Entraînement et révisions

Exercice 1 (~ 4 points, 15min). On munit $E = \mathcal{C}^0([0,1],\mathbb{R})$ de la norme $\|\cdot\|_{\infty}$ et on considère l'application $L: f \in E \mapsto L(f) \in E$ définie pour tout $t \in [0,1]$, par

$$L(f)(t) = \int_0^1 (t+s)f(s)ds$$

- 1. Montrer que L est bien définie et continue.
- 2. Sa norme subordonnée est-elle atteinte?

Exercice 2 (~ 5 points, 15min). Soit f: $\mathbb{R}^2 \to \mathbb{R}^3$ définie par $f(x,y) = (\cos(x)e^y, \sin(x)e^y, xy)$

- 1. Justifier brièvement que f est de classe \mathcal{C}^{∞} .
- 2. Soit $z_0 = (x_0, y_0) \in \mathbb{R}^2$ et $v = (v_1, v_2) \in \mathbb{R}^2$. Rappeler les définitions de $\frac{\partial f}{\partial x}(z_0)$ et $D_v f(z_0)$ puis rappeler les liens entre la différentielle de f et ses dérivées partielles d'une part puis entre la différentielle de f et ses dérivées directionnelles d'autre part.
- 3. Donner l'expression explicite des dérivées partielles de f et en déduire l'expression de sa différentielle df_{z_0} et de sa Jacobienne $Jac_{z_0}(f)$.

Exercice 3 (~ 4 points, 15min). Étudier l'existence en (0,0) des dérivées partielles et de la différentielle de la fonction suivante:

$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{sinon.} \end{cases}$$

Exercice 4 (\sim 7 points, 40min). Soit $E = \mathcal{C}^0([0,1],\mathbb{R})$ muni de la norme de la convergence uniforme $\|\cdot\|_{\infty}$. Soit F un espace de Banach et $\varphi : \mathbb{R} \to F$ une application de classe \mathcal{C}^2 . On définit $T : E \to F$ par

$$\forall f \in E, \quad T(f) := \int_0^1 \varphi(f(t)) dt.$$

- 1. Montrer que T est bien définie et continue.
- 2. Montrer que T est différentiable et que sa différentielle en tout point $f \in E$ est donnée par

$$\forall h \in E, \quad dT_f(h) = \int_0^1 h(t) \, \varphi'(f(t)) \, dt.$$

(on pourra utiliser une formule de Taylor en justifiant sa validité). Est-elle de classe \mathcal{C}^1 ?

3. Expliciter les formules obtenues pour T(f) et $dT_f(h)$ lorsque

$$\varphi(x) = 2x^2 - x$$
 et $F = \mathbb{R}$.