TD 2 : Applications linéaires continues et normes subordonnées

Questions de cours:

- 1. Comment peut-on démontrer, en pratique, qu'une application (multi)-linéaire entre espaces vectoriels normés est continue ?
- 2. Quelle est la définition d'une norme subordonnée à une norme vectorielle ?
- 3. Quelle est la méthode usuelle pour calculer la norme subordonnée d'un opérateur ?

Continuité des applications linéaires

Exercice 1. Il faut préciser la norme!

On se place sur $E = \mathcal{C}^0([0,1],\mathbb{R})$. On considère la forme linéaire :

$$\varphi: f \in E \mapsto f(0).$$

- 1. Montrer que φ est continue pour la norme $\|\cdot\|_{\infty}$, mais n'est pas continue pour la norme $\|\cdot\|_{L^1}$.
- 2. Ce phénomène peut-il apparaître en dimension finie?

Exercice 2. Continuité de l'application identité

Soient $\|\cdot\|_1$ et $\|\cdot\|_2$ deux normes sur un espace vectoriel E. Montrer que $\|\cdot\|_1$ et $\|\cdot\|_2$ sont équivalentes si et seulement si

$$id^1: (E, \|\cdot\|_1) \to (E, \|\cdot\|_2)$$
 et $id^2: (E, \|\cdot\|_2) \to (E, \|\cdot\|_1)$

sont continues.

Exercice 3. Opérateur de dérivation

Soit $E = \mathcal{C}^{\infty}([0,1],\mathbb{R})$. On considère l'opérateur de dérivation $D: E \to E, f \mapsto f'$. Montrer que, quelle que soit la norme $\|\cdot\|$ dont on munit E, D n'est jamais une application linéaire continue de $(E, \|\cdot\|)$ dans lui-même.

Calcul de normes subordonnées

Exercice 4. Calcul de norme subordonnée

Sur $E = \mathcal{C}^0([0,1],\mathbb{R})$ muni de la norme $\|\cdot\|_{\infty}$, on définit la forme linéaire μ_f associée à un élément non nul f de E par :

$$\forall g \in E, \quad \mu_f(g) = \int_0^1 f(t)g(t) dt.$$

Montrer que μ_f est bien définie, continue et calculer sa norme subordonnée.

Exercice 5. Opérateurs à noyau

Soit $K \in \mathcal{C}^0([0,1]^2,\mathbb{R})$. On note $E = \mathcal{C}^0([0,1],\mathbb{R})$ muni de la norme $\|\cdot\|_{\infty}$. Pour $f \in E$, on note Tf la fonction définie par :

$$\forall x \in [0,1], \quad Tf(x) = \int_0^1 K(x,y)f(y) \, dy.$$

- 1. Montrer que T est bien défini, qu'il s'agit d'un endomorphisme linéaire continu de E et calculer sa norme.
- 2. Calculer la norme de T dans le cas où K(x,y) = x + y.

Exercice 6. Opérateur d'intégration

Soit $E = \mathcal{C}^0([0,1],\mathbb{R})$ muni de la norme $\|\cdot\|_{\infty}$ et $F = \mathcal{C}^1([0,1],\mathbb{R})$ muni de la norme $\|\cdot\|_F$ définie par :

$$\forall f \in F, ||f||_F = ||f||_{\infty} + ||f'||_{\infty}.$$

On définit alors $T:(E,\left\|\cdot\right\|_{\infty})\to(F,\left\|\cdot\right\|_{F})$ par :

$$\forall f \in E, \, \forall x \in [0,1], \, Tf(x) = \int_0^x f(t) \, \mathrm{d}t.$$

Montrer que T est bien définie, linéaire, continue et calculer sa norme subordonnée. La valeur de la norme de T est-elle atteinte ?

Exercice 7. Une application bilinéaire

On note $E = \mathcal{C}^0([0,1],\mathbb{R})$. On considère l'application :

$$B: \left\{ \begin{array}{cc} (E, \|\cdot\|_{\infty}) \times (E, \|\cdot\|_{L^2}) & \to (E, \|\cdot\|_{\infty}) \\ (f, g) & \mapsto \left(x \mapsto \int_0^x e^t f(t)g(t) \, \mathrm{d}t \right) \end{array} \right.$$

Montrer que B est bien définie, bilinéaire, continue et calculer sa norme.

Exercice 8. Normes subordonnées matricielles

Soit $A \in \mathcal{M}_n(\mathbb{C})$. On note $C_1, ..., C_n$ ses colonnes et $L_1, ..., L_n$ ses lignes.

- 1. On munit \mathbb{C}^n de la norme $\|\cdot\|_1$. Montrer que $\|A\|_1 = \max_{j \in \{1,...,n\}} \|C_j\|_1 = \max_{j \in \{1,...,n\}} \sum_{i=1}^n |a_{ij}|$.
- 2. On munit \mathbb{C}^n de la norme $\|\cdot\|_{\infty}$. Montrer que $\|A\|_{\infty} = \max_{i \in \{1,...,n\}} \|L_i\|_1 = \max_{i \in \{1,...,n\}} \sum_{j=1}^n |a_{ij}|$.
- 3. Soit $f:(x,y)\in\mathbb{R}^2\mapsto (x+y,2x-y)\in\mathbb{R}^2$. Donner $\|f\|_1$ et $\|f\|_\infty$.

Quelques propriétés topologiques

Exercice 9. Formes linéaires positives

Soient a < b deux réels, $E = \mathcal{C}^0([a,b],\mathbb{R})$ muni de la norme $\|\cdot\|_{\infty}$ et φ une forme linéaire positive sur E, i.e. pour tout $f \in E$, si $f \geqslant 0$ alors $\varphi(f) \geqslant 0$. Montrer que φ est continue et calculer sa norme subordonnée.

Indication: On pourra montrer et utiliser que pour tout $f \in E$, $|\varphi(f)| \leq \varphi(|f|)$.

Exercice 10. Continuité et noyau d'une forme linéaire

Soient E un espace vectoriel normé et φ une forme linéaire non nulle sur E. Montrer que φ est continue si et seulement si son noyau est fermé.

Exercice 11. Complétude de $\mathcal{L}_c(E,F)$

Soient E, F deux espaces vectoriels normés. Montrer que si F est complet, alors l'espace $\mathcal{L}_c(E, F)$ muni de la norme d'opérateur est complet.

Exercice 12. Dual de $\ell^p(\mathbb{N})$, $1 \leq p < +\infty$

Soit $1 \leq p < +\infty$ et q son exposant conjugué, i.e. tel que $\frac{1}{p} + \frac{1}{q} = 1$. Pour $y \in \ell^q(\mathbb{N})$, on pose pour tout $x \in \ell^p(\mathbb{N})$:

$$F_y(x) = \sum_{n=0}^{+\infty} x_n y_n.$$

1. Montrer que pour tout $y \in \ell^q(\mathbb{N})$, on a $F_y \in (\ell^p(\mathbb{N}))'$.

2. On pose:

$$F : y \in \ell^q(\mathbb{N}) \mapsto F_y \in (\ell^p(\mathbb{N}))'.$$

Montrer que F est une isométrie linéaire.

Le but est maintenant de montrer la surjectivité de F. Soit $\varphi \in (\ell^p(\mathbb{N}))'$. On pose $y_n = \varphi(e_n)$, où e_n désigne la suite dont tous les termes sont nuls, sauf le terme de rang n qui vaut 1.

- 3. Pour p = 1, montrer que $(y_n)_n \in \ell^{\infty}(\mathbb{N})$.
- 4. Pour $1 , on pose pour tout <math>n, N \ge 0$,

$$x_n^N = \left\{ \begin{array}{ll} y_n^{-1} |y_n|^q & \text{si } y_n \neq 0 \text{ et } n \leqslant N, \\ 0 & \text{sinon.} \end{array} \right.$$

Calculer $\varphi(x^N)$ et en déduire que $y \in \ell^q(\mathbb{N})$.

5. Montrer que F est surjective.