Exercice 1. On munit $E = \mathcal{C}^0([0,1],\mathbb{R})$ de la norme $\|\cdot\|_{\infty}$ et on considère l'application $L: f \in E \mapsto L(f) \in E$ définie pour tout $t \in [0,1]$, par

$$L(f)(t) = \int_0^1 (t+s)f(s)ds$$

- 1. Montrer que L est bien définie et continue.
- 2. Sa norme subordonnée est-elle atteinte?

Résolution:

1. Pour tout $f \in E$,

$$|L(f)(t) - L(f)(t')| = \left| \int_0^1 ((t+s) - (t'+s))f(s) \, ds \right| \le ||f||_{\infty} |t - t'|$$

donc L(f) est Lipschitzienne et en particulier est continue, donc L définie bien une application de E dans E. Montrons que L elle est continue. La linéarité de L est une conséquence de la linéarité de l'intégrale. On a pour $f \in E$

$$||L(f)||_{\infty} = \max_{t \in [0,1]} \left| \int_{0}^{1} (t+s)f(s) \, ds \right| \le ||f||_{\infty} \max_{t \in [0,1]} \int_{0}^{1} (t+s) \, ds$$

$$\le ||f||_{\infty} \max_{t \in [0,1]} \left| ts + \frac{s^{2}}{2} \right|_{0}^{1} = ||f||_{\infty} \max_{t \in [0,1]} \left(t + \frac{1}{2} \right) = \frac{3}{2} ||f||_{\infty}$$

L'application linéaire est alors continue et $||L|| \le \frac{3}{2}$.

2. Pour $f \equiv 1$, $L(1) = \int_0^1 (t+s) ds = t + \frac{1}{2}$ et $||L(1)||_{\infty} = \frac{3}{2}$. Ainsi la norme de L (qui vaut 3/2) est atteinte par exemple en $f \equiv 1$.

Exercice 2. Soit f: $\mathbb{R}^2 \to \mathbb{R}^3$ définie par $f(x,y) = (\cos(x)e^y, \sin(x)e^y, xy)$

- 1. Justifier brièvement que f est de classe \mathcal{C}^{∞} .
- 2. Soit $z_0 = (x_0, y_0) \in \mathbb{R}^2$ et $v = (v_1, v_2) \in \mathbb{R}^2$. Rappeler les définitions de $\frac{\partial f}{\partial x}(z_0)$ et $D_v f(z_0)$ puis rappeler les liens entre la différentielle de f et ses dérivées partielles d'une part puis entre la différentielle de f et ses dérivées directionnelles d'autre part.
- 3. Donner l'expression explicite des dérivées partielles de f et en déduire l'expression de sa Jacobienne $Jac_{z_0}(f)$ et de sa différentielle df_{z_0} .

Résolution:

- 1. Puisque chaque composante de f est de classe \mathcal{C}^{∞} , il en est de même pour f.
- 2. Pour la dérivée partielle: sa définition est

$$\frac{\partial f}{\partial x}(z_0) = \lim_{t \to 0} \frac{f(x_0 + t, y_0) - f(x_0, y_0)}{t}$$

et on a la formule

$$df_z(h, k) = h \cdot \frac{\partial f}{\partial x}(z) + k \cdot \frac{\partial f}{\partial y}(z).$$

Pour la dérivée directionnelle: sa définition est

$$D_v f(z_0) = \lim_{t \to 0} \frac{f(x_0 + tv_1, y_0 + tv_2) - f(x_0, y_0)}{t}$$

et on a la formule

$$df_z(v) = D_v f(z).$$

3. On a:

$$\frac{\partial f}{\partial x}(x,y) = (-\sin(x)e^y, \cos(x)e^y, y) \quad \text{ et } \quad \frac{\partial f}{\partial y}(x,y) = (\cos(x)e^y, \sin(x)e^y, x).$$

Donc la jacobienne devient

$$Jac_{z_0}(f) = \begin{pmatrix} -\sin x_0 e^{y_0} & \cos x_0 e^{y_0} \\ \cos x_0 e^{y_0} & \sin x_0 e^{y_0} \\ y_0 & x_0 \end{pmatrix}$$

et puisque

$$Jac_{z_0}(f) \cdot v = \begin{pmatrix} -\sin x_0 e^{y_0} v_1 + \cos x_0 e^{y_0} v_2 \\ \cos x_0 e^{y_0} v_1 + \sin x_0 e^{y_0} v_2 \\ y_0 v_1 + x_0 v_2 \end{pmatrix},$$

la différentielle s'écrit

$$df_{z_0}(v) = (-\sin x_0 e^{y_0} v_1 + \cos x_0 e^{y_0} v_2, \cos x_0 e^{y_0} v_1 + \sin x_0 e^{y_0} v_2, y_0 v_1 + x_0 v_2).$$

Exercice 3. Étudier l'existence en (0,0) des dérivées partielles et de la différentielle de la fonction suivante:

$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{sinon.} \end{cases}$$

Résolution: Pour la dérivée partielle par rapport à x:

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{h^3}{h^2} - 0}{h} = 1.$$

Pour la dérivée partielle par rapport à y

$$\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0.$$

Ainsi les dérivées partielles existent en (0,0) et le gradient est (1,0).

Si f était différentiable en (0,0), sa différentielle serait donnée par

$$df_{(0,0)}(h,k) = \frac{\partial f}{\partial x}(0,0).h + \frac{\partial f}{\partial y}(0,0).k = h.$$

Il faut vérifier si

$$\lim_{\|(h,k)\|\to 0}\frac{f(h,k)-f(0,0)-df_{(0,0)}(h,k)}{\sqrt{h^2+k^2}}=0.$$

Regardons le long de la trajectoire h = k:

$$|f(h,h) - f(0,0) - df_{(0,0)}(h,h)| = \left|\frac{h^3}{2h^2} - h\right| = |h|\left(1 - \frac{1}{2}\right) = \frac{|h|}{2}.$$

Ainsi la limite ci-dessus n'est pas nulle (elle vaut par exemple $\frac{1}{2^{3/2}}$ le long de h = k). Par conséquent f n'est pas différentiable en (0,0).

Exercice 4. Soit $E = \mathcal{C}^0([0,1],\mathbb{R})$ muni de la norme de la convergence uniforme $\|\cdot\|_{\infty}$. Soit F un espace de Banach et $\varphi : \mathbb{R} \to F$ une application de classe \mathcal{C}^2 . On définit $T : E \to F$ par

$$\forall f \in E, \quad T(f) := \int_0^1 \varphi(f(t)) dt.$$

- 1. Montrer que T est bien définie pour tout $f \in E$ et qu'elle est continue.
- 2. Montrer que T est différentiable et que sa différentielle en tout point $f \in E$ est donnée par

$$\forall h \in E, \quad dT_f(h) = \int_0^1 h(t) \, \varphi'(f(t)) \, dt.$$

(on pourra utiliser une formule de Taylor en justifiant sa validité). Est-elle de classe \mathcal{C}^1 ?

3. Expliciter les formules obtenues pour T(f) et $dT_f(h)$ lorsque

$$\varphi(x) = 2x^2 - x$$
 et $F = \mathbb{R}$.

Résolution:

1. Soit $f \in E$. Comme $\varphi : \mathbb{R} \to F$ est continue, $\varphi(f) : [0,1] \to F$ est une application continue à valeur dans un espace de Banach. Son intégrale sur [0,1], est donc bien définie et T(f) est bien définie.

Soient $f,h\in E$. Comme ce sont des fonctions continues sur le compact [0,1], on peut supposer qu'il existe une constante M>0 telle que $\|f\|_{\infty}\leq M/2$ et $\|h\|_{\infty}\leq M/2$, ce qui entraı̂ne $\|f+h\|_{\infty}\leq M$. Comme φ' est continue, il existe K>0 tel que pour tout $x\in [-M,M]$, $\|\varphi'(x)\|_F\leq K$.

Alors,

$$||T(f+h) - T(f)||_F = \left\| \int_0^1 \left(\varphi(f(t) + h(t)) - \varphi(f(t)) \right) dt \right\|_F \le \int_0^1 ||\varphi(f(t) + h(t)) - \varphi(f(t))||_F dt.$$

Par l'inégalité des accroissements finis,

$$\|\varphi(f(t) + h(t)) - \varphi(f(t))\|_F \le \max_{x \in [-M,M]} \|\varphi'(x)\|_F |h(t)|.$$

Ainsi,

$$||T(f+h) - T(f)||_F \le \max_{x \in [-M,M]} ||\varphi'(x)||_F ||h||_\infty \le K||h||_\infty.$$

Ce qui prouve que T est localement lipschitzienne, donc continue.

2. Pour tout $h \in E$, la fonction $(\varphi'(f) \times h) : [0,1] \to F$ est continue sur [0,1], donc intégrable sur [0,1]. Ceci légitime l'introduction de l'application linéaire

$$L: (E, \|\cdot\|_{\infty}) \to F$$
 définie par $L(h) = \int_0^1 \varphi'(f(t))h(t)dt$.

D'abord, la continuité du candidat: L est continue car, pour tout $h \in E$,

$$||L(h)||_F \le \int_0^1 ||\varphi'(f(t))h(t)||_F dt = \int_0^1 |h(t)| ||\varphi'(f(t))||_F dt \le K||h||_\infty.$$

où K est la constante introduite question 1. Ensuite, la preuve de l'estimation:

$$||T(f+h) - T(f) - L(h)||_F = \underset{||h||_{\infty} \to 0}{o} (||h||_{\infty}).$$

On reprend la constante M de la question 1. La fonction φ'' est continue sur le compact [-M,M] donc il existe une constante C telle que $\sup_{x\in [-M,M]} \|\varphi''(x)\|_F \leqslant C$. Pour tout $t\in [0,1]$, l'inégalité de Taylor-Lagrange appliquée à φ à l'ordre 2 entre f(t)+h(t) et f(t) (φ est de classe \mathcal{C}^2) donne

$$\begin{split} \|\varphi(f(t)+h(t))-\varphi(f(t))-\varphi'(f(t))h(t))\|_F &\leqslant \frac{1}{2}|h(t)|^2 \sup_{x\in[f(t),f(t)+h(t)]}\|\varphi''(x)\| \\ &\leqslant \frac{1}{2}|h(t)|^2 \sup_{x\in[-M,M]}\|\varphi''(x)\| \\ &\leqslant \frac{C}{2}\|h\|_\infty^2. \end{split}$$

Donc

$$\|T(f+h) - T(f) - L(h)\|_F \le \int_0^1 \|\varphi(f(t) + h(t)) - \varphi(f(t)) - \varphi'(f(t))h(t)\|_F dt \le \frac{C}{2} \|h\|_{\infty}^2.$$

Regardons maintenant si elle est de classe C^1 . Il s'agit de voir que dT est continue en tout point $f \in E$. Soit donc $f \in E$. On définit C comme ci-dessus. Soit $g \in E$. Pour tout $t \in [0, 1]$, l'inégalité de Taylor-Lagrange appliquée à φ' à l'ordre 1 entre f(t) et g(t) donne

$$\|\varphi'(f(t)) - \varphi'(g(t))\|_F \le |f(t) - g(t)| \sup \|\varphi''(x)\|_F \le C\|f - g\|_{\infty}.$$

Donc, pour tout $h \in E$,

$$\|dT(f)\cdot h-dT(g)\cdot h\|_F\leqslant \int_0^1\|\varphi'(f(t))-\varphi'(g(t))\|_F\,|h(t)|\,dt\leqslant K\|f-g\|_\infty\|h\|_\infty.$$

Ceci démontre que

$$||dT(f) - dT(g)||_{\mathcal{L}(E,\mathbb{R})} \leqslant C||f - g||_{\infty},$$

(on rappelle ici que la constante C dépend de f). Ainsi, $dT: E \to \mathcal{L}_c(E, \mathbb{R})$ est continue au point f. Ceci est vrai pour tout $f \in E$, donc T est de classe C^1 .

3. On a

$$T(f) = \int_0^1 (2f^2(t) - f(t)) dt$$
 et $dT(f) \cdot h = \int_0^1 4f(t)h(t) - h(t) dt$.

(Attention aux objets que l'on manipule: le terme $f^2(t)$ signifie f(t).f(t) ou bien $f\circ f(t)$?)