, we have
Q = Q|B ⊕Q|B⊥ .

Proof. We always have B ∩ B⊥ = {0}. We show that B + B⊥ = A if and only if Q|B is unimodular.
Indeed, if B ⊕B⊥ = A, then Q = Q|B ⊕Q|B⊥ and detQ = detQ|B · detQ|B⊥ , so necessarily we must
have detQ|B = ±1. Conversely, suppose Q|B is unimodular. We want to show that B +B⊥ = A. Let
x ∈ A be any element. We will show that it lies in B+B⊥. The unimodular form Q defines an adjoint
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x∗ ∈ A∗ by x∗(a) = Q(x, a). The restriction x∗|B is an element of B∗. By the unimodularity of Q|B,
such an element is dual to some xB ∈ B. That is, we have

Q(xB, b) = Q(x, b) for all b ∈ B.

Write x = xB + (x − xB). Since Q(x − xB, b) = 0 for all b ∈ B, we have x − xB ∈ B⊥, and we are
done.

Proposition 11.10 (Odd Serre). Let Q be an odd indefinite unimodular form. Then, we have
Q ∼= a+[1] ⊕ a−[−1] with a± = rkQ±σ(Q)

2 .

Proof. Let Q be defined over some free module A. We prove our assertion by induction on dimA. By
Meyer’s lemma, there exists an element v ∈ A with Q(v, v) = 0. We may suppose that v is primitive.

There exists an element w such that Q(v, w) = 1: it suffices to complete v to a basis for A and take
w = v∗ in a dual basis.

Consider the submodule B generated by v and w. Then we have Q|B ∼= ( 0 1
1 x ) for some integer x.

Thus, detQ|B = −1, and Lemma 11.9 gives Q = Q|B ⊕Q|B⊥ .
We want x to be odd. If x is even, then Q|B is even, and thus Q|B⊥ must be odd. Therefore, there

exists an odd element u ∈ B⊥, and by substituting w with w + u, we obtain an odd integer x.
It is now easy to construct a change of basis that transforms(

0 1
1 x

)
into

(
0 1
1 1

)
and finally into

(
1 0
0 −1

)
.

This in particular proves our assertion when dimA = 2.
If dimA > 2, we argue by induction. We have Q ∼= [1]⊕[−1]⊕Q|B⊥ . Both [1]⊕Q|B⊥ and [−1]⊕Q|B⊥

are odd. One of these is indefinite. By induction, it is isomorphic to m[1] ⊕ n[−1], and we are done.

11.2 The even case

Definition 11.11. Given a symmetric bilinear unimodular form (Λ, Q), an element w ∈ Λ is said
to be characteristic if for all y ∈ Λ, we get Q(w, y) ≡ Q(y, y) (mod 2). The element is said to be
ordinary otherwise.

Remark 11.12. In some sense, a characteristic element controls the parity of all elements in Λ.

Example 11.13. The trivial element 0 ∈ Λ is characteristic if, and only if, Q is even.

Lemma 11.14 (Van der Blij). We have Q(w,w) = σ(Q) (mod 8).

Proof. First, take two characteristic elements w,w′. Thus Q(w − w′, z) is even for all z ∈ A. Since Q
is unimodular, this implies that w − w′ = 2v for some v ∈ A. Therefore,

Q(w′, w′) = Q(w − 2v, w − 2v) = Q(w,w) − 4Q(v, w) + 4Q(v, v)
= Q(w,w) + 4(Q(v, v) −Q(v, w)).

Since Q(v, v) −Q(v, w) is even, we get

Q(w,w) ≡ Q(w′, w′) (mod 8).

Every characteristic element thus yields the same number in Z8. It remains to prove that it is the same
number determined by σ(Q). There are two cases:
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(1) If Q is odd and indefinite, we have Q ∼= m[1] ⊕ n[−1] by Serre’s theorem. Take w = (1, . . . , 1).
We get Q(w,w) = m− n = σ(Q).

(2) In all other cases, the form Q′ = Q ⊕ [1] ⊕ [−1] is odd and indefinite. If w is a characteristic
element for Q, then w′ = (w, 1, 1) is characteristic for Q′.
By the previous point, the theorem holds for w′. Since Q(w,w) = Q(w′, w′) and σ(Q) = σ(Q′),
it also holds for w.

Corollary 11.15. If Q is an even form, then σ(Q) is divisible by 8.

Proof. The trivial element is characteristic.

Example 11.16. The hyperbolic form H = ( 0 1
1 0 ) is even, has rank 2 and signature 0.

Corollary 11.17. Let Q be an even indefinite unimodular form. Then Q ∼= b · E8 ⊕ c · H with
b = −σ(Q)

8 and c = rk(Q)−|σ(Q)|
2 .

Example 11.18 (K3). A K3 space is simply connected and has c1 = 0: it is even, indefinite, of rank
22 and signature -16. It follows that the intersection form is QK3 = 2(−E8) ⊕ 3H.

Remark 11.19. When we look at definite forms, we get too many of them. For instance, if Q is even
and has rank rk(Q) = 35 we get more than 80 millions of them, when rk(Q) = 40, we get more than
1051 of them. When Q is odd, it is even worse!

11.3 The Kirby-Siebenmann invariant

To get a more precise statement than Theorem 9.14, we introduce a new invariant.

Definition 11.20. Given a closed, connected, topological 4-manifold, there exists a constant ks(X)
in Z/2Z such that

⋆) ks(X#Y ) = ks(X) + ks(Y );

⋆) if X admits a smooth structure, then ks(X) = 0.

Remark 11.21. There exists manifold without smooth structure that has Kirby-Siebenmann constant
zero.

This definition gives an obstruction to endowing a manifold with a smooth structure (in reality, it is
with a piecewise-linear structure, but in dimension 4 it is equivalent). The existence of such a constant
must be demonstrated. We admit it here to enunciate the following theorem by Freedman in 1982.

Theorem 11.22. Let Q be a bilinear symmetric unimodular form. Then

i) Q is even =⇒ there is a unique topological manifold X with QX ∼= Q;

ii) Q is odd =⇒ there are exactly two topological manifolds with QXi
∼= Q distinguished by

their ks invariant.
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While 1- and 2-dimensional manifolds are now fully classified, understood, and geometrized, manifolds
in dimensions 3, 4 and higher still pose many deep and open questions. This brief and selective document
necessarily involved choices, leaving out many fascinating aspects of the topic. We therefore warmly
encourage the interested reader to consult other references such as [4] for 3-manifolds, [3] for 4-manifolds
and [1] for both.
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