
About the prediction of good edges for the CVRP
and its applications

Clément Legrand-Lixon
Univ Rennes, F-35000 Rennes, France

No Institute Given

Abstract. Few decades ago, it was almost impossible to solve with a
high precision large combinatorial optimization problems. Due to their
exponential solution space, even now with all computers of the world,
small instances cannot be optimally solved with a naive approach. How-
ever, considering the Capacitated Vehicle Routing Problem, it is now
possible to find near-optimal solutions in just few hours, even for very
large instances. Achieving such results was possible thanks to a very
active community on the subject, which developed plenty of heuristics
and meta-heuristics to solve the problem. For instance recent works used
machine learning to predict if a given solution was near-optimal or not.
According to the good results they obtained, we decided to use machine
learning to predict the probability that have two customers are connected
in good solutions. This article focuses on how we did the learning phase,
and then how we exploited it to improve the Clarke & Wright algorithm
and a local search heuristic.

Keywords: Combinatorial optimization · Capacitated Vehicle Routing Prob-
lem · Local search · Meta-heuristics · Machine learning

reference: Internship realized from the 03rd June 2019 to the 04th August 2019,
and supervized by professor Daniele Vigo at University of Bologna, Scuola
di Ingegneria e Architettura.

Introduction

Everyday companies have to tackle plenty of real-life problems. In the case of
delivery companies, they have to manage a fleet of vehicles to deliver every cus-
tomers within a certain time. Such real-life problems are often combinatorial
optimization problems. These problems are generally very hard to solve because
their solution space grows exponentially with the size of the problem. The Ve-
hicle Routing Problem (VRP) is one of them. Its purpose is to design routes of
vehicle to serve n customers while minimizing the total length of the fleet. Each
route must start and end at the same place, called depot. This problem dates
back to 1959 [7] and has been extensively studied ([5],[22],[8]). The VRP is a
NP-complete problem, and its definition can be easily extended by taking into

account several real-world constraints such as time windows, multi-depot, hetero-
geneous vehicles, pickup and delivery, The collection of extended problems
has been thoroughly surveyed by Laporte [16], Lahyani [15] and Braekers [2]. One
of the most studied variant of the VRP, includes a parameter for customers: their
demand, and a new constraint for vehicles: a capacity (which can be the same for
all vehicles). By adding this constraint, the sum of the demands of all customers
on a route cannot exceed the capacity of the vehicle. This problem is also known
as the Capacitated Vehicle Routing Problem (CVRP). We can find in the liter-
ature many algorithms and heuristics to solve the CVRP [13]. These algorithms
can be classified as exact algorithms and approximation algorithms. Exact algo-
rithms find the optimal solution of a problem with an exhaustive search. To be
efficient such algorithms must use pruning techniques which restrict the solution
space. On the other hand, approximation algorithms can find good solutions, but
can not guarantee their optimality. Within approximation algorithms we can find
heuristics and meta-heuristics. Heuristics can only guide choices of an algorithm
and are specific to a problem. Contrary to a heuristic, a meta-heuristic can be
used for different problems. For example stochastic local search [12] and genetic
algorithm [11] are meta-heuristics. Moreover approximation algorithms need a
trade-off between two opposites trends: intensification and diversification. Inten-
sification means that the algorithm will concentrate the search around the best
solution found. While diversification tries to explore new areas of the solution
space.

An efficient way to improve heuristics and meta-heuristics on a problem, is to
use specific-knowledge of the problem. In his thesis, Florian Arnold [1], describes
an efficient knowledge-guided local search to find good solutions for the CVRP
and variants. Following this work, we try to predict edges that appear in good
solutions with a neural network, then we use these predictions to improve the
Clarke & Wright [6] algorithm and a simple local search algorithm [1].

Section 1 presents the problem more formally and introduces the notation.
Section 2 explains how a local search can be performed to solve optimization
problems and details a way to perform a guided local search. Section 3 describes
how the neural network has been trained, and how the Clarke &Wright algorithm
has been improved. Finally section 4 compares results obtained with our last year
algorithm, and those obtained with our new algorithm.

1 Problem specification

This section recalls first the notion of combinatorial optimization, and then for-
malizes the routing problem.

1.1 Combinatorial Optimization Problems

Formally, a combinatorial optimization problem A is a quadruple (I, f,m, g)
where:

– I is a set of instances;

2

– given an instance x ∈ I, f(x) is the set of feasible solutions, also called
solution space (i.e. which respect all the constraints of the problem);

– given an instance x and a feasible solution s of x,m(x, s) denotes the measure
(or the cost) of s, which is usually a positive real number;

– g is the goal (or objective) function, and is either min or max.

The goal is then to find for some instance x an optimal solution, that is, a
feasible solution s∗ with:

m(x, s∗) = g{m(x, s′)|s′ ∈ f(x)}

Most discrete optimization problems are NP-complete, therefore approximate
methods (like meta-heuristics) are developed to solve them with high accuracy.
Recent trends[1] are focusing on the integration of learning techniques into meta-
heuristics to improve their performance. Moreover many real-life problems can
be designed as discrete optimization problems, like parcels delivery. Thus there
is a lot of interest in finding algorithms to solve such problems efficiently.

1.2 Routing Problems

Vehicle Routing Problem Routing problems are omnipresent in the field of
combinatorial optimization and can be formally described as follows [1]. Let N
denote the number of destinations that need to be visited from one point of ori-
gin. In the following, we will use the standard terminology and call destinations
customers and the point of origin depot. Every customer is usually identified
with a non negative integer in {1, . . . , N} and the depot with 0. We can model a
routing problem as a graph G = (V,E), where V denotes the set of nodes, and E
the set of edges. The |V | = N+1 nodes reflect the customers and the depot (v0).
The edges (i, j) reflect the connections between nodes i and j that can be taken.
In the standard formulation of the problem, G is complete and undirected , so
that each node can be visited from each other node. Each edge (i, j) is annotated
with a cost c(i, j) that is realized if the edge is taken. This cost usually corre-
sponds to the distance between two nodes, however, it can also be replaced by
other metrics. A path in G is a sequence of adjacent edges (i, j), (j, k), . . . so that
all visited nodes are distinct. A route in G is then defined as a path that starts
at v0, and has an additional edge back to v0, i.e., (v0, i), (i, j), . . . , (k, l), (l, v0).
We can now give the definition of the Vehicle Routing Problem.

Definition 1 (Vehicle Routing Problem (VRP)). Given a complete graph
G, find a set of routes that visits all customers and minimizes the sum of the
costs of the involved edges.

In order to define the objective function of the VRP and constraints on routes
we introduce other notations. We define δi,j which is equal to 1, if there exists
a route in which the customer j is served after the customer i, and 0 otherwise.
Note that according to this definition we can not have δi,j = 1 and δj,i = 1. It is
also possible to restrict the latter definition to a single route r with the notation

3

δri,j : it will be equal to 1 if the customer j is served after the customer i in route
r, and 0 otherwise. In this way, we can link a solution s, that is, a set of routes,
with a matrixM of size N + 1 such thatM(s)i,j = c(i, j) · δi,j . Hence the cost
of a solution s for the graph G is defined as follows:

m(G, s) =

N∑
i=0

N∑
j=0

M(s)i,j =

N∑
i=0

N∑
j=0

c(i, j) · δi,j

We can also formalize constraints on routes as follows:

– All customers are exactly served once: ∀i > 0
N∑
j=0

δi,j = 1;

– All routes start and finish at the depot: ∀r
N∑
j=0

δr0,j = 1 and
N∑
i=0

δri,0 = 1.

Thus solving a VRP instance, means finding a solution s∗ which respects all
previous constraints (also called feasible solution), such that:

m(G, s∗) = min
s feasible

m(G, s)

Routing problems are NP-hard, which means that every NP-problem can
be reduced to them, where NP stands for nondeterministic polynomial time. In
other words, routing problems are at least as hard as any NP-problem, and there
does not (yet) exist a deterministic algorithm which solves them in polynomial
time. Moreover the solution space of the VRP grows exponentially (we have
already N ! possible combinations to build a single route). For instance with
N = 60 customers, the number of VRP solutions is larger than the number of
observable atoms in the universe (around 1081). That’s why efficient heuristics
have been developed to find optimal solutions.

Capacitated Vehicle Routing Problem In many applications the routes
have to respect limitations. For instance, a truck can only transport a given
amount of parcels. Formally, these constraints are modelled by allocating a de-
mand di to each customer i. The sum of the demand of all customers on a route
may not exceed a certain value Q. This limitation is commonly called capacity
constraint. For instance, di could represent the number of parcels that have to be
delivered to customer i and Q could define the limit of parcels that can be trans-
ported in one vehicle. Because of these limitations multiple routes might have
to be planned. This lead to the definition of the Capacitated Vehicle Routing
Problem as introduced by Dantzig and Ramser [7].

Definition 2 (Capacitated Vehicle Routing Problem (CVRP)). Given
a complete graph G, find a set of routes that visits all customers, respects ca-
pacity constraints and minimizes the sum of the costs of the involved edges.

The cost and objective functions for the CVRP are still the same as for the
VRP. We have only added a constraint on routes, which can be formalized as
follows:

4

– On all routes the capacity constraint is satisfied: ∀r
N∑
i=0

N∑
j=0

di,j · δri,j ≤ Q.

Fig. 1. (Left) A routing problem is defined by a depot (square) node and several
customer nodes (black dots) that need to be visited. Each edge between two nodes is
annotated with a label c(i, j). (Middle) A solution for a VRP. (Right) A solution for a
CVRP, in which the capacity restriction has to be respected.

The figure 1 gives an example of a routing problem instance.
Evidently as the CVRP is more complex than the VRP, its solution space is

much larger. Thus there exists in the literature, plenty of algorithms to solve the
CVRP. One of the most recent has been designed by F. Arnold in his thesis [1],
and performs a knowledge-guided local search to find good results. As we have
drown from this algorithm, the next section focuses on bases of local search
algorithms.

2 Local Search

Local search has proven to be the cornerstone of many solutions techniques for
various combinatorial optimization problems [12]. Efficient meta-heuristics gen-
erally perform an effective local search, e.g., variable neighborhood search [20],
or guided local search [23]. In this section we aim to introduce the notion of
local search, and present some knowledge that can be used to guide a CVRP
heuristic.

2.1 Efficient Local Search for the CVRP

Notion of local search. The basic idea underlying local search is that high-
quality solutions of an optimization problem can be found by iteratively im-
proving a solution using small (local) modifications, called moves. A local search
operator specifies a move type and generates a neighborhood of the current solu-
tion. Given solution s, the neighborhood of a local search operator is the set of
solutionsN (s), that can be reached from s by applying a single move of that type.

5

After generating the neighborhood of the current solution, the neighborhood is
evaluated, and local search uses an exploration strategy to accept at most one
solution from the neighborhood N (s) to become the next current solution. The
hill climbing (i.e. the selection of the best solution of the neighborhood accord-
ing to the cost function) is the most commonly used move strategy, however the
entire exploration of the neighborhoods can be time consuming. To avoid this,
the first improvement strategy is often preferred. Thus, the first neighbor found
that is better than the current one is accepted. In order to hopefully explore
more diversified solutions, we will explore the neighborhoods randomly. If no
improving solution is found in the neighborhood of the current solution, a local
optimum for that neighborhood (i.e. local search operator) has been reached.

Local Search for the CVRP In general local search operators for the CVRP
can be distinguished between operators for intra-route optimization and opera-
tors for inter-route optimization. These two operators types reflect the two tasks
that one has to solve in a CVRP:

– The optimization of each route in itself (intra-route optimization);
– The allocation of customers to routes (inter-route optimization).

Intra-route optimization can be executed rather efficiently, since it corre-
sponds to solving a Travelling Salesman Problem (a particular case of the VRP
but with only one route), with relatively few customers. Therefore, it seems sen-
sible to optimize the routes themselves, before they are optimized jointly. The
Lin-Kernighan operator [18] (LK) has proven to be very efficient to solve the
TSP, and it is still used to solve very large instance of the problem. This operator
generalizes the k-opt operators. A k-opt operator tries to replace k edges with
k new edges to improve the current solution. It is very hard to efficiently imple-
ment a LK operator, and such an implementation is described by Helsgaun [10].
However to simplify our algorithm we will only consider a 2-opt operator.

An important observation is that a local optimum for one local search op-
erator is generally not a local optimum for another one. For this reason, it is
sensible to use several local search operators in a single algorithm. However the
usage of several local search operators is only beneficial as long as they explore
different neighborhoods. In the best case, the pairwise intersections of the con-
sidered neighborhoods are empty, i.e, given two operators o1 and o2 we have
N o1(s) ∩N o2(s) = ∅ for every solution s.

Considering the previous remark, we will use two complementary operators to
perform an inter-route optimization. Many effective local search operators have
been developed over the years, and have been condensed in an online library [9].
These two operators are the Cross-Exchange (CE) and the Relocation-Chain
(RC). An efficient implementation of these two operators is described in the
thesis of F. Arnold [1].

The CE operator is a generic local search operator that tries to exchange two
substrings r̂i and r̂j of two different routes ri and rj [21].

A RC starts with a relocation of a customer node from route ri into rj .
This relocation is followed by a relocation of a customer node from route rj into

6

Fig. 2. (Left) Illustration of a CE move with substrings of two customers. (Right)
Illustration of a relocation chain with two customers.

route rk (where i = k is possible). This process can be repeated until an upper
bound of relocations is reached. Note that a relocation of a node from ri into rj
might improve the solution, but exceed the capacity constraints of rj . However,
the move might become feasible, if we make space, by simultaneously relocating
a node from rj into another route. An example of these two operators can be
visualized in figure 2.

Complexity of Local Search A last point about local search that we need
to discuss is its complexity. In general, the computational complexity of a lo-
cal search operator depends on the size of its neighborhood. The larger the
neighborhood, the more solutions need to be generated and evaluated. On the
other hand, larger neighborhoods also come with a larger probability of finding
improvements. Consequently, there is a trade-off between computational com-
plexity and the probability of improvement. This trade-off presents one of the
greatest challenges in the design of an efficient local search. For larger instances
(about hundreds of customers), a quadratic complexity might already be compu-
tationally too expensive. A commonly used tool to reduce the complexity of local
search operators is heuristic pruning. Rather than generating the entire neigh-
borhood for each operator, pruning tries to limit the considered neighborhood
to promising options. Thus, according to the results of F. Arnold, we will only
consider moves among the 30 nearest neighbors of the initial customer to gener-
ate neighborhoods. Moreover as explained before, we will not generate the entire
neighborhood for each operator. We apply the first improvement move found
during the search (note that neighborhoods are explored randomly to not favour
certain solutions), contrarily to F. Arnold who entirely explores the neighbor-
hoods, with efficient pruning methods, and then applies the best possible move.

The complexity of operators used is the following (n refers to the average
length of the routes). The 2-opt operator has a complexity of O(n2). For the CE
operator, the generation of all substrings of a route has a theoretical complexity
of O(n2), and thus matching two substrings amounts to O(n4) its complexity.
The complexity of a RC is relatively high, and grows exponentially with the
number of relocations we make: with k relocations we have a complexity of

7

O(n2
k−1

). Thus, like F. Arnold we take an upper bound of 3 relocations to limit
the computational time.

2.2 Guided Local Search

Fig. 3. Metrics determining the “badness” of an edge (i, j). The gray dot reflects to the
gravity center of the route.

During his thesis F. Arnold evaluated the influence of several metrics to find
which ones are more relevant to characterize good and bad edges. Finally he
found that two metrics were particularly interesting to study edges: their cost
(smaller edges appear with higher probability in better solutions) noted c, and
their width (routes tend to be more compact in better solutions) noted w. The
width of an edge is linked to the route in which it belongs. It is computed as the
distance between nodes i and j measured along the axis perpendicular to the line
connecting the depot and the route’s center of gravity. The x-coordinate of the
gravity center of a route is simply the average of x-coordinates of all nodes on the
route (customers and depot), y-coordinate is computed accordingly. These two
metrics are illustrated in figure 3. Then one can obtain functions that measure
the “badness” of an edge (i, j) [1]:

b(i, j) =
λww(i, j) + λcc(i, j)

1 + p(i, j)

Variables λw and λc only indicate if the metric is taken into account in the
function, hence they are equals to 0 or 1. Thus we can use 3 different functions
to measure the “badness” of an edge. The function p(i, j) refers to the number
of times that edge (i, j) has been penalized. This value is incremented each time
that (i, j) maximizes the function b, that is, when (i, j) is considered to be the
worst edge of the solution.

The idea behind guided local search is to change the evaluation cost of s,
and then improve s by using this other evaluation cost, rather than directly

8

change s itself. Features that are considered bad are penalized. In the context
of the CVRP, those features are edges, hence we should increase the cost of bad
edges [1]. More formally, we change the cost c(i, j) of an edge in the current
solution between customers i and j to

cg(i, j) = c(i, j) + λp(i, j)L

where L is the average cost of an edge in the current solution and λ controls
the impact of penalties. Kilby [14] experimentally found λ ∈ [0.1, 0.3] to be a
good choice, so we keep λ = 0.1. We use this guided local search in section 4.

3 Prediction of good arcs

According to the results obtained last year [17], it seemed to be promising to
predict with a high accuracy edges that appear in good solutions. With such
predictions, we could simply create a good initial solution for any instance, or
improve our guided local search. In this section we present the learning phase,
and how we use the prediction to generate an initial solution using the Clarke
& Wright algorithm.

3.1 Learning phase

Features At first look, many features could be relevant to describe an edge
in a solution (for instance the placement in a route, the distance to the depot
or simply the cost). However if we consider features that depend on routes, we
should first compute a route that contains the edge we want to evaluate, and
then the probability of the edge will depend on the tour created. The edge could
belong to the optimal solution, if we create a very bad route, the probability of
the edge will be very low. Thus we can not consider features that depend on
other edges. This condition drastically reduces the set of features that we can
consider. As we will only consider symmetric instances (edges (i, j) and (j, i)
have the same cost) in the following, we will only study edges (i, j) where j > i.
According to the thesis of F. Arnold [1], for an edge (i, j) we will simply consider
the following features that appeared as the most relevant: the cost (euclidean
distance between i and j), the demand of i (resp. j), the distance between i
(resp. j) and its nearest neighbor, the demand of the nearest neighbor of i (resp.
j), the distance between i (resp. j) and the depot, and finally the angle ˆiv0j
(v0 is the depot). Most of these features are common to describe an edge and it
seems reasonable to consider them. Features like distance between a customer
and the depot or the angle, have been showed [1] relevant to distinguish optimal
and near-optimal solutions. Now as we want our neural network to be applicable
on several instances, we have to normalize all previous features to make them
independent from the instance. To normalize demands we simply divide them
by the capacity of the instance, and to normalize costs we divide them by the
highest cost of the instance between two customers.

9

Preparation of Data Initially [17], we generated a set of good solutions, and
then we computed a frequency matrix, such that a coefficient in the matrix refers
to the number of times that the corresponding edge appeared in the generated
set. Then we found that keeping edges that have a coefficient in the matrix of at
least 0.5 gave the best results. However this technique had disadvantages like an
important computational time for large instances (to generate the solution set
we used the Clarke and Wright algorithm, which will be detailed in section 3.2).
On the other hand, we considered that edges that appear in very good solutions
and bad solutions had the same weight, but it should not be the case. To fix this
latter problem we introduce a formula which attributes a weight to each edges
in a solution. The weight varies from 0 to 100 and depends on the quality of the
solution. Given a cost of reference, the better will be the solution considering
the reference cost, the higher will be the weight of each edge. All solutions that
have a cost higher than an upper bound will have a weight of 0. We take 0 as a
lower bound (we can not easily know if a solution is far or not from the optimal
cost). The reference cost and the upper bound are computed as follows. The
upper bound is defined as the cost of the worst solution we generated during
the algorithm. However for the reference cost we can not simply take the best
solution obtained. Indeed there will not be big gaps between weights of good and
bad solutions and it is what we want to avoid. That’s why we take a reference
cost which corresponds to the mean between the cost of the best solution and
the cost of the worst one. In the following, the variable z referes to the cost of
the solution we consider. Similarly zref (resp. zUB , zLB) refers to the reference
cost (resp. upper bound, lower bound). The weight associated to a solution of
cost z is noted ∆̂(z). We introduce the gap between z and the reference cost
as ∆(z) = 100 × z−zref

zref
. We then scale ∆(z) between 0 and 100, to obtain the

weight.

∆̂(z) =
100− 1

∆(zUB)−∆(zLB)− 0
× ((∆(zUB)−∆(z))− (∆(zUB)−∆(zLB)))

Let Ns the number of solutions generated during our algorithm. Then the
edge (i, j) will have a coefficient in the matrix which is the sum of the weights
of the edge in all Ns solutions. We divide by Ns × 100 to obtain a coefficient
between 0 and 1.

To feed the neural network, we used the best-known solutions of the Uchoa
set of instances. The Uchoa set is very challenging, mixes various instances, and
it is commonly used to test new algorithms for the CVRP. To compute the fre-
quency matrix starting with the best-known solutions, we generate a slightly
worse solution using a perturbation method (described in section 4), and we use
algorithm 2 in annex without the Restart phase). Then we do as described in
the latter section. We have simply randomly chosen a first half of the instances
for the training set, the second half is for the validation set. To generate data,
we compute for each edge of the instance all its features, and we assign the label
“good” if the weight of the edge in the corresponding matrix exceeds 0.5, other-
wise we assign the label “bad”. We have to keep in mind that any instance of N

10

customers add N(N+1)
2 new examples. However negative examples (edges labelled

“bad”) are much more plentiful than positive examples (edges labelled “good”,
that we want to predict). We find three different ways to solve the imbalanced
data problem:

– Oversample the minority class: duplicate each positive example;
– Downsample the majority class: keep each negative example with some prob-

ability;
– Generate artificial positive examples with the SMOTE technique.

Note that oversample introduces an important bias in our data. Moreover
creating artificial examples for our data does not seem to be a good idea ei-
ther, because “good” and “bad” edges can be very similar. Finally, after some
experiments, we find that the downsampling method gives the best results.

To perform the learning phase we use the module scikit-learn of python and
a MLP classifier as neural network. Parameters are chosen according to those
described in the book Deep Learning with Python of François Chollet[3], to
realize a binary classification. Besides to realize our downsampling, we simply
keep each negative example with different probabilities. The results we obtained
are presented in table 2 in annex. We notice that a low ratio gives a very high
accuracy, but it is due to the imbalanced data. Moreover in these cases, precision
and recall for “good” edges is very low. On the other hand, a high ratio decreases
the accuracy, but we have more balanced statistics with the two classes. That’s
why in the following section, we will only consider neural networks obtained with
probabilities 0.02, 0.01 and 0.005 (we tried also with the other networks but it
did not give better results).

In the following the notation neuralNetwork(i, j) will refer to the probability
of the edge (i, j) to be “good”, according to the neural network. If we want to
precise the probability p used to generate the data with which we obtained the
neural network, we will note neuralNetworkp.

3.2 Application to the Construction of an Initial Solution

A common strategy to generate an initial solution to a routing problem is the
Clarke & Wright algorithm (CW). The first version of the algorithm dates back
to 1964 [6], but since then many variants have been suggested. Initially, there are
as many routes as customers and each route serves exactly one customer. The
general principle of the algorithm is based on computing savings, and then merge
routes until the saving become negative. Algorithm 1 in annex gives a general
framework of the algorithm. Usually, the formula to compute the savings differs
from a variant to another. In general, the algorithm does not generate good
solutions, but it is a good starting point for a local search procedure.

We suggest here other ways to generate an initial solution, by using three
savings formulas. The first one is simply the formula used in the basic CW
algorithm, in the second one we replaced the savings by the probability of being
a “good” edge, in the last one we multiply the two latter formula:

11

– Basic saving: savingbasic(i, j) = c(i, 0) + c(0, j)− c(i, j);
– Probability: savingproba(i, j) = neuralNetwork(i, j)
– Product: savingproduct(i, j) = savingbasic(i, j)× savingproba(i, j)

These three formulas define three distinct CW algorithms. Another CW vari-
ant, noted SubLists, is defined as follows. We use the basic saving formula to
compute all the savings. Then, we sort the saving list and we divide it into sub-
lists of size l, but we keep the order of the savings (i.e. the first sublist contains
the l higher savings, the following sublist the next l higher and so on). In each
sublist we associate to a saving, the probability of the corresponding edge, and
we sort the sublist by decreasing probability. Finally, we concatenate all the
sublists by conserving their initial macro order. The rest of the algorithm is the
same as a basic CW algorithm. Note that if we take l = 1, we retrieve the Basic
saving algorithm, and with l = |allSavings| we retrieve the Probability variant.

By experimenting the SubLists variant, we have noticed that we cannot fix
a value of l such that we obtain the best initial solution with this method for
all instances. To fix this problem, we consider a last variant Best SubLists, in
which we define a list Ll of value for l, and we keep the best solution obtained
among the |Ll| solutions obtained. Experimentally we found that taking l = 1
and l = N gave good results, so we decide to keep them in Ll. We have also
added in Ll all integers between 2 and N − 1 with a step of N//10 to keep a
good trade-off between computational time and results.

We compare the results obtained with the five versions of CW algorithm
described (and applying on the computed solutions the 2-opt operator, to obtain
an improved solution) on the 50 first instances of the Uchoa set. We compute
for each solution obtained its gap from the best-known solution, and we keep
the average gap over the 50 instances. Results can be visualized in table 3 in
annex. The variants Probability and Product compute worse solutions than the
Basic CW. With the variant SubLists, for all values of l chosen, we obtain in
average better solutions than the Basic CW, and if we preprocess the training of
the neural network and the prediction probability of each edge, we have even a
similar time to the Basic CW. Finally we obtained best results with the variant
Best SubLists, which improves in average solutions by almost 2.5%. However with
this variant we have to sacrifice a little more time in average. Finally, according
to the results, we will only keep the neural network neuralNetwork0.005 and use
the variant SubLists with l = N , to have a lower computational time.

4 Description of our Algorithm and Results

This section compares the results obtained with two algorithms: one designed
last year [17] and a new one described in the section.

Algorithm We tried to improve our last year algorithm by bringing some mod-
ifications and improving the local search. Local search has been improved by
fixing some issues, and using efficient pruning for the operators. The major

12

modifications can be seen in red on algorithm 2 in annex. We detailed in the
following the two major modifications: the restart and the perturbation, which
are efficient methods to perform an iterative local search [19].

New “Restart” Phase The restart phase occurs when no more improvement
are found for a fixed number of iterations. It simply consists in creating a new so-
lution of lower quality than the best solution we found. Jan Christiaens and Greet
Vanden Berghe have suggested [4] an efficient way to compute good solutions for
the CVRP by using a ruin and recreate method, called SISRs. So we decided to
implement the ruin method of SISRs to improve our restart. We recreate then a
solution with the method used for generating our initial solution. More precisely
we generate (nbRuins) solutions (we empirically chose nbRuins = 20 solutions
to have a good trade-off between computation time and exploration) which have
at least a gap of 1% from the best solution or improve the best solution. We
only keep the best generated solution according to the latter condition. However
in their paper Christiaens and Berghe choose the starting customer of the ruin
phase randomly. Therefore to explore a bigger neighborhood we compute a list
of starting points (of length nbRuins) as follows. The first point is randomly
chosen among all possible customers of the instance. Then we choose the next
point randomly among customers that are not in any nearest neighbors set of
our starting points (but we consider only those which have been generated from
the last time we reset). If there are no such customers we reset by choosing a
random customer of the instance.

New Perturbation Phase The major loss of time when a local search is per-
formed, is in general due to local optimum. To avoid this loss of time, we decide
to apply a perturbation each time that a local optimum is detected. We consider
that a local optimum has been reached if the current solution cannot be improved
during a small amount of iterations, or whether our current solution has already
been considered to be a local optimum. When a solution is considered to be a
local optimum, we authorize the local search operators to return a slightly worse
solution than the current solution to avoid the local optimum. The perturbation
consists in a small number of iteration (according to the results of F. Arnold, we
choose 10 iterations), during which we iteratively apply the local search opera-
tors with the modified cost function defined in section 2.2. Operators are applied
around the worst edge as defined in section 2.2. Note that an improving move
with cg is in general not an improving move for c. After the perturbation we
change the penalization function by picking another pair (λc, λw).

Results obtained We first compare our last year results and those obtained
with the new algorithm, on sets A, B and P. All the results can be visualized in
tables 4, 5 and 6 in annex. Most of the results obtained with our new algorithm
are better (in time and quality) than the previous one. We then execute our
algorithm on the 50 first instances of Uchoa set (called X set) and results can be

13

visualized in tables 7 and 8 in annex. Most results are good (below 1%), however
the computation time is quite high. Moreover we have still a progress margin,
according to the results of F. Arnold. All the results are summarized in table 1.

Set Size LearnHeurisrtic MachineLearning
Average Gap (%) Total Time (m) Average Gap (%) Total Time (m)

A 27 0.23 234.1 0.14 27.5
B 20 0.37 187.9 0.17 23.4
P 21 0.24 176.1 0.12 38.9
X 50 NA NA 1.13 1329.2

Table 1. Synthesis of results obtained for instances A, B, P and X.

Conclusion

In this article we have performed a binary classification thanks to a neural net-
work to predict the probability that has an edge to appear in good solutions.
Due to the imbalanced data, we have decided to downsample the majority class
(i.e. “bad” edges) to improve ours results. We have then used the results of the
prediction to improve the basic Clarke & Wright algorithm. In addition, we im-
proved our last year algorithm with some corrections and modifications. Indeed
we have added a perturbation phase and modified the restart phase. All the
python code designed is available on gitlab https://gitlab.com/Lixonclem/
master_internship.

Results obtained are promising, but we are still far from the results of F.
Arnold. First our code is in python so it is slower than a C++ code. Moreover it
is possible that our implementation is not as efficient as that of F. Arnold, and
that the chosen parameters for the neural network are not the bests.

As future work we could try to improve the range of our prediction to set
of customers and not only edges. We could also analyze the (potential) correla-
tion between the savings and the probabilities predicted by the neural network.
Moreover the CW variant SubLists may could be improved by using variable
steps instead of a constant step.

Acknowledgments

I thank professor Daniele Vigo at DEI laboratory of university of Bologna (Italy)
who supervised this project. I thank Luca Accorsi (phd student) who worked
with me on this project. I would also thank Laetitia Jourdan, Marie-Eléonore
Kessaci and Diego Cataruzza from CRIStAL laboratory of Lille (France) who
helped me on this project.

14

https://gitlab.com/Lixonclem/master_internship
https://gitlab.com/Lixonclem/master_internship

References

1. Florian Arnold. Efficient heuristics for routing and integrated logistics. PhD thesis,
University of Antwerp, 2018.

2. Kris Braekers, Katrien Ramaekers, and Inneke Van Nieuwenhuyse. The vehicle
routing problem: State of the art classification and review. Computers & Industrial
Engineering, 99:300–313, 2016.

3. Francois Chollet. Deep learning with python. 2018.
4. Jan Christiaens and Greet Vanden Berghe. Slack induction by string removals for

vehicle routing problems. 2018.
5. Nicos Christofides. The vehicle routing problem. Combinatorial optimization, 1979.
6. Geoff Clarke and John W Wright. Scheduling of vehicles from a central depot to

a number of delivery points. Operations research, 12(4):568–581, 1964.
7. George B Dantzig and John H Ramser. The truck dispatching problem. Manage-

ment science, 6(1):80–91, 1959.
8. Bruce L Golden, Subramanian Raghavan, and Edward A Wasil. The vehicle rout-

ing problem: latest advances and new challenges, volume 43. Springer Science &
Business Media, 2008.

9. Chris Groër, Bruce Golden, and Edward Wasil. A library of local search heuristics
for the vehicle routing problem. Mathematical Programming Computation, 2(2):79–
101, 2010.

10. Keld Helsgaun. An effective implementation of the lin–kernighan traveling sales-
man heuristic. European Journal of Operational Research, 126(1):106–130, 2000.

11. John H Holland. Genetic algorithms. Scientific american, 267(1):66–73, 1992.
12. Holger H Hoos and Thomas Stützle. Stochastic local search: Foundations and

applications. Elsevier, 2004.
13. Sahbi Ben Ismail, François Legras, and Gilles Coppin. Synthèse du problème de

routage de véhicules. 2011.
14. Philip Kilby, Patrick Prosser, and Paul Shaw. Guided local search for the vehicle

routing problem with time windows. In Meta-heuristics, pages 473–486. Springer,
1999.

15. Rahma Lahyani, Mahdi Khemakhem, and Frédéric Semet. Rich vehicle routing
problems: From a taxonomy to a definition. European Journal of Operational
Research, 241(1):1–14, 2015.

16. Gilbert Laporte. Fifty years of vehicle routing. Transportation Science, 43(4):408–
416, 2009.

17. Clément Legrand-Lixon. Création d’une learning heuristic pour résoudre le capac-
itated vehicle routing problem. 2018.

18. Shen Lin and BrianWKernighan. An effective heuristic algorithm for the traveling-
salesman problem. Operations research, 21(2):498–516, 1973.

19. Helena R Lourenço, Olivier C Martin, and Thomas Stützle. Iterated local search.
In Handbook of metaheuristics, pages 320–353. Springer, 2003.

20. Nenad Mladenović and Pierre Hansen. Variable neighborhood search. Computers
& operations research, 24(11):1097–1100, 1997.

21. Éric Taillard, Philippe Badeau, Michel Gendreau, François Guertin, and Jean-
Yves Potvin. A tabu search heuristic for the vehicle routing problem with soft
time windows. Transportation science, 31(2):170–186, 1997.

22. Paolo Toth and Daniele Vigo. The vehicle routing problem. SIAM, 2002.
23. Christos Voudouris and Edward PK Tsang. Guided local search. In Handbook of

metaheuristics, pages 185–218. Springer, 2003.

15

Annex

Probability Ratio Accuracy Precision (“good”, “bad”) Recall (“good”, “bad”) Time
1 0.003 0.997 0.650, 0.998 0.407, 0.999 243
0.5 0.007 0.995 0.719, 0.997 0.521, 0.998 142
0.25 0.014 0.992 0.817, 0.994 0.554, 0.998 69
0.1 0.035 0.987 0.825, 0.992 0.762, 0.994 47
0.05 0.069 0.980 0.884, 0.987 0.808, 0.993 27
0.02 0.172 0.972 0.910, 0.982 0.899, 0.985 18
0.01 0.345 0.967 0.933, 0.979 0.939, 0.977 12
0.005 0.678 0.966 0.961, 0.969 0.957, 0.973 11

Table 2. Statistics obtained after training the neural network with different down-
sampling. A low probability means that we keep less negative examples. The number
of positive examples over the number of negative examples corresponds to the ratio.
Then we give the precision and the recall for each class: “good” and “bad”. The time is
in seconds.

Algorithm 1: Clarke & Wright algorithm
Input: A CVRP instance
Output: A solution of the instance

1 Compute the savings of all edges of the instance
2 s← Initialization
3 while max(i,j) saving(i, j) > 0 do
4 (i, j)← argmax(i,j) saving(i, j)

5 ri ← findRoute(s, i) // Route in which is i
6 rj ← findRoute(s, j)
7 if ri and rj can merge then
8 Remove ri and rj from s
9 Merge ri and rj such that i and j are connected in the new route

10 Add the new route in s and put saving(i, j) = 0

11 return s

16

Variant neuralNetwork0.005 neuralNetwork0.01 neuralNetwork0.02 Time
Basic 7.84% 7.84% 7.84% 0.30

Probability 20.10% 18.71% 18.95% 0.17
Product 14.11% 14.41% 16.32% 0.28
SubLists
l = N 7.16% 7.22% 7.42% 0.18

l = N//2 7.63% 7.48% 7.70% 0.19
l = N//4 7.37% 7.63% 7.71% 0.19
l = N//8 7.44% 7.67% 7.55% 0.20
l = 10 7.70% 7.65% 7.59% 0.20

Best SubLists 5.60% 5.50% 5.38% 1.92
Table 3. Average gap obtained on the 50 first instances of the Uchoa set, with different
variants of the CW algorithm and different neural networks. The gap is computed
between the solution obtained and the best-known. The time is in seconds. It does not
include the training time of the neural network, and the time to predict the probability
of each edge (average time of 2.6 s).

Algorithm 2: Proposition of algorihtm to solve the CVRP
Input: A CVRP instance, A neural network
Output: A solution of the instance

1 s∗ ← Initial solution // Construction
2 s← s∗

3 allSolutions← {s∗}
4 while Last improvement obtained during the 2500 last iterations do
5 worstEdge← argmax(i,j)b(i, j)
6 s← apply the local search around the worstEdge // Optimization
7 allSolutions← allSolutions ∪ {s}
8 if s is better than s∗ then
9 s∗ ← s

10 if No improvement for 450 iterations then
11 Use the SISR’s method to ruin s∗ and recreate a new solution with the

method used to generate an initial solution // Restart phase

12 if No improvement for 150 iterations and s∗ improved for the last time then
13 s∗ ← apply local search on each route // Global phase

14 if localOptimum then
15 Change the cost function
16 for 10 iterations do
17 worstEdge← argmax(i,j)b(i, j) // Perturbation
18 Apply a perturbation method on s around worstEdge

19 Change penalization function by picking another pair (λw, λc)
20 Restore the initial cost function

21 Sort allSolutions by increasing cost
22 return allSolutions

17

Instance Optimal LearnHeuristic-2018 MachineLearning-2019
Best Gap (%) Time (s) Best Gap (%) Time (s)

A-n32-k05 784 784 0 351 784 0 45
A-n33-k05 661 661 0 381 661 0 32
A-n33-k06 742 742 0 412 742 0 43
A-n34-k05 778 779 0.13 331 778 0 37
A-n36-k05 799 799 0 464 799 0 38
A-n37-k05 669 671 0.15 421 669 0 45
A-n37-k06 949 949 0 465 949 0 31
A-n38-k05 730 730 0 361 730 0 50
A-n39-k05 822 822 0 405 822 0 63
A-n39-k06 831 831 0 382 831 0 23
A-n44-k06 937 937 0 500 937 0 41
A-n45-k06 944 950 0.63 487 948 0.42 59
A-n45-k07 1146 1149 0.26 500 1148 0.17 42
A-n46-k07 914 914 0 498 914 0 45
A-n48-k07 1073 1073 0 508 1073 0 76
A-n53-k07 1010 1014 0.39 515 1011 0.1 65
A-n54-k07 1167 1167 0 521 1167 0 105
A-n55-k09 1073 1073 0 506 1073 0 61
A-n60-k09 1354 1354 0 547 1354 0 101
A-n61-k09 1034 1035 0.09 562 1035 0.09 91
A-n62-k08 1288 1308 1.53 624 1302 1.09 71
A-n63-k09 1616 1627 0.68 641 1627 0.68 108
A-n63-k10 1314 1320 0.45 662 1314 0 72
A-n64-k09 1401 1416 1.06 684 1414 0.93 58
A-n65-k09 1174 1176 0.17 704 1178 0.34 48
A-n69-k09 1159 1164 0.43 768 1159 0 102
A-n80-k10 1763 1767 0.23 843 1763 0 97

Table 4. Results obtained for the set A.

18

Instance Optimal LearnHeuristic-2018 MachineLearning-2019
Best Gap (%) Time (s) Best Gap (%) Time (s)

B-n31-k05 672 672 0 319 672 0 42
B-n34-k05 788 788 0 371 788 0 54
B-n35-k05 955 955 0 388 955 0 36
B-n38-k06 805 806 0.12 413 805 0 35
B-n39-k05 549 549 0 436 549 0 45
B-n41-k06 829 831 0.24 491 829 0 81
B-n43-k06 742 742 0 534 742 0 53
B-n44-k07 909 910 0.11 463 909 0 45
B-n45-k05 751 751 0 461 751 0 154
B-n50-k07 741 741 0 604 741 0 51
B-n50-k08 1312 1320 0.61 587 1314 0.15 92
B-n52-k07 747 747 0 562 747 0 58
B-n56-k07 707 710 0.42 473 707 0 55
B-n57-k09 1598 1599 0.06 523 1599 0.06 68
B-n63-k10 1496 1533 2.41 766 1516 1.34 89
B-n64-k09 861 865 0.46 787 862 0.12 72
B-n66-k09 1316 1321 0.38 770 1319 0.23 75
B-n67-k10 1032 1040 0.77 784 1035 0.29 67
B-n68-k09 1272 1289 1.32 666 1288 1.26 90
B-n78-k10 1221 1231 0.57 881 1221 0 141

Table 5. Results obtained for the set B.

Instance Optimal LearnHeuristic-2018 MachineLearning-2019
Best Gap (%) Time (s) Best Gap (%) Time (s)

P-n016-k08 450 450 0 132 450 0 63
P-n019-k02 212 212 0 163 212 0 43
P-n020-k02 216 216 0 203 216 0 52
P-n021-k02 211 211 0 168 211 0 66
P-n022-k02 216 216 0 227 216 0 97
P-n023-k08 529 529 0 205 529 0 106
P-n040-k05 458 458 0 383 458 0 55
P-n045-k05 510 510 0 580 510 0 58
P-n050-k07 554 554 0 596 556 0.36 65
P-n050-k08 631 631 0 485 631 0 87
P-n050-k10 696 699 0.43 584 701 0.72 79
P-n051-k10 741 741 0 479 741 0 54
P-n055-k07 568 568 0 641 568 0 78
P-n055-k10 694 694 0 632 698 0.58 67
P-n060-k10 744 750 0.8 513 746 0.27 79
P-n060-k15 968 975 0.72 596 968 0 124
P-n065-k10 792 792 0 668 792 0 119
P-n070-k10 827 839 1.43 715 828 0.12 126
P-n076-k04 593 596 0.50 754 593 0 280
P-n076-k05 627 630 0.48 821 628 0.16 270
P-n101-k04 681 686 0.73 1023 683 0.29 371

Table 6. Results obtained for the set P.

19

Instance Best-Known MachineLearning-2019
Best Gap (%) Time (m)

X-n101-k25 27591 27833 0.88 3.41
X-n106-k14 26362 26443 0.31 3.75
X-n110-k13 14971 14971 0 2.48
X-n115-k10 12747 12751 0.03 6.27
X-n120-k06 13332 13342 0.08 10.2
X-n125-k30 55539 56390 1.53 9.83
X-n129-k18 28940 28970 0.10 4.28
X-n134-k13 10916 10938 0.20 13.5
X-n139-k10 13590 13670 0.59 5.62
X-n143-k07 15700 15769 0.44 14.0
X-n148-k46 43448 43765 0.73 6.2
X-n153-k22 21220 22082 4.06 18.17
X-n157-k13 16876 16925 0.29 7.5
X-n162-k11 14138 14264 0.89 10.1
X-n167-k10 20557 20622 0.32 11.3
X-n172-k51 45607 45988 0.84 13.1
X-n176-k26 47812 48912 2.30 25.3
X-n181-k23 25569 25718 0.58 6.63
X-n186-k15 24145 24326 0.75 11.7
X-n190-k08 16980 17033 0.31 26.9
X-n195-k51 44225 44603 0.85 17.8
X-n200-k36 58578 60018 2.46 14.83

Table 7. Results obtained for the set X (1).

20

Instance Best-Known MachineLearning-2019
Best Gap (%) Time (m)

X-n204-k19 19565 19689 0.63 16.0
X-n209-k16 30656 30909 0.83 25.7
X-n214-k11 10856 11036 1.66 17.8
X-n219-k73 117595 117796 0.17 16.9
X-n223-k34 40437 40752 0.78 14.3
X-n228-k23 25742 25922 0.70 25.4
X-n233-k16 19230 19680 2.34 56.9
X-n237-k14 27042 27129 0.32 45.2
X-n242-k48 82751 83470 0.87 22.9
X-n247-k50 37274 38832 4.27 31.7
X-n251-k28 38684 39070 0.99 20.4
X-n256-k16 18839 18994 0.82 23.0
X-n261-k13 26558 27145 2.21 80.2
X-n266-k58 75478 76869 1.84 22.9
X-n270-k35 35291 35618 0.93 18.8
X-n275-k28 21245 21539 1.38 20.1
X-n280-k17 33503 33840 1.01 50.2
X-n284-k15 20215 20786 2.82 64.6
X-n289-k60 95151 96365 1.28 41.0
X-n294-k50 47161 47859 1.48 17.6
X-n298-k31 34231 34420 0.55 31.8
X-n303-k21 21744 21980 1.09 40.4
X-n308-k13 25859 26258 1.54 93.2
X-n313-k71 94044 95862 1.93 80.9
X-n317-k53 78355 78527 0.22 37.8
X-n322-k28 29834 30454 2.08 31.1
X-n327-k20 27532 28025 1.79 53.9
X-n331-k15 31102 31589 1.57 85.7

Table 8. Results obtained for the set X (2).

21

	About the prediction of good edges for the CVRP and its applications

