TD 3 : Fonctions d'une variable réelle

Questions de cours:

- 1. Quelle est la définition de la dérivabilité en un point pour une fonction définie sur un intervalle ouvert de \mathbb{R} à valeurs dans un espace vectoriel normé ?
- 2. Qu'affirme le théorème de Rolle ?
- 3. Quelles sont les hypothèses du théorème de l'égalité des accroissements finis ?
- 4. Quelles sont les hypothèses du théorème de l'inégalité des accroissements finis ?
- 5. Énoncer la formule de Taylor-Young et la formule de Taylor avec reste intégral. Pourquoi a-t-on besoin de l'hypothèse de complétude dans la deuxième formule ?
- 6. Dans quels cas a-t-on la formule de Taylor-Lagrange et dans quels cas n'a-t-on que l'inégalité de Taylor-Lagrange ?
- 7. Qu'affirme le théorème de dérivabilité et de convergence pour une suite de fonctions dérivables $f_n:(a,b)\to (E,\|\cdot\|)$?

Exercices

Exercice 1. Lipschitzienne si et seulement si dérivée bornée

Soit $(E, \|\cdot\|_E)$ un evn. Soit $f: [a, b] \to E$ continue sur [a, b] et dérivable sur]a, b[. Alors f est lipschitzienne sur [a, b] si et seulement si f' est bornée sur]a, b[.

Exercice 2. Un calcul d'intégrale

Montrer que

$$\int_0^1 \frac{(1+t)(1-t)^2}{(1+t^2)^2} dt = \frac{\ln 2}{2}.$$

Exercice 3. Une minoration

Montrer que pour tout t > 0:

$$\operatorname{Arctan}(t) > \frac{t}{1+t^2} \cdot$$

Exercice 4. Majoration par un polynôme

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe \mathcal{C}^{∞} . On suppose qu'il existe un polynôme $P \in \mathbb{R}[X]$ de degré impair tel que, pour tout $n \ge 0$ et pour tout $x \in \mathbb{R}$, on ait

$$\left| f^{(n)}(x) \right| \leqslant |P(x)|.$$

Montrer que f est identiquement nulle. Le résultat est-il toujours vrai si l'on suppose que P est de degré pair?

1

Exercice 5. Minoration de la dérivée seconde

Soit $(E, \|\cdot\|)$ un espace vectoriel normé et $f: [0,1] \to E$ une fonction de classe \mathcal{C}^2 vérifiant f(0) = f'(0) = f'(1) = 0 et $\|f(1)\| = 1$. Montrer qu'il existe $c \in [0,1]$ tel que $\|f''(c)\| \ge 4$.

Exercice 6. Étude de la convergence de suite

On considère les suites définies par:

$$u_n = \sum_{k=0}^n \frac{1}{k!}$$
 et $v_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$.

Montrer à l'aide de l'inégalité de Taylor-Lagrange que $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergent et donner leur limite respective.

Exercice 7. Dérivabilité de la racine

Soit $f: \mathbb{R} \to \mathbb{R}^+$ une fonction de classe C^2 . Montrer que la fonction \sqrt{f} est dérivable sur \mathbb{R} si et seulement si, pour tout $x_0 \in \mathbb{R}$ tel que $f(x_0) = 0$, alors $f''(x_0) = 0$.

Exercice 8. Un bout de la méthode de Newton

Soit $f:[c,d] \to \mathbb{R}$ une fonction de classe \mathcal{C}^2 . On suppose f(c) < 0 < f(d) et f'(x) > 0 pour tout $x \in [c,d]$. On considère la suite récurrente

$$x_{n+1} = F(x_n), \ n \ge 0$$
 avec $F(x) = x - \frac{f(x)}{f'(x)}$.

1. Montrer que f a un unique zéro a et que, pour tout $x \in [c,d]$, il existe z entre a et x tel que

$$F(x) - a = \frac{1}{2} \frac{f''(z)}{f'(x)} (x - a)^{2}.$$

2. En déduire qu'il existe M > 0 tel que, pour tout $x \in [c, d]$,

$$|F(x) - a| \leqslant M |x - a|^2.$$

3. Montrer qu'il existe un $\alpha > 0$ tel que l'intervalle $I =]a - \alpha, a + \alpha[$ soit stable par F. En déduire que, pour chaque $x_0 \in I$, la suite $(x_n)_{n \in \mathbb{N}}$ converge vers a.

Exercice 9. Des exemples peu intuitifs

Trouver:

- 1. Une fonction indéfiniment dérivable, strictement positive sauf en 0, et dont toutes les dérivées successives en 0 sont nulles.
- 2. Une fonction admettant un développement limité à l'ordre 2 au voisinage de 0 mais qui n'est pas deux fois dérivable en 0.
- 3. Une fonction admettant, pour tout $n \in \mathbb{N}$, un développement limité à l'ordre n au voisinage de 0, mais qui n'est dérivable sur aucun voisinage de 0.

Exercice 10. Une majoration de la norme L^1

Soient a < b deux réels et $f \in \mathcal{C}^0([a,b],\mathbb{R})$ deux fois dérivable sur [a,b] et telle que f(a) = f(b) = 0.

1. Montrer que pour tout $x \in [a, b]$, il existe $c_x \in [a, b]$ tel que :

$$f(x) = \frac{1}{2}(x - a)(x - b)f''(c_x).$$

2. En déduire que si f'' est bornée sur]a,b[alors

$$\int_{a}^{b} |f(t)| \, \mathrm{d}t \leqslant \frac{(b-a)^3}{12} ||f''||_{\infty,]a, b[}.$$

Exercice 11. Un calcul de somme

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable en 0 telle que f(0) = 0, et soit $\ell \geqslant 1$ un entier. Pour tout $n \geqslant 1$, on pose :

$$S_n = \sum_{k=0}^{n\ell} f\left(\frac{k}{n^2}\right).$$

Montrer que la suite $(S_n)_{n\geqslant 1}$ converge et calculer sa limite.

Exercice 12. Dérivation d'une fonction à valeurs vectorielles

1. Soit $f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R})$, telle que f(0) = f'(0) = 0. On pose :

$$\begin{array}{cccc} T & : & \mathbb{R} & \to & \ell^1(\mathbb{N}^*, \mathbb{R}) \\ & t & \mapsto & \left(f\left(\frac{t}{n}\right)\right)_{n \geq 1} \end{array}$$

Montrer que T est bien définie et dérivable sur \mathbb{R} .

2. Soit $f \in \mathcal{C}_c^{\infty}(\mathbb{R}, \mathbb{R})$. On note $E = \mathcal{C}_b^0(\mathbb{R}, \mathbb{R})$ l'ensemble des fonctions continues et bornées qu'on munit de la norme uniforme $\|\cdot\|_{\infty}$. On pose alors :

$$T: \mathbb{R} \to E$$

 $t \mapsto T(t) = f(\cdot - t).$

Montrer que T est bien définie, continue sur \mathbb{R} , et dérivable en 0.

Exercice 13. Inégalité de Kolmogorov

Soit E un espace vectoriel normé. Soit $f \in \mathcal{C}^2(\mathbb{R}, E)$. On suppose que :

$$||f||_{\infty} < +\infty$$
 et $||f''||_{\infty} < +\infty$.

1. Montrer que f' est bornée et même que pour tout h > 0 :

$$||f'||_{\infty} \le \frac{2||f||_{\infty}}{h} + \frac{h||f''||_{\infty}}{2}.$$

2. En déduire :

$$||f'||_{\infty} \leqslant 2\sqrt{||f||_{\infty} ||f''||_{\infty}}.$$

3. Reprendre la question 2 et montrer l'inégalité de Kolmogorov :

$$||f'||_{\infty} \leqslant \sqrt{2||f||_{\infty} ||f''||_{\infty}}.$$

Exercice 14. Théorème de Darboux

Soit $f: \mathbb{R} \to \mathbb{R}$ une application dérivable.

- 1. Montrer que f' vérifie la conclusion du théorème des valeurs intermédiaires, c'est-à-dire que l'image d'un intervalle par f' est un intervalle.
- 2. Supposons de plus que f est convexe. Montrer que $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$.

Exercice 15. Nombre de racines d'un polynôme réel

Soit $P \in \mathbb{R}[X]$ admettant exactement k coefficients non nuls. Montrer que P a au plus 2k-1 racines réelles distinctes. Cette majoration est-elle optimale ?

Exercice 16. Lemme d'Hadamard

Soient $f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ et $n \geqslant 1$. Établir l'équivalence des propriétés suivantes :

-
$$f(0) = f'(0) = \dots = f^{(n-1)}(0) = 0$$
,

-
$$\exists q \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}), \forall x \in \mathbb{R}, \quad f(x) = x^n q(x).$$

Exercice 17. Vers le principe des zéros isolés

1. Soient $f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$, et $a \in \mathbb{R}$ tel que f(a) = 0. On suppose qu'il existe $n \in \mathbb{N}^*$ tel que $f^{(n)}(a) \neq 0$. Montrer qu'il existe h > 0 tel que :

$$\forall y \in]a - h, a + h[\setminus \{a\}, f(y) \neq 0.$$

2. Soient $f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ et S un segment de \mathbb{R} . On suppose que pour tout zéro a de f, il existe $n \in \mathbb{N}^*$ tel que $f^{(n)}(a) \neq 0$. Montrer que f ne s'annule qu'un nombre fini de fois sur S.

Exercice 18. Convexité et taux d'accroissement

Soit $f:[a,b]\to E$ une fonction à valeurs dans un espace de Banach et soit $C\subset E$ un convexe fermé. Montrer que, si f est dérivable sur [a, b] et vérifie

$$\forall x \in [a, b], \ f'(x) \in C,$$

alors le rapport $\frac{f(b)-f(a)}{b-a}$ appartient à C. Le résultat persiste-il si on suppose que f est seulement dérivable à droite en tout point de [a,b] et vérifie $f'_d(x) \in C$ pour tout $x \in [a, b]$?

Exercice 19. Autour du lemme de Borel

1. Soit $(a_n)_{n\geqslant 0}\in\mathbb{R}^{\mathbb{N}}$. Montrer le lemme de Borel qui stipule qu'il existe une fonction $u\in\mathcal{C}^{\infty}(\mathbb{R})$ telle que :

$$\forall n \in \mathbb{N}, \quad u^{(n)}(0) = a_n.$$

Indication: On pourra utiliser une fonction $f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ valant 1 sur [-1/2, 1/2] et nulle en dehors de [-1,1] dont on expliquera la construction et considérer une fonction u de la forme :

$$u(x) = \sum_{n=0}^{\infty} f(\lambda_n x) a_n \frac{x^n}{n!},$$

 $où (\lambda_n)_n \in (\mathbb{R}^+_*)^{\mathbb{N}}$ sera choisie convenablement.

- 2. Montrer que toute fonction \mathcal{C}^{∞} sur un segment [a,b] avec dérivées de tous ordres à droite en a et à gauche en b peut être prolongée en une fonction \mathcal{C}^{∞} sur \mathbb{R} .
- 3. Plus difficile: Soit $f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ une fonction paire. En utilisant le lemme de Borel, montrer qu'il existe $q \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ telle que :

$$\forall x \in \mathbb{R}, \ f(x) = q(x^2).$$

Exercice 20. Sinus cardinal et inégalité

Soit $n \in \mathbb{N}^*$, $x_1, \ldots, x_n \in [0, \pi]$. On pose $x = \frac{x_1 + \cdots + x_n}{n}$. Comparer:

$$\prod_{k=1}^{n} \frac{\sin(x_k)}{x_k} \quad \text{et} \quad \left(\frac{\sin(x)}{x}\right)^n.$$

Indication: étudier la fonction $y \mapsto \ln\left(\frac{\sin(y)}{y}\right)$.

Exercice 21. Le théorème de Bernstein

Soient a>0 et $f:]-a,a[\to \mathbb{R}$ une fonction de classe \mathcal{C}^{∞} . On suppose que

$$\forall k \in \mathbb{N}, \forall x \in]-a, a[, f^{(2k)}(x) \geqslant 0.$$

Montrer que f est développable en série entière sur]-a,a[.

Indication: Pour tout $b \in]0, a[$, montrer que la fonction F(x) = f(x) + f(-x) est développable en série entière $sur \,]-b,b[$ en utilisant la formule de Taylor avec reste intégral.

Exercice 22. Lien entre fonction caractéristique et moments

Soit $X \in \mathcal{L}(\Omega, \mathcal{A}, P)$ une variable aléatoire réelles et φ_X sa fonction caractéristique, i.e. $\varphi_X(t) = \mathbb{E}\left(e^{itX}\right)$ pour tout $t \in \mathbb{R}$. On rappelle qu'une variable aléatoire admet un moment à l'ordre k si la quantité $\mathbb{E}(X^k) = \int_{\Omega} X^k dP$ est finie. Montrer que si φ_X est n-fois dérivable en 0 pour $n \geqslant 2$, alors X admet un moment jusqu'à l'ordre $2 \left| \frac{n}{2} \right|$, donnés par $\mathbb{E}(X^k) = (-i)^k \varphi_X^{(k)}(0)$.