TD 2 - Exercice 10 Continuité et noyau d'une forme linéaire

Soient E un espace vectoriel normé et φ une forme linéaire non nulle sur E. Montrer que φ est continue si et seulement si son noyau est fermé.

Résolution. Soit φ une forme linéaire non nulle sur E.

 \implies Supposons φ continue.

Alors $\ker(\varphi) = \varphi^{-1}(\{0\})$ est fermé comme pré-image d'un fermé par une application continue.

 \iff Supposons $\ker(\varphi)$ fermé.

Alors $\varphi^{-1}(\{1\})$ est également fermé (possiblement vide) par translation. De plus, puisque φ est linéaire, alors $\varphi(0_E) = 0$, i.e. $0_E \notin \varphi^{-1}(\{1\})$. Ainsi, il existe un r > 0 tel que

$$\overline{B(0_E, r)} \cap \varphi^{-1}(\{1\}) = \varnothing.$$

Plus précisément, on a l'inclusion

$$\overline{B(0_E, r)} \subset \{x \in E ; |\varphi(x)| \le 1\}.$$

En effet, supposons qu'il existe $t \in \overline{B(0_E, r)}$, tel que $|\varphi(t)| > 1$. Alors

$$\left\|\frac{t}{\varphi(t)}\right\| = \frac{1}{|\varphi(t)|} \left\|t\right\| < \left\|t\right\| \leqslant r.$$

Or puisque $\varphi\left(\frac{t}{\varphi(t)}\right) = 1$, on aurait

$$\frac{t}{\varphi(t)} \in \overline{B(0_E, r)} \cap \varphi^{-1}(\{1\}).$$

Soit $x \in E \setminus \{0_E\}$, alors puisque $\frac{rx}{\|x\|_E} \in \overline{B(0_E, r)}$, on a

$$\left| \varphi \left(\frac{rx}{\|x\|_E} \right) \right| < 1.$$

Par linéarité, on obtient ainsi un réel de continuité égale à $\|x\|_E/r$ et φ est continue.