### The quadratic linking degree

Clémentine Lemarié--Rieusset (Université de Bourgogne)

March 23, 2023

### Knot theory in a nutshell 1

Topological objects of interest are knots and links.

- A **knot** is a (closed) topological subspace of the 3-sphere  $\mathbb{S}^3$  which is homeomorphic to the circle  $\mathbb{S}^1$ .
- An **oriented knot** is a knot with a "continuous" local trivialization of its tangent bundle, or equivalently of its normal bundle (the ambient space being oriented). There are two orientation classes.



Figure: The unknot



Figure: The trefoil knot

### Knot theory in a nutshell 2

- A link is a finite union of disjoint knots. A link is oriented if all its components (i.e. its knots) are oriented.
- The linking number of an (oriented) link with two components is the number of times one of the components turns around the other component.



Figure: The Hopf link



Figure: The Solomon link

# Defining the linking number: Seifert surfaces



### Defining the linking number: intersection of S. surfaces



# Defining the linking number: boundary of int. of S. surf.



## The formal definition of the linking number

Let  $L = K_1 \sqcup K_2$  be an oriented link with two components.

### The formal definition of the linking number

Let  $L = K_1 \sqcup K_2$  be an oriented link with two components.

#### Oriented fundamental class and Seifert class

Let  $i \in \{1,2\}$ . The class  $S_i$  in  $H^1(\mathbb{S}^3 \setminus L) \simeq H_2^{\text{BM}}(\mathbb{S}^3, L)$  of Seifert surfaces of the oriented knot  $K_i$  is the unique class that is sent by the boundary map to the (oriented) fundamental class of  $K_i$  in  $H^0(K_i) \subset H^0(L)$ .

# The formal definition of the linking number

Let  $L = K_1 \sqcup K_2$  be an oriented link with two components.

#### Oriented fundamental class and Seifert class

Let  $i \in \{1,2\}$ . The class  $S_i$  in  $H^1(\mathbb{S}^3 \setminus L) \simeq H_2^{\text{BM}}(\mathbb{S}^3, L)$  of Seifert surfaces of the oriented knot  $K_i$  is the unique class that is sent by the boundary map to the (oriented) fundamental class of  $K_i$  in  $H^0(K_i) \subset H^0(L)$ .

#### Linking class and linking number

The linking class of L is the image of the cup-product  $S_1 \cup S_2 \in H^2(\mathbb{S}^3 \setminus L)$  by the boundary map  $\partial: H^2(\mathbb{S}^3 \setminus L) \to H^1(L)$ . The linking number of  $L = K_1 \sqcup K_2$  is the integer  $n \in \mathbb{Z}$  such that the linking class in  $H^1(L) = \mathbb{Z}[\omega_{K_1}] \oplus \mathbb{Z}[\omega_{K_2}]$  is equal to  $(n[\omega_{K_1}], -n[\omega_{K_2}])$  (where  $\omega_{K_i}$  is the volume form of the oriented knot  $K_i$ ).

#### Homotopies in a nutshell

#### Homotopic maps

Two continuous maps  $f,g:X\to Y$  are homotopic if there exists a homotopy from f to g, i.e. a continuous map  $H:X\times [0,1]\to Y$  such that for all  $x\in X$ , H(x,0)=f(x) and H(x,1)=g(x).

### Homotopies in a nutshell

#### Homotopic maps

Two continuous maps  $f,g:X\to Y$  are homotopic if there exists a homotopy from f to g, i.e. a continuous map  $H:X\times [0,1]\to Y$  such that for all  $x\in X$ , H(x,0)=f(x) and H(x,1)=g(x).

#### Homotopy types of topological spaces

Two topological spaces X and Y have the same homotopy type if there exists a homotopy equivalence from X to Y, i.e. a couple  $(i:X\to Y,j:Y\to X)$  of continuous maps such that  $j\circ i$  is homotopic to the identity of X and  $i\circ j$  is homotopic to the identity of Y.

### Homotopies in a nutshell

#### Homotopic maps

Two continuous maps  $f,g:X\to Y$  are homotopic if there exists a homotopy from f to g, i.e. a continuous map  $H:X\times [0,1]\to Y$  such that for all  $x\in X$ , H(x,0)=f(x) and H(x,1)=g(x).

#### Homotopy types of topological spaces

Two topological spaces X and Y have the same homotopy type if there exists a homotopy equivalence from X to Y, i.e. a couple  $(i:X\to Y,j:Y\to X)$  of continuous maps such that  $j\circ i$  is homotopic to the identity of X and  $i\circ j$  is homotopic to the identity of Y.

#### Important example

For all  $n \geq 1$ ,  $\mathbb{S}^n$  has the same homotopy type as  $\mathbb{R}^{n+1} \setminus \{0\}$ .

#### Link with two components

A link with two components is a couple of closed immersions  $\varphi_i: \mathbb{A}^2_F \setminus \{0\} \to \mathbb{A}^4_F \setminus \{0\}$  with disjoint images  $Z_i$  (where  $i \in \{1,2\}$ ).

#### Link with two components

A link with two components is a couple of closed immersions  $\varphi_i: \mathbb{A}^2_F \setminus \{0\} \to \mathbb{A}^4_F \setminus \{0\}$  with disjoint images  $Z_i$  (where  $i \in \{1,2\}$ ).

An orientation  $o_i$  of  $Z_i$  is an isomorphism from the determinant (i.e. the maximal exterior power) of the normal sheaf  $\mathcal{N}_{Z_i/\mathbb{A}_F^4\setminus\{0\}}$  of  $Z_i$  in  $\mathbb{A}_F^4\setminus\{0\}$  to the tensor product of an invertible  $\mathcal{O}_{Z_i}$ -module  $\mathcal{L}_i$  with itself:

$$o_i: 
u_{\mathcal{Z}_i} := \det(\mathcal{N}_{\mathcal{Z}_i/\mathbb{A}^4_F\setminus\{0\}}) \simeq \mathcal{L}_i \otimes \mathcal{L}_i$$

#### Link with two components

A link with two components is a couple of closed immersions  $\varphi_i: \mathbb{A}^2_F \setminus \{0\} \to \mathbb{A}^4_F \setminus \{0\}$  with disjoint images  $Z_i$  (where  $i \in \{1,2\}$ ).

An orientation  $o_i$  of  $Z_i$  is an isomorphism from the determinant (i.e. the maximal exterior power) of the normal sheaf  $\mathcal{N}_{Z_i/\mathbb{A}_F^4\setminus\{0\}}$  of  $Z_i$  in  $\mathbb{A}_F^4\setminus\{0\}$  to the tensor product of an invertible  $\mathcal{O}_{Z_i}$ -module  $\mathcal{L}_i$  with itself:

$$o_i: 
u_{\mathcal{Z}_i} := \det(\mathcal{N}_{\mathcal{Z}_i/\mathbb{A}^4_F\setminus\{0\}}) \simeq \mathcal{L}_i \otimes \mathcal{L}_i$$

#### Orientation classes

Two orientations  $o_i: \nu_{Z_i} \to \mathcal{L}_i \otimes \mathcal{L}_i$  and  $o_i': \nu_{Z_i} \to \mathcal{L}_i' \otimes \mathcal{L}_i'$  of  $Z_i$  represent the same orientation class of  $Z_i$  if there exists an isomorphism  $\psi: \mathcal{L}_i \simeq \mathcal{L}_i'$  such that  $(\psi \otimes \psi) \circ o_i = o_i'$ .

#### Oriented link with two components

An oriented link with two components is a link with two components  $(\varphi_1: \mathbb{A}^2_F \setminus \{0\} \to Z_1, \varphi_2: \mathbb{A}^2_F \setminus \{0\} \to Z_2)$  together with an orientation class  $\overline{o_1}$  of  $Z_1$  and an orientation class  $\overline{o_2}$  of  $Z_2$ .

#### Oriented link with two components

An oriented link with two components is a link with two components  $(\varphi_1: \mathbb{A}^2_F \setminus \{0\} \to Z_1, \varphi_2: \mathbb{A}^2_F \setminus \{0\} \to Z_2)$  together with an orientation class  $\overline{o_1}$  of  $Z_1$  and an orientation class  $\overline{o_2}$  of  $Z_2$ .

#### Proposition

The orientation classes of  $Z_i$  are parametrized by the elements of  $F^*/(F^*)^2$  (where  $(F^*)^2 = \{a \in F^*, \exists b \in F^*, a = b^2\}$ ).

#### Oriented link with two components

An oriented link with two components is a link with two components  $(\varphi_1: \mathbb{A}^2_F \setminus \{0\} \to Z_1, \varphi_2: \mathbb{A}^2_F \setminus \{0\} \to Z_2)$  together with an orientation class  $\overline{o_1}$  of  $Z_1$  and an orientation class  $\overline{o_2}$  of  $Z_2$ .

#### Proposition

The orientation classes of  $Z_i$  are parametrized by the elements of  $F^*/(F^*)^2$  (where  $(F^*)^2 = \{a \in F^*, \exists b \in F^*, a = b^2\}$ ).

If  $F = \mathbb{R}$  then  $F^*/(F^*)^2$  has two elements.

#### Oriented link with two components

An oriented link with two components is a link with two components  $(\varphi_1: \mathbb{A}^2_F \setminus \{0\} \to Z_1, \varphi_2: \mathbb{A}^2_F \setminus \{0\} \to Z_2)$  together with an orientation class  $\overline{o_1}$  of  $Z_1$  and an orientation class  $\overline{o_2}$  of  $Z_2$ .

#### Proposition

The orientation classes of  $Z_i$  are parametrized by the elements of  $F^*/(F^*)^2$  (where  $(F^*)^2 = \{a \in F^*, \exists b \in F^*, a = b^2\}$ ).

If  $F = \mathbb{R}$  then  $F^*/(F^*)^2$  has two elements.

If  $F = \mathbb{C}$  then  $F^*/(F^*)^2$  has one element.

#### Oriented link with two components

An oriented link with two components is a link with two components  $(\varphi_1 : \mathbb{A}^2_F \setminus \{0\} \to Z_1, \varphi_2 : \mathbb{A}^2_F \setminus \{0\} \to Z_2)$  together with an orientation class  $\overline{o_1}$  of  $Z_1$  and an orientation class  $\overline{o_2}$  of  $Z_2$ .

#### Proposition

The orientation classes of  $Z_i$  are parametrized by the elements of  $F^*/(F^*)^2$  (where  $(F^*)^2 = \{a \in F^*, \exists b \in F^*, a = b^2\}$ ).

If  $F = \mathbb{R}$  then  $F^*/(F^*)^2$  has two elements.

If  $F = \mathbb{C}$  then  $F^*/(F^*)^2$  has one element.

If  $F = \mathbb{Q}$  then  $F^*/(F^*)^2$  has infinitely many elements (the classes of the integers without square factors).

### The Hopf link

We fix coordinates x, y, z, t for  $\mathbb{A}^4_F$  and u, v for  $\mathbb{A}^2_F$  once and for all.

• The image of the Hopf link:

$$\{x=0,y=0\}\sqcup\{z=0,t=0\}\subset\mathbb{A}^4_F\setminus\{0\}$$

# The Hopf link

We fix coordinates x, y, z, t for  $\mathbb{A}^4_F$  and u, v for  $\mathbb{A}^2_F$  once and for all.

• The image of the Hopf link:

$$\{x = 0, y = 0\} \sqcup \{z = 0, t = 0\} \subset \mathbb{A}^4_F \setminus \{0\}$$

The parametrization of the Hopf link:

$$\varphi_1:(x,y,z,t)\leftrightarrow(0,0,u,v),\varphi_2:(x,y,z,t)\leftrightarrow(u,v,0,0)$$

# The Hopf link

We fix coordinates x, y, z, t for  $\mathbb{A}^4_F$  and u, v for  $\mathbb{A}^2_F$  once and for all.

• The image of the Hopf link:

$$\{x = 0, y = 0\} \sqcup \{z = 0, t = 0\} \subset \mathbb{A}^4_F \setminus \{0\}$$

The parametrization of the Hopf link:

$$\varphi_1:(x,y,z,t)\leftrightarrow(0,0,u,v),\varphi_2:(x,y,z,t)\leftrightarrow(u,v,0,0)$$

The orientation of the Hopf link:

$$o_1: \overline{x}^* \wedge \overline{y}^* \mapsto 1 \otimes 1, o_2: \overline{z}^* \wedge \overline{t}^* \mapsto 1 \otimes 1$$



### A variant of the Hopf link

• The image is the same as the Hopf link's image:

$$\{x=y,y=0\}\sqcup\{z=0,at=0\}\subset\mathbb{A}^4_F\setminus\{0\}$$
 with  $a\in F^*$ 

### A variant of the Hopf link

• The image is the same as the Hopf link's image:

$$\{x=y,y=0\}\sqcup\{z=0,at=0\}\subset\mathbb{A}^4_F\setminus\{0\} \text{ with } a\in F^*$$

The parametrization is the same:

$$\varphi_1:(x,y,z,t)\leftrightarrow(0,0,u,v),\varphi_2:(x,y,z,t)\leftrightarrow(u,v,0,0)$$

### A variant of the Hopf link

• The image is the same as the Hopf link's image:

$$\{x=y,y=0\}\sqcup\{z=0,at=0\}\subset\mathbb{A}^4_F\setminus\{0\}$$
 with  $a\in F^*$ 

The parametrization is the same:

$$\varphi_1:(x,y,z,t)\leftrightarrow(0,0,u,v),\varphi_2:(x,y,z,t)\leftrightarrow(u,v,0,0)$$

The orientation is different:

$$o_1: \overline{x-y}^* \wedge \overline{y}^* \mapsto 1 \otimes 1, o_2: \overline{z}^* \wedge \overline{at}^* \mapsto 1 \otimes 1$$



• First idea: replace the singular cohomology ring with the Chow ring.

- First idea: replace the singular cohomology ring with the Chow ring.
- Two problems: what will play the role of the boundary map and how will we take orientations into account?

- First idea: replace the singular cohomology ring with the Chow ring.
- Two problems: what will play the role of the boundary map and how will we take orientations into account?
- Solution to the first problem: Rost's article *Chow groups with coefficients* (1996); Rost redefines Chow groups as some homology groups  $A_p(X,q)$  of complexes C(X,q), namely  $CH_p(X) = A_p(X,-p)$

- First idea: replace the singular cohomology ring with the Chow ring.
- Two problems: what will play the role of the boundary map and how will we take orientations into account?
- Solution to the first problem: Rost's article *Chow groups with coefficients* (1996); Rost redefines Chow groups as some homology groups  $A_p(X,q)$  of complexes C(X,q), namely  $CH_p(X) = A_p(X,-p)$
- You may know the following exact sequence where  $Y \subset X$  is closed:

$$CH_p(Y) \longrightarrow CH_p(X) \longrightarrow CH_p(X \setminus Y) \longrightarrow 0$$

It can be extended into the following long exact sequence:

$$\cdots o A_{p+1}(X\setminus Y,-p) o CH_p(Y) o CH_p(X) o CH_p(X\setminus Y) o 0$$

## Chow-Witt groups and quadratic intersection theory

Solution to the second problem (orientations): replace (generalised)
 Chow groups, a.k.a. Rost groups, with (generalised) Chow-Witt
 groups, a.k.a. Rost-Schmid groups; see for instance the chapter
 *Lectures on Chow-Witt groups* by Jean Fasel in the book *Motivic homotopy theory and refined enumerative geometry* (2020)

# Chow-Witt groups and quadratic intersection theory

- Solution to the second problem (orientations): replace (generalised)
   Chow groups, a.k.a. Rost groups, with (generalised) Chow-Witt
   groups, a.k.a. Rost-Schmid groups; see for instance the chapter
   *Lectures on Chow-Witt groups* by Jean Fasel in the book *Motivic homotopy theory and refined enumerative geometry* (2020)
- To a smooth F-scheme Y, an integer  $j \in \mathbb{Z}$  and an invertible  $\mathcal{O}_Y$ -module  $\mathcal{L}$  we associate the corresponding Rost-Schmid complex  $\bigoplus_{j=i}^{\mathsf{MW}} (\kappa(p)) \otimes_{\mathbb{Z}[\kappa(p)^*]} \mathbb{Z}[(\nu_p \otimes \mathcal{L}_{|p}) \setminus \{0\}].$

 $i \ge 0$  p point of codim i in Y

# Chow-Witt groups and quadratic intersection theory

- Solution to the second problem (orientations): replace (generalised)
   Chow groups, a.k.a. Rost groups, with (generalised) Chow-Witt
   groups, a.k.a. Rost-Schmid groups; see for instance the chapter
   *Lectures on Chow-Witt groups* by Jean Fasel in the book *Motivic homotopy theory and refined enumerative geometry* (2020)
- To a smooth F-scheme Y, an integer  $j \in \mathbb{Z}$  and an invertible  $\mathcal{O}_Y$ -module  $\mathcal{L}$  we associate the corresponding Rost-Schmid complex  $\bigoplus_{i \geq 0} \bigoplus_{p \text{ point of codim } i \text{ in } Y} \mathcal{K}^{\mathsf{MW}}_{j-i}(\kappa(p)) \otimes_{\mathbb{Z}[\kappa(p)^*]} \mathbb{Z}[(\nu_p \otimes \mathcal{L}_{|p}) \setminus \{0\}].$
- The i-th cohomology group, called Rost-Schmid group, is denoted  $H^i(Y,\underline{K}_j^{\mathsf{MW}}\{\mathcal{L}\})$ . If j=i then we call  $H^i(Y,\underline{K}_i^{\mathsf{MW}}\{\mathcal{L}\})$  the i-th Chow-Witt group of Y twisted by  $\mathcal{L}$  and denote it  $\widetilde{CH}^i(Y,\mathcal{L})$ . We have a canonical morphism  $\widetilde{CH}^i(Y,\mathcal{L}) \to CH^i(Y)$ .

#### Intersection product

We have an intersection product

$$\cdot: H^{i}(Y,\underline{K}_{j}^{\mathsf{MW}}) \times H^{i'}(Y,\underline{K}_{j'}^{\mathsf{MW}}) \to H^{i+i'}(Y,\underline{K}_{j+j'}^{\mathsf{MW}})$$

which makes  $igoplus_{i\in\mathbb{N}_0,j\in\mathbb{Z}}H^i(Y,\underline{K}^{ ext{MW}}_j)$  into a graded  $K^{ ext{MW}}_0(F)$ -algebra.

In particular, we have  $\cdot : \widetilde{CH}^i(Y) \times \widetilde{CH}^{i'}(Y) \to \widetilde{CH}^{i+i'}(Y)$  which makes  $\bigoplus_{i \in \mathbb{N}_0} \widetilde{CH}^i(Y)$  into a graded  $K_0^{\mathsf{MW}}(F)$ -algebra (the Chow-Witt ring).

## Boundary maps and the localization long exact sequence

If  $i:Z\to X$  is a closed subscheme and  $j:U\to X$  is the complementary open subscheme, Z,U,X being smooth F-schemes (with F a perfect field) of pure dimensions  $d_Z$ , d and d, then for each n,m there is a boundary map  $\partial:H^{n+d_X-d_Z}(U,\underline{K}^{\mathsf{MW}}_{m+d_X-d_Z})\to H^{n+1}(Z,\underline{K}^{\mathsf{MW}}_{m}\{\nu_Z\})$  such that the following is a long exact sequence:

$$\dots \longrightarrow H^n(Z, \underline{K}_m^{MW} \{\nu_Z\}) \xrightarrow{i_*} H^{n+d_X-d_Z}(X, \underline{K}_{m+d_X-d_Z}^{MW}) \xrightarrow{j^*}$$

$$\xrightarrow{j^*} H^{n+d_X-d_Z}(U, \underline{K}_{m+d_X-d_Z}^{MW}) \xrightarrow{\partial} H^{n+1}(Z, \underline{K}_m^{MW}\{\nu_Z\}) \xrightarrow{} \dots$$

## Milnor-Witt K-theory and quadratic forms

The generators of the Milnor-Witt K-theory ring of a field F are denoted  $[a] \in K_1^{\mathsf{MW}}(F)$  for every  $a \in F^*$  and  $\eta \in K_{-1}^{\mathsf{MW}}(F)$ . We denote  $\langle a \rangle = \eta[a] + 1 \in K_0^{\mathsf{MW}}(F)$  for every  $a \in F^*$ .

# Milnor-Witt K-theory and quadratic forms

The generators of the Milnor-Witt K-theory ring of a field F are denoted  $[a] \in \mathcal{K}_1^{\mathsf{MW}}(F)$  for every  $a \in F^*$  and  $\eta \in \mathcal{K}_{-1}^{\mathsf{MW}}(F)$ . We denote  $\langle a \rangle = \eta[a] + 1 \in \mathcal{K}_0^{\mathsf{MW}}(F)$  for every  $a \in F^*$ .

The (commutative) ring with unit  $K_0^{\text{MW}}(F)$  is isomorphic to the Grothendieck-Witt ring GW(F) of F via  $\langle a \rangle \in K_0^{\text{MW}}(F) \leftrightarrow \langle a \rangle \in \text{GW}(F)$ . For all n < 0, the abelian group  $K_n^{\text{MW}}(F)$  is isomorphic to the Witt group W(F) of F via  $\langle a \rangle \eta^{-n} \in K_n^{\text{MW}}(F) \leftrightarrow \langle a \rangle \in \text{W}(F)$ .

For all  $a \in F^*$ ,  $\langle a \rangle$  is the equivalence class of the symmetric bilinear form  $\begin{cases} F \times F & \to & F \\ (x,y) & \mapsto & axy \end{cases}$  or, if F is of characteristic  $\neq 2$ , of the quadratic form  $\begin{cases} F & \to & F \\ x & \mapsto & ax^2 \end{cases}$  GW(F) is made up of  $\mathbb{Z}$ -linear combinations of  $\langle a \rangle$  and W(F) = GW(F)/( $\langle 1 \rangle + \langle -1 \rangle$ ) is made up of sums of  $\langle a \rangle$ .

Let  $n \geq 2$  be an integer,  $i \in \mathbb{N}_0, j \in \mathbb{Z}$ . The Rost-Schmid group  $H^i(\mathbb{A}^n_F \setminus \{0\}, \underline{K}^{\mathsf{MW}}_j)$  is isomorphic to  $\begin{cases} K^{\mathsf{MW}}_j(F) & \text{if } i = 0 \\ K^{\mathsf{MW}}_{j-n}(F) & \text{if } i = n-1. \\ 0 & \text{otherwise} \end{cases}$ 

Let  $n \geq 2$  be an integer,  $i \in \mathbb{N}_0, j \in \mathbb{Z}$ . The Rost-Schmid group  $H^{i}(\mathbb{A}_{F}^{n}\setminus\{0\},\underline{K}_{j}^{\mathsf{MW}})$  is isomorphic to  $\begin{cases} K_{j}^{\mathsf{MW}}(F) & \text{if } i=0\\ K_{j-n}^{\mathsf{MW}}(F) & \text{if } i=n-1.\\ 0 & \text{otherwise} \end{cases}$ 

This is similar to the fact in classical homotopy theory that  $H^i(\mathbb{S}^{n-1})$  is isomorphic to  $\begin{cases} \mathbb{Z} & \text{if } i = 0 \\ \mathbb{Z} & \text{if } i = n - 1. \\ 0 & \text{otherwise} \end{cases}$ 

Let  $n \geq 2$  be an integer,  $i \in \mathbb{N}_0, j \in \mathbb{Z}$ . The Rost-Schmid group  $H^i(\mathbb{A}^n_F\setminus\{0\},\underline{K}^{\mathsf{MW}}_j)$  is isomorphic to  $\begin{cases} K^{\mathsf{MW}}_j(F) & \text{if } i=0\\ K^{\mathsf{MW}}_{j-n}(F) & \text{if } i=n-1.\\ 0 & \text{otherwise} \end{cases}$ 

This is similar to the fact in classical homotopy theory that  $H^i(\mathbb{S}^{n-1})$  is

isomorphic to 
$$egin{dcases} \mathbb{Z} & ext{if } i=0 \ \mathbb{Z} & ext{if } i=n-1. \ 0 & ext{otherwise} \end{cases}$$

In particular,  $H^1(\mathbb{A}^2_F \setminus \{0\}, \underline{K}_0^{MW}) \simeq K_{-2}^{MW}(F)$ . We can fix such an isomorphism, but it is not canonical.

# The linking number and the quadratic linking degree

Let  $L=K_1\sqcup K_2$  be an oriented link (in knot theory) and  $\mathscr L$  be an oriented link with two components (in motivic knot theory), i.e. a couple of closed immersions  $\varphi_i:\mathbb A^2_F\setminus\{0\}\to\mathbb A^4_F\setminus\{0\}$  with disjoint images  $Z_i$  and orientation classes  $\overline{o_i}$ . We denote  $Z:=Z_1\sqcup Z_2$ .

# Step 1 in a picture: Seifert surfaces



### Knot theory

The class  $S_i$  in  $H^1(\mathbb{S}^3 \setminus L) \simeq H_2^{\text{BM}}(\mathbb{S}^3, L)$  of Seifert surfaces of the oriented knot  $K_i$  is the unique class that is sent by the boundary map to the (oriented) fundamental class of  $K_i$  in  $H_1(K_i) \simeq H^0(K_i) \subset H^0(L)$ .

### Knot theory

The class  $S_i$  in  $H^1(\mathbb{S}^3 \setminus L) \simeq H_2^{\text{BM}}(\mathbb{S}^3, L)$  of Seifert surfaces of the oriented knot  $K_i$  is the unique class that is sent by the boundary map to the (oriented) fundamental class of  $K_i$  in  $H_1(K_i) \simeq H^0(K_i) \subset H^0(L)$ .

### Motivic knot theory

We define an analogue  $[o_i] \in H^0(Z_i, \underline{K}_{-1}^{MW}\{\nu_{Z_i}\})$  of the oriented fundamental class of each oriented component of  $\mathscr L$  then we define the Seifert class  $\mathcal S_i$  as the unique class in  $H^1(X\setminus Z,\underline{K}_1^{MW})$  that is sent by the boundary map to the oriented fundamental class  $[o_i] \in H^0(Z,\underline{K}_{-1}^{MW}\{\nu_Z\})$ .

## Step 2 in two pictures: intersection of Seifert surfaces



## Step 2 in two pictures: boundary of int. of S. surfaces



### Knot theory

The linking class of L is the image of the cup-product  $S_1 \cup S_2 \in H^2(\mathbb{S}^3 \setminus L)$  by the boundary map  $\partial : H^2(\mathbb{S}^3 \setminus L) \to H^1(L)$ .

### Knot theory

The linking class of L is the image of the cup-product  $S_1 \cup S_2 \in H^2(\mathbb{S}^3 \setminus L)$  by the boundary map  $\partial : H^2(\mathbb{S}^3 \setminus L) \to H^1(L)$ .

### Motivic knot theory

We define the quadratic linking class of  $\mathscr{L}$  as the image of the intersection product  $\mathcal{S}_1 \cdot \mathcal{S}_2 \in H^2(X \setminus Z, \underline{K}_2^{\mathsf{MW}})$  by the boundary map  $\partial: H^2(X \setminus Z, \underline{K}_2^{\mathsf{MW}}) \to H^1(Z, \underline{K}_0^{\mathsf{MW}}\{\nu_Z\}).$ 

### Knot theory

The linking number of  $L = K_1 \sqcup K_2$  is the integer  $n \in \mathbb{Z}$  such that the linking class in  $H^1(L) = \mathbb{Z}[\omega_{K_1}] \oplus \mathbb{Z}[\omega_{K_2}]$  is equal to  $(n[\omega_{K_1}], -n[\omega_{K_2}])$  (where  $\omega_{K_i}$  is the volume form of the oriented knot  $K_i$ ).

### Knot theory

The linking number of  $L = K_1 \sqcup K_2$  is the integer  $n \in \mathbb{Z}$  such that the linking class in  $H^1(L) = \mathbb{Z}[\omega_{K_1}] \oplus \mathbb{Z}[\omega_{K_2}]$  is equal to  $(n[\omega_{K_1}], -n[\omega_{K_2}])$  (where  $\omega_{K_i}$  is the volume form of the oriented knot  $K_i$ ).

### Motivic knot theory

We define the quadratic linking degree of  $\mathscr{L}$  as the image of the quadratic linking class of  $\mathscr{L}$  by the isomorphism  $H^1(Z, K_0^{MW}\{\nu_Z\}) \to H^1(Z, K_0^{MW}) \to$ 

$$H^1(Z,\underline{K}_0^{\mathsf{MW}}\{\nu_Z\}) \to H^1(Z,\underline{K}_0^{\mathsf{MW}}) \to H^1(\mathbb{A}_F^2 \setminus \{0\},\underline{K}_0^{\mathsf{MW}}) \oplus H^1(\mathbb{A}_F^2 \setminus \{0\},\underline{K}_0^{\mathsf{MW}}) \to \mathsf{W}(F) \oplus \mathsf{W}(F).$$

We fixed an isomorphism  $H^1(\mathbb{A}^2_F\setminus\{0\},\underline{K}^{MW}_0)\to K^{MW}_{-2}(F)$  once and for all and there is a canonical isomorphism  $K^{MW}_{-2}(F)\to W(F)$ .

## The Hopf link

Recall that we fixed coordinates x, y, z, t for  $\mathbb{A}^4_F$  and u, v for  $\mathbb{A}^2_F$ .

• The image of the Hopf link:

$$\{x = 0, y = 0\} \sqcup \{z = 0, t = 0\} \subset \mathbb{A}^4_F \setminus \{0\}$$

The parametrization of the Hopf link:

$$\varphi_1:(x,y,z,t)\leftrightarrow(0,0,u,v),\varphi_2:(x,y,z,t)\leftrightarrow(u,v,0,0)$$

• The orientation of the Hopf link:

$$o_1: \overline{x}^* \wedge \overline{y}^* \mapsto 1, o_2: \overline{z}^* \wedge \overline{t}^* \mapsto 1$$

# The quadratic linking degree of the Hopf link

| Or. fund. classes                              | $\eta \otimes \left(\overline{\mathbf{x}}^* \wedge \overline{\mathbf{y}}^* \right)$    |          | $\eta \otimes (\overline{z}^* \wedge \overline{t}^*)$                                         |
|------------------------------------------------|----------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------|
| Seifert classes                                | $\langle x \rangle \otimes \overline{y}^*$                                             |          | $\langle z  angle \otimes \overline{t}^*$                                                     |
| Apply int. prod.                               | $\langle xz  angle \otimes (\overline{t}^* \wedge \overline{y}^*)$                     |          |                                                                                               |
| Quad. link. class                              | $-\langle z\rangle\eta\otimes(\overline{t}^*\wedge\overline{x}^*\wedge\overline{y}^*)$ | $\oplus$ | $\langle x \rangle \eta \otimes (\overline{y}^* \wedge \overline{z}^* \wedge \overline{t}^*)$ |
| Apply $\widetilde{o_1} \oplus \widetilde{o_2}$ | $-\langle z  angle \eta \otimes \overline{t}^*$                                        | $\oplus$ | $\langle x  angle \eta \otimes \overline{y}^*$                                                |
| Apply $arphi_1^* \oplus arphi_2^*$             | $-\langle u \rangle \eta \otimes \overline{\mathbf{v}}^*$                              | $\oplus$ | $\langle u  angle \eta \otimes \overline{v}^*$                                                |
| Apply $\partial \oplus \partial$               | $-\eta^2\otimes (\overline{\it u}^*\wedge \overline{\it v}^*)$                         | $\oplus$ | $\eta^2\otimes (\overline{\it u}^*\wedge \overline{\it v}^*)$                                 |
| Quad. link. degree                             | -1                                                                                     | $\oplus$ | 1                                                                                             |

### A variant of the Hopf link

• The image is the same as the Hopf link's image:

$$\{x=y,y=0\}\sqcup\{z=0,a imes t=0\}\subset \mathbb{A}^4_F\setminus\{0\}$$
 with  $a\in F^*$ 

• The parametrization is the same:

$$\varphi_1:(x,y,z,t)\leftrightarrow(0,0,u,v),\varphi_2:(x,y,z,t)\leftrightarrow(u,v,0,0)$$

The orientation is different:

$$o_1: \overline{x-y}^* \wedge \overline{y}^* \mapsto 1, o_2: \overline{z}^* \wedge \overline{at}^* \mapsto 1$$

# The quadratic linking degree of a variant of the Hopf link

$$\begin{split} [o_1^{\mathit{var}}] &= \eta \otimes \overline{x - y}^* \wedge \overline{y}^* = [o_1^{\mathit{Hopf}}] \quad [o_2^{\mathit{var}}] = \eta \otimes \overline{z}^* \wedge \overline{at}^* = \langle a \rangle [o_2^{\mathit{Hopf}}] \\ \mathrm{since} \; \begin{pmatrix} x - y \\ y \end{pmatrix} &= \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \quad \mathrm{since} \; \begin{pmatrix} z \\ at \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix} \begin{pmatrix} z \\ t \end{pmatrix} \\ \mathcal{S}_1^{\mathit{var}} &= \mathcal{S}_1^{\mathit{Hopf}} \\ \mathcal{S}_2^{\mathit{var}} &= \langle a \rangle \mathcal{S}_1^{\mathit{Hopf}} \cdot \mathcal{S}_2^{\mathit{Hopf}} \\ \partial \big( \mathcal{S}_1^{\mathit{var}} \cdot \mathcal{S}_2^{\mathit{var}} \big) &= \langle a \rangle \partial \big( \mathcal{S}_1^{\mathit{Hopf}} \cdot \mathcal{S}_2^{\mathit{Hopf}} \big) \end{split}$$

The quadratic linking degree is  $(-\langle a \rangle, 1)$ .

⟨□⟩ ⟨□⟩ ⟨≡⟩ ⟨≡⟩ ⟨≡⟩ ⟨□⟩ ⟨□⟩

#### Fact

Let  $\mathscr{L}$  be an oriented link with two components of quadratic linking degree  $(d_1,d_2)\in W(F)\oplus W(F)$ . Let  $a=(a_1,a_2)$  be a couple of elements of  $F^*$  and  $\mathscr{L}_a$  be the link obtained from  $\mathscr{L}$  by changing the orientation  $o_1$  into  $o_1\circ (\times a_1)$  and the orientation  $o_2$  into  $o_2\circ (\times a_2)$ . Then  $\operatorname{Qlc}_{\mathscr{L}_a}=\langle a_1a_2\rangle\operatorname{Qlc}_{\mathscr{L}}$  and  $\operatorname{Qld}_{\mathscr{L}_a}=(\langle a_2\rangle d_1,\langle a_1\rangle d_2)$ .

#### Fact

Let  $\mathscr{L}$  be an oriented link with two components of quadratic linking degree  $(d_1,d_2)\in W(F)\oplus W(F)$ . Let  $a=(a_1,a_2)$  be a couple of elements of  $F^*$  and  $\mathscr{L}_a$  be the link obtained from  $\mathscr{L}$  by changing the orientation  $o_1$  into  $o_1\circ (\times a_1)$  and the orientation  $o_2$  into  $o_2\circ (\times a_2)$ . Then  $\operatorname{Qlc}_{\mathscr{L}_a}=\langle a_1a_2\rangle\operatorname{Qlc}_{\mathscr{L}}$  and  $\operatorname{Qld}_{\mathscr{L}_a}=(\langle a_2\rangle d_1,\langle a_1\rangle d_2)$ .

Similarly, changes of parametrizations of the link can only multiply each component of the quadratic linking degree by elements of the form  $\langle a \rangle$  with  $a \in F^*$  (and do not change the quadratic linking class).

#### Fact

Let  $\mathscr{L}$  be an oriented link with two components of quadratic linking degree  $(d_1,d_2)\in W(F)\oplus W(F)$ . Let  $a=(a_1,a_2)$  be a couple of elements of  $F^*$  and  $\mathscr{L}_a$  be the link obtained from  $\mathscr{L}$  by changing the orientation  $o_1$  into  $o_1\circ (\times a_1)$  and the orientation  $o_2$  into  $o_2\circ (\times a_2)$ . Then  $\operatorname{Qlc}_{\mathscr{L}_a}=\langle a_1a_2\rangle\operatorname{Qlc}_{\mathscr{L}}$  and  $\operatorname{Qld}_{\mathscr{L}_a}=(\langle a_2\rangle d_1,\langle a_1\rangle d_2)$ .

Similarly, changes of parametrizations of the link can only multiply each component of the quadratic linking degree by elements of the form  $\langle a \rangle$  with  $a \in F^*$  (and do not change the quadratic linking class).

We want invariants of the quadratic linking degree. (Similarly to the absolute value of the linking number in knot theory.)

### Invariants by multiplication by $\langle a \rangle$ for all $a \in F^*$

#### Case $F = \mathbb{R}$

If  $F = \mathbb{R}$ , the absolute value of an element of  $W(\mathbb{R}) \simeq \mathbb{Z}$  is invariant by multiplication by  $\langle a \rangle$  for all  $a \in F^*$ .

## Invariants by multiplication by $\langle a \rangle$ for all $a \in F^*$

#### Case $F = \mathbb{R}$

If  $F = \mathbb{R}$ , the absolute value of an element of  $W(\mathbb{R}) \simeq \mathbb{Z}$  is invariant by multiplication by  $\langle a \rangle$  for all  $a \in F^*$ .

#### General case

The rank modulo 2 is invariant by multiplication by  $\langle a \rangle$  for all  $a \in F^*$ .

#### Definition

Let  $d \in W(F)$ . There exists a unique sequence of abelian groups  $Q_{d,k}$  and of elements  $\Sigma_k(d) \in Q_{d,k}$ , where k ranges over the nonnegative even integers, such that:

- ullet  $Q_{d,0}=\mathsf{W}(\mathit{F})$  and  $\Sigma_0(\mathit{d})=1\in \mathit{Q}_{d,0}$ ;
- for each positive even integer k,  $Q_{d,k}$  is the quotient group  $Q_{d,k-2}/(\Sigma_{k-2}(d))$ ;
- for each positive even integer k,

$$\Sigma_k(d) = \sum_{1 \leq i_1 < \dots < i_k \leq n} \langle \prod_{1 \leq j \leq k} a_{i_j} \rangle \in Q_{d,k}$$
 whenever

$$d=\sum_{i=1}^n\langle a_i\rangle\in \mathsf{W}(F).$$

### General case

The  $\Sigma_k$  are invariant by multiplication by  $\langle a \rangle$  for all  $a \in F^*$ .

$$\bullet \ \Sigma_2: \begin{cases} \mathsf{W}(F) & \to & \mathsf{W}(F)/(1) \\ \sum_{i=1}^n \langle a_i \rangle & \mapsto & \sum_{1 \leq i < j \leq n} \langle a_i a_j \rangle \ \text{(if } n < 2 \text{, it sends } \sum_{i=1}^n \langle a_i \rangle \ \text{to 0)} \end{cases}$$

$$\bullet \ \Sigma_2 : \begin{cases} \mathsf{W}(F) & \to & \mathsf{W}(F)/(1) \\ \sum_{i=1}^n \langle a_i \rangle & \mapsto & \sum_{1 \le i < j \le n} \langle a_i a_j \rangle \text{ (if } n < 2, \text{ it sends } \sum_{i=1}^n \langle a_i \rangle \text{ to } 0) \end{cases}$$

• This is not interesting if W(F)/(1) = 0 (for instance if  $F = \mathbb{R}$ ).

$$\bullet \ \Sigma_2 : \begin{cases} \mathsf{W}(F) & \to & \mathsf{W}(F)/(1) \\ \sum_{i=1}^n \langle a_i \rangle & \mapsto & \sum_{1 \le i < j \le n} \langle a_i a_j \rangle \ \text{(if } n < 2, \text{ it sends } \sum_{i=1}^n \langle a_i \rangle \text{ to 0)} \end{cases}$$

- This is not interesting if W(F)/(1) = 0 (for instance if  $F = \mathbb{R}$ ).
- It is interesting for  $F = \mathbb{Q}$  for instance:  $W(\mathbb{Q})/(1) \simeq \bigoplus_{p \text{ prime}} W(\mathbb{Z}/p\mathbb{Z})$ .

$$\bullet \ \Sigma_2 : \begin{cases} \mathsf{W}(F) & \to & \mathsf{W}(F)/(1) \\ \sum_{i=1}^n \langle a_i \rangle & \mapsto & \sum_{1 \le i < j \le n} \langle a_i a_j \rangle \text{ (if } n < 2, \text{ it sends } \sum_{i=1}^n \langle a_i \rangle \text{ to } 0) \end{cases}$$

- This is not interesting if W(F)/(1) = 0 (for instance if  $F = \mathbb{R}$ ).
- It is interesting for  $F = \mathbb{Q}$  for instance:  $W(\mathbb{Q})/(1) \simeq \bigoplus_{p \text{ prime}} W(\mathbb{Z}/p\mathbb{Z})$ .

$$\bullet \ \Sigma_4 : \begin{cases} W(F) & \to \bigcup_{d \in W(F)} (W(F)/(1))/(\Sigma_2(d)) \\ \sum_{i=1}^n \langle a_i \rangle & \mapsto \sum_{1 \le i < j < k < l \le n} \langle a_i a_j a_k a_l \rangle \end{cases}$$

$$\bullet \ \Sigma_2 : \begin{cases} \mathsf{W}(F) & \to & \mathsf{W}(F)/(1) \\ \sum_{i=1}^n \langle a_i \rangle & \mapsto & \sum_{1 \le i < j \le n} \langle a_i a_j \rangle \text{ (if } n < 2, \text{ it sends } \sum_{i=1}^n \langle a_i \rangle \text{ to } 0) \end{cases}$$

- This is not interesting if W(F)/(1) = 0 (for instance if  $F = \mathbb{R}$ ).
- It is interesting for  $F = \mathbb{Q}$  for instance:  $W(\mathbb{Q})/(1) \simeq \bigoplus_{p \text{ prime}} W(\mathbb{Z}/p\mathbb{Z})$ .

$$\bullet \; \Sigma_4 : \begin{cases} \mathsf{W}(F) & \to & \bigcup\limits_{d \in \mathsf{W}(F)} (\mathsf{W}(F)/(1))/(\Sigma_2(d)) \\ \sum\limits_{i=1}^n \langle a_i \rangle & \mapsto & \sum\limits_{1 \le i < j < k < l \le n} \langle a_i a_j a_k a_l \rangle \end{cases}$$

• We only want to compare  $\Sigma_4(d)$  and  $\Sigma_4(d')$  if  $\Sigma_2(d) = \Sigma_2(d')$ .

## Another Hopf link

From now on, F is a perfect field of characteristic different from 2. Recall that we fixed coordinates x, y, z, t for  $\mathbb{A}^4_F$  and u, v for  $\mathbb{A}^2_F$ .

• The image is different from the Hopf link we saw before:

$$\{z=x,t=y\}\sqcup\{z=-x,t=-y\}\subset\mathbb{A}^4_F\setminus\{0\}$$

But the change of coordinates x'=z-x, y'=t-y, z'=z+x, t'=t+y would give  $\{x'=0,y'=0\}\sqcup\{z'=0,t'=0\}\subset\mathbb{A}^4_F\setminus\{0\}$ .

## Another Hopf link

From now on, F is a perfect field of characteristic different from 2. Recall that we fixed coordinates x, y, z, t for  $\mathbb{A}^4_F$  and u, v for  $\mathbb{A}^2_F$ .

• The image is different from the Hopf link we saw before:

$$\{z=x,t=y\}\sqcup\{z=-x,t=-y\}\subset\mathbb{A}^4_F\setminus\{0\}$$

But the change of coordinates x'=z-x, y'=t-y, z'=z+x, t'=t+y would give  $\{x'=0,y'=0\}\sqcup\{z'=0,t'=0\}\subset\mathbb{A}^4_F\setminus\{0\}$ .

• The parametrization is  $\varphi_1: (x, y, z, t) \leftrightarrow (u, v, u, v)$  and  $\varphi_2: (x, y, z, t) \leftrightarrow (u, v, -u, -v)$ .

## Another Hopf link

From now on, F is a perfect field of characteristic different from 2. Recall that we fixed coordinates x, y, z, t for  $\mathbb{A}^4_F$  and u, v for  $\mathbb{A}^2_F$ .

• The image is different from the Hopf link we saw before:

$$\{z=x, t=y\} \sqcup \{z=-x, t=-y\} \subset \mathbb{A}^4_F \setminus \{0\}$$

But the change of coordinates x'=z-x, y'=t-y, z'=z+x, t'=t+y would give  $\{x'=0,y'=0\}\sqcup\{z'=0,t'=0\}\subset\mathbb{A}^4_F\setminus\{0\}$ .

- The parametrization is  $\varphi_1: (x, y, z, t) \leftrightarrow (u, v, u, v)$  and  $\varphi_2: (x, y, z, t) \leftrightarrow (u, v, -u, -v)$ .
- The orientation is the following:

$$o_1: \overline{z-x}^* \wedge \overline{t-y}^* \mapsto 1, o_2: \overline{z+x}^* \wedge \overline{t+y}^* \mapsto 1$$



• This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by  $\{z=x,t=y\}\sqcup\{z=-x,t=-y\}$  in  $\mathbb{S}^3_\varepsilon=\{(x,y,z,t)\in\mathbb{R}^4,x^2+y^2+z^2+t^2=\varepsilon^2\}$  for  $\varepsilon$  small enough and has linking number 1.

- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by  $\{z=x,t=y\}\sqcup\{z=-x,t=-y\}$  in  $\mathbb{S}^3_\varepsilon=\{(x,y,z,t)\in\mathbb{R}^4,x^2+y^2+z^2+t^2=\varepsilon^2\}$  for  $\varepsilon$  small enough and has linking number 1.
- Its quadratic linking degree is  $(\langle 1 \rangle, \langle -1 \rangle) = (1, -1) \in W(F) \oplus W(F)$ .

- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by  $\{z=x,t=y\} \sqcup \{z=-x,t=-y\}$  in  $\mathbb{S}^3_\varepsilon = \{(x,y,z,t) \in \mathbb{R}^4, x^2+y^2+z^2+t^2=\varepsilon^2\}$  for  $\varepsilon$  small enough and has linking number 1.
- Its quadratic linking degree is  $(\langle 1 \rangle, \langle -1 \rangle) = (1, -1) \in W(F) \oplus W(F)$ .
- If we change its orientations and its parametrizations then we get  $(\langle a \rangle, \langle b \rangle) \in W(F) \oplus W(F)$  with  $a, b \in F^*$ .

- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by  $\{z=x,t=y\}\sqcup\{z=-x,t=-y\}$  in  $\mathbb{S}^3_\varepsilon=\{(x,y,z,t)\in\mathbb{R}^4,x^2+y^2+z^2+t^2=\varepsilon^2\}$  for  $\varepsilon$  small enough and has linking number 1.
- Its quadratic linking degree is  $(\langle 1 \rangle, \langle -1 \rangle) = (1, -1) \in W(F) \oplus W(F)$ .
- If we change its orientations and its parametrizations then we get  $(\langle a \rangle, \langle b \rangle) \in W(F) \oplus W(F)$  with  $a, b \in F^*$ .
- If  $F = \mathbb{R}$ , the absolute value of each component is 1.

- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by  $\{z=x,t=y\}\sqcup\{z=-x,t=-y\}$  in  $\mathbb{S}^3_\varepsilon=\{(x,y,z,t)\in\mathbb{R}^4,x^2+y^2+z^2+t^2=\varepsilon^2\}$  for  $\varepsilon$  small enough and has linking number 1.
- Its quadratic linking degree is  $(\langle 1 \rangle, \langle -1 \rangle) = (1, -1) \in W(F) \oplus W(F)$ .
- If we change its orientations and its parametrizations then we get  $(\langle a \rangle, \langle b \rangle) \in W(F) \oplus W(F)$  with  $a, b \in F^*$ .
- If  $F = \mathbb{R}$ , the absolute value of each component is 1.
- The rank modulo 2 of each component is 1.

- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by  $\{z=x,t=y\}\sqcup\{z=-x,t=-y\}$  in  $\mathbb{S}^3_\varepsilon=\{(x,y,z,t)\in\mathbb{R}^4,x^2+y^2+z^2+t^2=\varepsilon^2\}$  for  $\varepsilon$  small enough and has linking number 1.
- Its quadratic linking degree is  $(\langle 1 \rangle, \langle -1 \rangle) = (1, -1) \in W(F) \oplus W(F)$ .
- If we change its orientations and its parametrizations then we get  $(\langle a \rangle, \langle b \rangle) \in W(F) \oplus W(F)$  with  $a, b \in F^*$ .
- If  $F = \mathbb{R}$ , the absolute value of each component is 1.
- The rank modulo 2 of each component is 1.
- For every positive even integer k, the image by  $\Sigma_k$  of each component is 0.

## The Solomon link

- In knot theory, the Solomon link is given by  $\{z = x^2 y^2, t = 2xy\} \sqcup \{z = -x^2 + y^2, t = -2xy\}$  in  $\mathbb{S}^3_{\varepsilon}$  for  $\varepsilon$  small enough and has linking number 2.
- In motivic knot theory, the image of the Solomon link is:

$$\{z = x^2 - y^2, t = 2xy\} \sqcup \{z = -x^2 + y^2, t = -2xy\} \subset \mathbb{A}_F^4 \setminus \{0\}$$

- The parametrization is  $\varphi_1: (x, y, z, t) \leftrightarrow (u, v, u^2 v^2, 2uv)$  and  $\varphi_2: (x, y, z, t) \leftrightarrow (u, v, -u^2 + v^2, -2uv)$ .
- The orientation is the following:

$$o_1: \overline{z-x^2+y^2}^* \wedge \overline{t-2xy}^* \mapsto 1, o_2: \overline{z+x^2-y^2}^* \wedge \overline{t+2xy}^* \mapsto 1$$

• Its quadratic linking degree is

$$(\langle 1 \rangle + \langle 1 \rangle, \langle -1 \rangle + \langle -1 \rangle) = (2, -2) \in W(F) \oplus W(F).$$

- Its quadratic linking degree is  $(\langle 1 \rangle + \langle 1 \rangle, \langle -1 \rangle + \langle -1 \rangle) = (2, -2) \in W(F) \oplus W(F)$ .
- If we change its orientations and its parametrizations then we get  $(\langle a \rangle + \langle a \rangle, \langle b \rangle + \langle b \rangle) \in W(F) \oplus W(F)$  with  $a, b \in F^*$ .

- Its quadratic linking degree is  $(\langle 1 \rangle + \langle 1 \rangle, \langle -1 \rangle + \langle -1 \rangle) = (2, -2) \in W(F) \oplus W(F).$
- If we change its orientations and its parametrizations then we get  $(\langle a \rangle + \langle a \rangle, \langle b \rangle + \langle b \rangle) \in W(F) \oplus W(F)$  with  $a, b \in F^*$ .
- If  $F = \mathbb{R}$ , the absolute value of each component is 2.

- Its quadratic linking degree is  $(\langle 1 \rangle + \langle 1 \rangle, \langle -1 \rangle + \langle -1 \rangle) = (2, -2) \in W(F) \oplus W(F).$
- If we change its orientations and its parametrizations then we get  $(\langle a \rangle + \langle a \rangle, \langle b \rangle + \langle b \rangle) \in W(F) \oplus W(F)$  with  $a, b \in F^*$ .
- If  $F = \mathbb{R}$ , the absolute value of each component is 2.
- The rank modulo 2 of each component is 0.

- Its quadratic linking degree is  $(\langle 1 \rangle + \langle 1 \rangle, \langle -1 \rangle + \langle -1 \rangle) = (2, -2) \in W(F) \oplus W(F).$
- If we change its orientations and its parametrizations then we get  $(\langle a \rangle + \langle a \rangle, \langle b \rangle + \langle b \rangle) \in W(F) \oplus W(F)$  with  $a, b \in F^*$ .
- If  $F = \mathbb{R}$ , the absolute value of each component is 2.
- The rank modulo 2 of each component is 0.
- For every positive even integer k, the image by  $\Sigma_k$  of each component is 0.

- Its quadratic linking degree is  $(\langle 1 \rangle + \langle 1 \rangle, \langle -1 \rangle + \langle -1 \rangle) = (2, -2) \in W(F) \oplus W(F).$
- If we change its orientations and its parametrizations then we get  $(\langle a \rangle + \langle a \rangle, \langle b \rangle + \langle b \rangle) \in W(F) \oplus W(F)$  with  $a, b \in F^*$ .
- If  $F = \mathbb{R}$ , the absolute value of each component is 2.
- The rank modulo 2 of each component is 0.
- For every positive even integer k, the image by  $\Sigma_k$  of each component is 0.
- More generally, we have analogues of the torus links T(2,2n) (of linking number n); the quadratic linking degree of T(2,2n) is  $(n,-n) \in W(F) \oplus W(F)$ , which gives n as absolute value if  $F = \mathbb{R}$ , n modulo 2 as rank modulo 2, and 0 for the  $\Sigma_k$ .

## Binary links

• The image of the binary link  $B_a$  with  $a \in F^* \setminus \{-1\}$ :

$$\{f_1=0,g_1=0\}\sqcup\{f_2=0,g_2=0\}\subset \mathbb{A}_F^4\setminus\{0\}$$

with 
$$f_1 = t - ((1+a)x - y)y$$
,  $g_1 = z - x(x - y)$ ,  $f_2 = t + ((1+a)x - y)y$ ,  $g_2 = z + x(x - y)$ .

• The parametrization of the binary link  $B_a$ :

$$\varphi_1: (x, y, z, t) \leftrightarrow (u, v, ((1+a)u-v)v, u(u-v))$$

$$\varphi_2: (x, y, z, t) \leftrightarrow (u, v, -((1+a)u-v)v, -u(u-v))$$

• The orientation of the binary link B<sub>a</sub>:

$$o_1:\overline{f_1}^*\wedge\overline{g_1}^*\mapsto 1, o_2:\overline{f_2}^*\wedge\overline{g_2}^*\mapsto 1$$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト 9 Q (C)

| Or. fund. cyc.                   | $\eta \otimes (\overline{f_1}^* \wedge \overline{g_1}^*)$                                                  | $  \qquad \qquad \eta \otimes (\overline{\mathit{f}_{2}}^{*} \wedge \overline{\mathit{g}_{2}}^{*})$     |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|
| Seifert divisors                 | $\langle \mathit{f}_{1}  angle \otimes \overline{\mathit{g}_{1}}^{*}$                                      | $  \langle \mathit{f}_2  angle \otimes \overline{\mathit{g}_2}^*  $                                     |  |
| Apply inter.                     | $\langle f_1 f_2 \rangle \otimes \left( \overline{g_2}^* \wedge \overline{g_1}^* \right) \cdot (z, x - y)$ |                                                                                                         |  |
| prod.                            | $+\langle f_1f_2 angle\otimes \left(\overline{g_2}^*\wedge\overline{g_1}^* ight)\cdot \left(z,x ight)$     |                                                                                                         |  |
|                                  |                                                                                                            |                                                                                                         |  |
| Apply $\partial \oplus \partial$ | $(1+\langle a \rangle)\eta^2\otimes (\overline{u}^*\wedge \overline{v}^*)$                                 | $\oplus  -(1+\langle a \rangle)\eta^2 \otimes (\overline{\mathit{u}}^* \wedge \overline{\mathit{v}}^*)$ |  |
| Quad. lk. deg.                   | $1+\langle a \rangle$                                                                                      | $\oplus$ $-(1+\langle a \rangle)$                                                                       |  |

| Or. fund. cyc.                   | $\eta \otimes (\overline{\mathit{f}_{1}}^{*} \wedge \overline{\mathit{g}_{1}}^{*})$                      |          | $\eta \otimes (\overline{\mathit{f}_{2}}^{*} \wedge \overline{\mathit{g}_{2}}^{*})$          |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------|--|
| Seifert divisors                 | $\langle \mathit{f}_1  angle \otimes \overline{\mathit{g}_1}^*$                                          |          | $\langle \mathit{f}_2  angle \otimes \overline{\mathit{g}_2}^*$                              |  |
| Apply inter.                     | $\langle f_1 f_2 \rangle \otimes \left(\overline{g_2}^* \wedge \overline{g_1}^*\right) \cdot (z, x - y)$ |          |                                                                                              |  |
| prod.                            | $+\langle f_1f_2 angle\otimes \left(\overline{g_2}^*\wedge\overline{g_1}^* ight)\cdot \left(z,x ight)$   |          |                                                                                              |  |
|                                  |                                                                                                          |          |                                                                                              |  |
| Apply $\partial \oplus \partial$ | $   (1+\langle a \rangle)\eta^2 \otimes (\overline{u}^* \wedge \overline{v}^*)  $                        | $\oplus$ | $-(1+\langle a  angle)\eta^2\otimes (\overline{\mathit{u}}^*\wedge \overline{\mathit{v}}^*)$ |  |
| Quad. lk. deg.                   | $1+\langle a  angle$                                                                                     | $\oplus$ | $-(1+\langle a \rangle)$                                                                     |  |

• If we change its orientations and its parametrizations then we get  $(\langle a \rangle + \langle b \rangle, \langle ca \rangle + \langle cb \rangle) \in W(F) \oplus W(F)$  with  $a, b, c \in F^*$  such that  $a + b \neq 0$ . The rank modulo 2 of each component is 0.

| Or. fund. cyc.                   | $\eta \otimes (\overline{\mathit{f}_{1}}^{*} \wedge \overline{\mathit{g}_{1}}^{*})$                      |          | $\eta \otimes (\overline{\mathit{f}_{2}}^{*} \wedge \overline{\mathit{g}_{2}}^{*})$          |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------|--|
| Seifert divisors                 | $\langle \mathit{f}_1  angle \otimes \overline{\mathit{g}_1}^*$                                          |          | $\langle \mathit{f}_2  angle \otimes \overline{\mathit{g}_2}^*$                              |  |
| Apply inter.                     | $\langle f_1 f_2 \rangle \otimes \left(\overline{g_2}^* \wedge \overline{g_1}^*\right) \cdot (z, x - y)$ |          |                                                                                              |  |
| prod.                            | $+\langle f_1f_2 angle\otimes \left(\overline{g_2}^*\wedge\overline{g_1}^* ight)\cdot \left(z,x ight)$   |          |                                                                                              |  |
|                                  |                                                                                                          |          |                                                                                              |  |
| Apply $\partial \oplus \partial$ | $   (1+\langle a \rangle)\eta^2 \otimes (\overline{u}^* \wedge \overline{v}^*)  $                        | $\oplus$ | $-(1+\langle a  angle)\eta^2\otimes (\overline{\mathit{u}}^*\wedge \overline{\mathit{v}}^*)$ |  |
| Quad. lk. deg.                   | $1+\langle a  angle$                                                                                     | $\oplus$ | $-(1+\langle a \rangle)$                                                                     |  |

- If we change its orientations and its parametrizations then we get  $(\langle a \rangle + \langle b \rangle, \langle ca \rangle + \langle cb \rangle) \in W(F) \oplus W(F)$  with  $a, b, c \in F^*$  such that  $a + b \neq 0$ . The rank modulo 2 of each component is 0.
- If  $F=\mathbb{R}$ , the absolute value of each component is  $\begin{cases} 2 \text{ if } a>0 \\ 0 \text{ if } a<0 \end{cases}.$

| Or. fund. cyc.                   | $\eta \otimes (\overline{\mathit{f}_{1}}^{*} \wedge \overline{\mathit{g}_{1}}^{*})$                      |          | $\eta \otimes (\overline{\mathit{f}_{2}}^{*} \wedge \overline{\mathit{g}_{2}}^{*})$ |
|----------------------------------|----------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------|
| Seifert divisors                 | $\langle f_1  angle \otimes \overline{g_1}^*$                                                            |          | $\langle f_2 \rangle \otimes \overline{g_2}^*$                                      |
| Apply inter.                     | $\langle f_1 f_2 \rangle \otimes \left(\overline{g_2}^* \wedge \overline{g_1}^*\right) \cdot (z, x - y)$ |          |                                                                                     |
| prod.                            | $+\langle f_1f_2 angle\otimes \left(\overline{g_2}^*\wedge\overline{g_1}^* ight)\cdot \left(z,x ight)$   |          |                                                                                     |
|                                  |                                                                                                          |          |                                                                                     |
| Apply $\partial \oplus \partial$ | $(1+\langle a \rangle)\eta^2 \otimes (\overline{u}^* \wedge \overline{v}^*)$                             | $\oplus$ | $-(1+\langle a  angle)\eta^2\otimes (\overline{u}^*\wedge \overline{v}^*)$          |
| Quad. lk. deg.                   | $1+\langle a  angle$                                                                                     | $\oplus$ | $-(1+\langle a \rangle)$                                                            |

- If we change its orientations and its parametrizations then we get  $(\langle a \rangle + \langle b \rangle, \langle ca \rangle + \langle cb \rangle) \in W(F) \oplus W(F)$  with  $a, b, c \in F^*$  such that  $a + b \neq 0$ . The rank modulo 2 of each component is 0.
- If  $F=\mathbb{R}$ , the absolute value of each component is  $\begin{cases} 2 \text{ if } a>0 \\ 0 \text{ if } a<0 \end{cases}.$
- $\Sigma_2$  of each component is  $\langle a \rangle \in W(F)/(1)$ . For instance, if  $F = \mathbb{Q}$ ,  $\Sigma_2$  distinguishes between all the  $B_p$  with p prime numbers.  $\Sigma_4 = 0$  etc.

Everything new I presented can be found in my preprint "The quadratic linking degree":

- HAL: Clémentine Lemarié--Rieusset. THE QUADRATIC LINKING DEGREE. 2022. (hal-03821736)
- arXiv: Clémentine Lemarié--Rieusset. The quadratic linking degree.
   arXiv:2210.11048 [math.AG]

Everything new I presented can be found in my preprint "The quadratic linking degree":

- HAL: Clémentine Lemarié--Rieusset. THE QUADRATIC LINKING DEGREE. 2022. (hal-03821736)
- arXiv: Clémentine Lemarié--Rieusset. The quadratic linking degree.
   arXiv:2210.11048 [math.AG]

Thanks for your attention!