Motivic linking in the projective space

Clémentine Lemarié--Rieusset (Universität Duisburg-Essen, Essen, Germany)

27 May 2025

Clémentine Lemarié--Rieusset

Motivic linking in the projective space

27 May 2025 1 / 25

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Classical linking

Contents

Clémentine Lemarié--Rieusset

Motivic linking in the projective space

イロト イヨト イヨト イヨト

The unknot

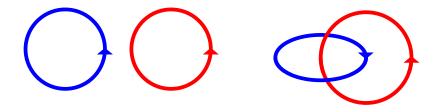
The trefoil knot

A classical **knot** is a topological subspace of the 3-sphere \mathbb{S}^3 which is homeomorphic to the circle \mathbb{S}^1 (+ a tameness condition e.g. smoothness).

The unknot

The trefoil knot

A classical **knot** is a topological subspace of the 3-sphere \mathbb{S}^3 which is homeomorphic to the circle \mathbb{S}^1 (+ a tameness condition e.g. smoothness). A classical **oriented knot** is a knot with a "continuous" local trivialization of its tangent bundle, or equivalently of its normal bundle.

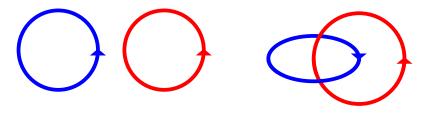


The unlink with two components

The Hopf link

Image: A match a ma

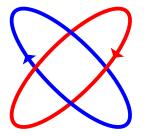
A classical **link** is a finite union of disjoint knots (called components).

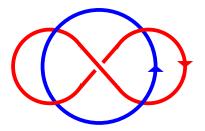


The unlink with two components (linking number = 0)

The Hopf link (linking number = 1)

A classical **link** is a finite union of disjoint knots (called components). The **linking number** of an oriented link with two components is the number of times one of the components turns around the other component (the sign indicating the direction).

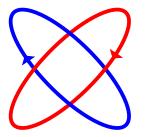


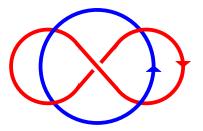


A D N A B N A B N A B N

The Solomon link (linking number = 2)

The Whitehead link (linking number = 0)





The Solomon linkThe Whitehead link(linking number = 2)(linking number = 0)

The linking number is defined for A^{k-1} and B^{n-k} two disjoint oriented homologically of finite order submanifolds of an oriented *n*-dimensional manifold M^n as $\frac{1}{m}$ times the intersection number of C^k with B^{n-k} , where C^k is a singular chain of boundary mA^{k-1} with $m \ge 1$ an integer. Example: \mathbb{S}^{k-1} and \mathbb{S}^{n-k} in \mathbb{S}^n , e.g. \mathbb{S}^1 and \mathbb{S}^1 in \mathbb{S}^3 .

Another example: \mathbb{RP}^{k-1} and \mathbb{RP}^{n-k} in \mathbb{RP}^n with k-1 and n-k odd (hence *n* odd) for orientability, e.g. \mathbb{RP}^1 and \mathbb{RP}^1 in \mathbb{RP}^3 .

イロト イポト イヨト イヨト 二日

Another example: \mathbb{RP}^{k-1} and \mathbb{RP}^{n-k} in \mathbb{RP}^n with k-1 and n-k odd (hence *n* odd) for orientability, e.g. \mathbb{RP}^1 and \mathbb{RP}^1 in \mathbb{RP}^3 .

A **projective knot** is a topological subspace of the projective space \mathbb{RP}^3 which is homeomorphic to the projective line \mathbb{RP}^1 (hence to the circle \mathbb{S}^1).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Another example: \mathbb{RP}^{k-1} and \mathbb{RP}^{n-k} in \mathbb{RP}^n with k-1 and n-k odd (hence *n* odd) for orientability, e.g. \mathbb{RP}^1 and \mathbb{RP}^1 in \mathbb{RP}^3 .

A **projective knot** is a topological subspace of the projective space \mathbb{RP}^3 which is homeomorphic to the projective line \mathbb{RP}^1 (hence to the circle \mathbb{S}^1).

A **projective link** is a finite union of disjoint projective knots (called components).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

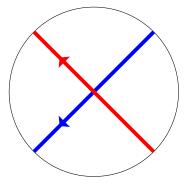
Another example: \mathbb{RP}^{k-1} and \mathbb{RP}^{n-k} in \mathbb{RP}^n with k-1 and n-k odd (hence *n* odd) for orientability, e.g. \mathbb{RP}^1 and \mathbb{RP}^1 in \mathbb{RP}^3 .

A **projective knot** is a topological subspace of the projective space \mathbb{RP}^3 which is homeomorphic to the projective line \mathbb{RP}^1 (hence to the circle \mathbb{S}^1).

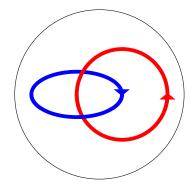
A **projective link** is a finite union of disjoint projective knots (called components).

 $H_1(\mathbb{RP}^3) \simeq \mathbb{Z}/2\mathbb{Z}$, thus projective knots are homologically of order 1 or 2 and the linking number is a half-integer, i.e. is of the form $\frac{1}{2}$ with $l \in \mathbb{Z}$.

イロト 不得 トイヨト イヨト 二日

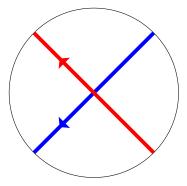






The affine Hopf link

イロト イヨト イヨト イヨト

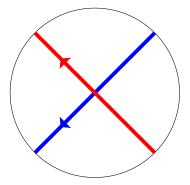


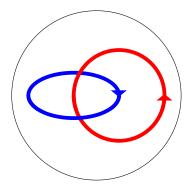
The projective Hopf link (linking number $= \frac{1}{2}$)



The affine Hopf link (linking number = 1)

イロト イヨト イヨト イヨト





The projective Hopf link (linking number $= \frac{1}{2}$)

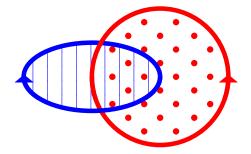
The affine Hopf link (linking number = 1)

< □ > < □ > < □ > < □ >

The knots in the picture on the left are homologically of order 2 whereas the knots in the picture on the right are homologically trivial (/of order 1).

Classical linking

The linking number of circles in \mathbb{S}^3 : Seifert surfaces



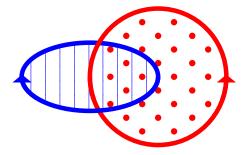
Clémentine Lemarié--Rieusset

Motivic linking in the projective space

▶ ◀ Ē ▶ Ē ∽ �... 27 May 2025 8 / 25

(日)

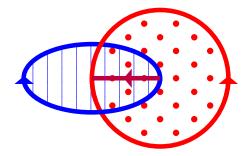
The linking number of circles in \mathbb{S}^3 : Seifert surfaces



The class S_1 in $H^1(\mathbb{S}^3 \setminus L) \simeq H_2^{BM}(\mathbb{S}^3, L)$ of Seifert surfaces of the oriented knot K_1 is the **unique** class that is sent by the **boundary map** to the (oriented) fundamental class of K_1 in $H^0(K_1) \subset H^0(L)$.

Classical linking

Intersection of Seifert surfaces in \mathbb{S}^3



Clémentine Lemarié--Rieusset

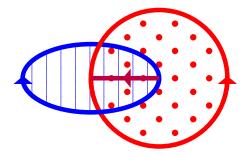
Motivic linking in the projective space

▶ ◀ ≣ ▶ ≣ ∽ ९. 27 May 2025 9 / 25

A D N A B N A B N A B N

Classical linking

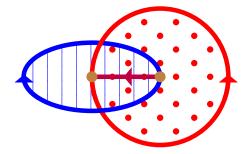
Intersection of Seifert surfaces in \mathbb{S}^3



This intersection corresponds to the **cup-product** $S_1 \cup S_2 \in H^2(\mathbb{S}^3 \setminus L)$.

(日)

Boundary of the intersection of Seifert surfaces

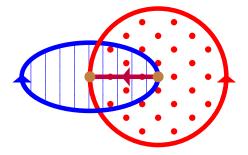


Clémentine Lemarié--Rieusset

:▶ ◀ 볼 ▶ 볼 ∽ ९. 27 May 2025 10 / 25

Image: A match a ma

Boundary of the intersection of Seifert surfaces



This corresponds to $\partial(S_1 \cup S_2) \in H^1(L) \simeq H^1(K_1) \oplus H^1(K_2)$, which we call the **linking class**. Writing $\partial(S_1 \cup S_2) = (\sigma_1, \sigma_2)$, the **linking number** is $r((i_1)_*(\sigma_1)) \in \mathbb{Z}$ with $(i_1)_* : H^1(K_1) \to H^3(\mathbb{S}^3)$ induced by the inclusion.

• The linking class is $\partial(S_1 \cup S_2) = (\sigma_1, \sigma_2) \in H^1(K_1) \oplus H^1(K_2)$.

< □ > < 同 > < 回 > < 回 > < 回 >

- The linking class is $\partial(S_1 \cup S_2) = (\sigma_1, \sigma_2) \in H^1(K_1) \oplus H^1(K_2)$.
- The linking number is $r((i_1)_*(\sigma_1)) \in \mathbb{Z}$ with r given by the right-hand rule and $(i_1)_* : H^1(K_1) \to H^3(\mathbb{S}^3)$ induced by the inclusion.

< ロト < 同ト < ヨト < ヨ

- The linking class is $\partial(S_1 \cup S_2) = (\sigma_1, \sigma_2) \in H^1(K_1) \oplus H^1(K_2)$.
- The linking number is $r((i_1)_*(\sigma_1)) \in \mathbb{Z}$ with r given by the right-hand rule and $(i_1)_* : H^1(K_1) \to H^3(\mathbb{S}^3)$ induced by the inclusion.
- The **linking couple** is the couple of integers $(h_1(\sigma_1), h_2(\sigma_2))$ with $h_i : H^1(K_i) \simeq \mathbb{Z}$ induced by the volume form ω_{K_i} of K_i (which is induced by the orientation of K_i).

< □ > < □ > < □ > < □ > < □ > < □ >

- The linking class is $\partial(S_1 \cup S_2) = (\sigma_1, \sigma_2) \in H^1(K_1) \oplus H^1(K_2)$.
- The linking number is $r((i_1)_*(\sigma_1)) \in \mathbb{Z}$ with r given by the right-hand rule and $(i_1)_* : H^1(K_1) \to H^3(\mathbb{S}^3)$ induced by the inclusion.
- The **linking couple** is the couple of integers $(h_1(\sigma_1), h_2(\sigma_2))$ with $h_i : H^1(K_i) \simeq \mathbb{Z}$ induced by the volume form ω_{K_i} of K_i (which is induced by the orientation of K_i).

Important fact

The linking couple is equal to $(\pm n, \pm n)$ with *n* the linking number.

- The linking class is $\partial(S_1 \cup S_2) = (\sigma_1, \sigma_2) \in H^1(K_1) \oplus H^1(K_2)$.
- The linking number is $r((i_1)_*(\sigma_1)) \in \mathbb{Z}$ with r given by the right-hand rule and $(i_1)_* : H^1(K_1) \to H^3(\mathbb{S}^3)$ induced by the inclusion.
- The linking couple is the couple of integers $(h_1(\sigma_1), h_2(\sigma_2))$ with $h_i : H^1(K_i) \simeq \mathbb{Z}$ induced by the volume form ω_{K_i} of K_i (which is induced by the orientation of K_i).

Important fact

The linking couple is equal to $(\pm n, \pm n)$ with *n* the linking number.

 $r((i_2)_*(\sigma_2))$ is the opposite of the linking number and $(i_1)_*, (i_2)_*$ are surjective group morphisms.

イロト 不得 トイヨト イヨト 二日

Motivic linking

Contents

Clémentine Lemarié--Rieusset

Motivic linking in the projective space

27 May 2025 12 / 25

3

Links in algebraic geometry

Let F be a perfect field and X be a smooth finite-type irred. F-scheme.

Link with two components

A link with two components in X is a couple of disjoint smooth finite-type irreducible closed F-subschemes Z_1 and Z_2 of X such that:

- Z₁ and Z₂ have the same codimension c in X;
- $H^{c-1}(X, \underline{K}_{j_1+c}^{MW}) = 0$ and $H^c(X, \underline{K}_{j_1+c}^{MW}) = 0$ for some $j_1 \leq 0$;
- $H^{c-1}(X, \underline{K}_{j_2+c}^{MW}) = 0$ and $H^c(X, \underline{K}_{j_2+c}^{MW}) = 0$ for some $j_2 \leq 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Links in algebraic geometry

Let F be a perfect field and X be a smooth finite-type irred. F-scheme.

Link with two components

A link with two components in X is a couple of disjoint smooth finite-type irreducible closed F-subschemes Z_1 and Z_2 of X such that:

- Z₁ and Z₂ have the same codimension c in X;
- $H^{c-1}(X, \underline{K}_{j_1+c}^{MW}) = 0$ and $H^c(X, \underline{K}_{j_1+c}^{MW}) = 0$ for some $j_1 \leq 0$;
- $H^{c-1}(X, \underline{K}_{j_2+c}^{MW}) = 0$ and $H^c(X, \underline{K}_{j_2+c}^{MW}) = 0$ for some $j_2 \leq 0$.

Example: $Z_1 \simeq \mathbb{P}^1_F$ and $Z_2 \simeq \mathbb{P}^1_F$ disjoint closed *F*-subschemes of $X = \mathbb{P}^3_F$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ○ ○ ○

Links in algebraic geometry

Let F be a perfect field and X be a smooth finite-type irred. F-scheme.

Link with two components

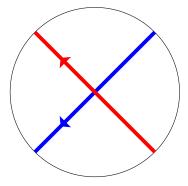
A link with two components in X is a couple of disjoint smooth finite-type irreducible closed F-subschemes Z_1 and Z_2 of X such that:

- Z₁ and Z₂ have the same codimension c in X;
- $H^{c-1}(X, \underline{K}_{j_1+c}^{MW}) = 0$ and $H^c(X, \underline{K}_{j_1+c}^{MW}) = 0$ for some $j_1 \leq 0$;
- $H^{c-1}(X, \underline{K}_{j_2+c}^{MW}) = 0$ and $H^c(X, \underline{K}_{j_2+c}^{MW}) = 0$ for some $j_2 \leq 0$.

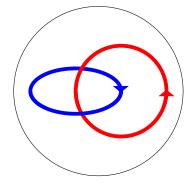
Example: $Z_1 \simeq \mathbb{P}^1_F$ and $Z_2 \simeq \mathbb{P}^1_F$ disjoint closed *F*-subschemes of $X = \mathbb{P}^3_F$.

 $H^2(\mathbb{P}^3_F, \underline{K}_0^{MW}) = 0$ so in this case every knot is homologically trivial (\neq for the projective knots we described earlier; $H^2(\mathbb{RP}^3) \simeq \mathbb{Z}/2\mathbb{Z})$.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで



The projective Hopf link



The affine Hopf link

イロト イボト イヨト イヨト

x = 0, y = 0z = 0, t = 0 $x^{2} = y^{2} + z^{2}, t = 0$ $x^{2} = (z - x)^{2} + t^{2}, y = 0$

Oriented links in algebraic geometry

An orientation o_i of Z_i is an isomorphism from the determinant (i.e. the maximal exterior power) of the normal sheaf $\mathcal{N}_{Z_i/X}$ of Z_i in X to the tensor product of an invertible \mathcal{O}_{Z_i} -module \mathcal{L}_i with itself:

$$o_i:
u_{Z_i}:= \mathsf{det}(\mathcal{N}_{Z_i/X}) \simeq \mathcal{L}_i \otimes \mathcal{L}_i$$

イロト 不得 トイヨト イヨト

Oriented links in algebraic geometry

An orientation o_i of Z_i is an isomorphism from the determinant (i.e. the maximal exterior power) of the normal sheaf $\mathcal{N}_{Z_i/X}$ of Z_i in X to the tensor product of an invertible \mathcal{O}_{Z_i} -module \mathcal{L}_i with itself:

$$o_i:
u_{Z_i}:= \det(\mathcal{N}_{Z_i/X}) \simeq \mathcal{L}_i \otimes \mathcal{L}_i$$

Orientation classes

Two orientations $o_i : \nu_{Z_i} \to \mathcal{L}_i \otimes \mathcal{L}_i$ and $o'_i : \nu_{Z_i} \to \mathcal{L}'_i \otimes \mathcal{L}'_i$ of Z_i represent the same orientation class of Z_i if there exists an isomorphism $\psi : \mathcal{L}_i \simeq \mathcal{L}'_i$ such that $(\psi \otimes \psi) \circ o_i = o'_i$.

The link (Z_1, Z_2) together with an orientation class $\overline{o_1}$ of Z_1 and an orientation class $\overline{o_2}$ of Z_2 is an oriented link with two components.

イロト 不得 トイヨト イヨト 二日

$Z_i \simeq \mathbb{P}^1_F$ of degree *d* in \mathbb{P}^3_F

We have the two Euler sequences:

$$0 \longrightarrow \Omega^{1}_{Z_{i}/F} \longrightarrow \mathcal{O}_{Z_{i}}(-1) \oplus \mathcal{O}_{Z_{i}}(-1) \longrightarrow \mathcal{O}_{Z_{i}} \longrightarrow 0$$
$$0 \longrightarrow \Omega^{1}_{\mathbb{P}^{3}_{F}/F} \longrightarrow \mathcal{O}_{\mathbb{P}^{3}_{F}}(-1)^{\oplus 4} \longrightarrow \mathcal{O}_{\mathbb{P}^{3}_{F}} \longrightarrow 0$$

as well as the short exact sequence

$$0 \longrightarrow T_{Z_i/F} \longrightarrow (T_{\mathbb{P}^3_F/F})_{|Z_i} \longrightarrow \mathcal{N}_{Z_i/\mathbb{P}^3_F} \longrightarrow 0$$
$$\nu_{Z_i} := \det(\mathcal{N}_{Z_i/X}) \simeq \mathcal{O}_{Z_i}(-2) \otimes \mathcal{O}_{Z_i}(4d) \simeq \mathcal{O}_{Z_i}(2d-1) \otimes \mathcal{O}_{Z_i}(2d-1)$$

< □ > < 同 > < 回 > < 回 > < 回 >

$Z_i \simeq \mathbb{P}^1_F$ of degree d in \mathbb{P}^3_F

We have the two Euler sequences:

$$0 \longrightarrow \Omega^{1}_{Z_{i}/F} \longrightarrow \mathcal{O}_{Z_{i}}(-1) \oplus \mathcal{O}_{Z_{i}}(-1) \longrightarrow \mathcal{O}_{Z_{i}} \longrightarrow 0$$
$$0 \longrightarrow \Omega^{1}_{\mathbb{P}^{3}_{F}/F} \longrightarrow \mathcal{O}_{\mathbb{P}^{3}_{F}}(-1)^{\oplus 4} \longrightarrow \mathcal{O}_{\mathbb{P}^{3}_{F}} \longrightarrow 0$$

as well as the short exact sequence

$$0 \longrightarrow T_{Z_i/F} \longrightarrow (T_{\mathbb{P}^3_F/F})_{|Z_i} \longrightarrow \mathcal{N}_{Z_i/\mathbb{P}^3_F} \longrightarrow 0$$

 $\nu_{Z_i} := \det(\mathcal{N}_{Z_i/X}) \simeq \mathcal{O}_{Z_i}(-2) \otimes \mathcal{O}_{Z_i}(4d) \simeq \mathcal{O}_{Z_i}(2d-1) \otimes \mathcal{O}_{Z_i}(2d-1)$

For Z_i in the projective Hopf link, d = 1 thus $\nu_{Z_i} \simeq \mathcal{O}_{Z_i}(1) \otimes \mathcal{O}_{Z_i}(1)$.

$Z_i \simeq \mathbb{P}^1_F$ of degree d in \mathbb{P}^3_F

We have the two Euler sequences:

$$0 \longrightarrow \Omega^{1}_{Z_{i}/F} \longrightarrow \mathcal{O}_{Z_{i}}(-1) \oplus \mathcal{O}_{Z_{i}}(-1) \longrightarrow \mathcal{O}_{Z_{i}} \longrightarrow 0$$
$$0 \longrightarrow \Omega^{1}_{\mathbb{P}^{3}_{F}/F} \longrightarrow \mathcal{O}_{\mathbb{P}^{3}_{F}}(-1)^{\oplus 4} \longrightarrow \mathcal{O}_{\mathbb{P}^{3}_{F}} \longrightarrow 0$$

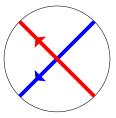
as well as the short exact sequence

$$0 \longrightarrow T_{Z_i/F} \longrightarrow (T_{\mathbb{P}^3_F/F})_{|Z_i} \longrightarrow \mathcal{N}_{Z_i/\mathbb{P}^3_F} \longrightarrow 0$$

 $\nu_{Z_i} := \det(\mathcal{N}_{Z_i/X}) \simeq \mathcal{O}_{Z_i}(-2) \otimes \mathcal{O}_{Z_i}(4d) \simeq \mathcal{O}_{Z_i}(2d-1) \otimes \mathcal{O}_{Z_i}(2d-1)$

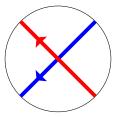
For Z_i in the projective Hopf link, d = 1 thus $\nu_{Z_i} \simeq \mathcal{O}_{Z_i}(1) \otimes \mathcal{O}_{Z_i}(1)$. For Z_i in the affine Hopf link, d = 2 thus $\nu_{Z_i} \simeq \mathcal{O}_{Z_i}(3) \otimes \mathcal{O}_{Z_i}(3)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

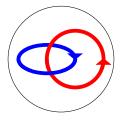


 $\varphi_1: \mathbb{P}^1_F \to \mathbb{P}^3_F$ which sends [u:v] to [0:0:u:v] maps $U_u := \{u \neq 0\}$ to $Z_1 \cap \{z \neq 0\}$ and $U_v := \{v \neq 0\}$ to $Z_1 \cap \{t \neq 0\}$. We choose $\overline{o_1}$ to be the orientation class which is given on $Z_1 \cap \{z \neq 0\}$ by $\frac{\overline{X}^*}{z} \wedge \frac{\overline{Y}^*}{z} \mapsto 1 \otimes 1$ and on $Z_1 \cap \{t \neq 0\}$ by $\frac{\overline{X}^*}{t} \wedge \overline{Y}^*_t \mapsto 1 \otimes 1$.

< (17) > < (17) > <



 $\begin{array}{l} \varphi_1:\mathbb{P}_F^1\to\mathbb{P}_F^3 \text{ which sends } [u:v] \text{ to } [0:0:u:v] \text{ maps } U_u:=\{u\neq 0\} \text{ to }\\ Z_1\cap\{z\neq 0\} \text{ and } U_v:=\{v\neq 0\} \text{ to } Z_1\cap\{t\neq 0\}. \text{ We choose } \overline{o_1} \text{ to be the }\\ \text{orientation class which is given on } Z_1\cap\{z\neq 0\} \text{ by } \overline{\frac{x}{z}}^*\wedge\overline{\frac{y}{z}}^*\mapsto 1\otimes 1 \text{ and }\\ \text{on } Z_1\cap\{t\neq 0\} \text{ by } \overline{\frac{x}{t}}^*\wedge\overline{\frac{y}{t}}^*\mapsto 1\otimes 1. \\ \varphi_2:\mathbb{P}_F^1\to\mathbb{P}_F^3 \text{ sends } [u:v] \text{ to } [u:v:0:0] \text{ and we choose } \overline{o_2} \text{ to be the }\\ \text{orientation class which is given on } Z_2\cap\{x\neq 0\} \text{ by } \overline{\frac{z}{x}}^*\wedge\overline{\frac{t}{x}}^*\mapsto 1\otimes 1 \text{ and }\\ \text{on } Z_2\cap\{y\neq 0\} \text{ by } \overline{\frac{z}{y}}^*\wedge\overline{\frac{t}{y}}^*\mapsto 1\otimes 1. \end{array}$



$$\begin{split} \varphi_1 : \mathbb{P}_F^1 \to \mathbb{P}_F^3 \text{ which sends } [u:v] \text{ to } [\frac{1}{2}(u^2+v^2):\frac{1}{2}(u^2-v^2):uv:0] \\ \text{maps } U_u \text{ to } Z_1 \cap \{x+y \neq 0\} \text{ and } U_v \text{ to } Z_1 \cap \{x-y \neq 0\}. \text{ We choose } \overline{o_1} \\ \text{to be the orientation class which is given on } Z_1 \cap \{x+y \neq 0\} \text{ by } \\ \frac{\overline{x^2-y^2-z^2}}{(x+y)^2} \wedge \frac{\overline{t}}{x+y}^* \mapsto 1 \otimes 1 \text{ and on } Z_1 \cap \{x-y \neq 0\} \text{ by } \\ \frac{\overline{x^2-y^2-z^2}}{(x-y)^2} \wedge \frac{\overline{t}}{x-y}^* \mapsto 1 \otimes 1 ((\frac{x+y}{x-y})^3 \text{ is a square since it is } (\frac{u^3}{v^3})^2). \end{split}$$



 $\varphi_1 : \mathbb{P}^1_F \to \mathbb{P}^3_F$ which sends [u:v] to $[\frac{1}{2}(u^2+v^2): \frac{1}{2}(u^2-v^2): uv:0]$ maps U_u to $Z_1 \cap \{x + y \neq 0\}$ and U_v to $Z_1 \cap \{x - y \neq 0\}$. We choose $\overline{o_1}$ to be the orientation class which is given on $Z_1 \cap \{x + v \neq 0\}$ by $\frac{\overline{x^2-y^2-z^2}^*}{(x+y)^2} \wedge \frac{t}{x+y}^* \mapsto 1 \otimes 1$ and on $Z_1 \cap \{x-y \neq 0\}$ by $\frac{\overline{x^2 - y^2 - z^2}}{(x - y)^2}^* \wedge \frac{\overline{t}}{\overline{x - y}}^* \mapsto 1 \otimes 1 \ \left(\left(\frac{x + y}{x - y} \right)^3 \text{ is a square since it is } \left(\frac{u^3}{y^3} \right)^2 \right).$ $\varphi_2: \mathbb{P}^1_F \to \mathbb{P}^3_F$ sends [u:v] to $[\frac{1}{2}(u^2+v^2):0:u^2:uv]$ and we choose $\overline{\varphi_2}$ to be the orientation class which is given on $Z_2 \cap \{z \neq 0\}$ by $\frac{x^2-(z-x)^2-t^2}{z^2}$ $\wedge \overline{\frac{y}{z}}^* \mapsto 1 \otimes 1$ and on $Z_2 \cap \{2x-z \neq 0\}$ by $\frac{\overline{x^2 - (z-x)^2 - t^2}}{(2x-z)^2}^* \wedge \frac{\overline{y}}{2x-z}^* \mapsto 1 \otimes 1 \left(\left(\frac{z}{2x-z}\right)^3 \text{ is a square since it is } \left(\frac{u^3}{v^3}\right)^2 \right).$

Clémentine Lemarié--Rieusset

Motivic linking in the projective space

Oriented fundamental classes and Seifert classes

Let $i \in \{1, 2\}$.

Definition

• We define the **oriented fundamental class** $[o_i]_{j_i}$ with respect to $j_i \leq 0$ as the unique class in $H^0(Z_i, \underline{K}_{j_i}^{MW} \{\nu_{Z_i}\})$ that is sent by $\widetilde{o_i}$ to the class of η^{-j_i} in $H^0(Z_i, \underline{K}_{j_i}^{MW})$.

Oriented fundamental classes and Seifert classes

Let $i \in \{1, 2\}$.

Definition

- We define the **oriented fundamental class** $[o_i]_{j_i}$ with respect to $j_i \leq 0$ as the unique class in $H^0(Z_i, \underline{K}_{j_i}^{MW} \{\nu_{Z_i}\})$ that is sent by $\widetilde{o_i}$ to the class of η^{-j_i} in $H^0(Z_i, \underline{K}_{j_i}^{MW})$.
- We define the **Seifert class** S_{o_i,j_i} with respect to j_i as the unique class in $H^{c-1}(X \setminus Z, \underline{K}_{j_i+c}^{MW})$ that is sent by the boundary map ∂ to the oriented fundamental class $[o_i]_{j_i} \in H^0(Z, \underline{K}_{j_i}^{MW}\{\nu_Z\})$.

Oriented fundamental classes and Seifert classes

Let $i \in \{1, 2\}$.

Definition

- We define the **oriented fundamental class** $[o_i]_{j_i}$ with respect to $j_i \leq 0$ as the unique class in $H^0(Z_i, \underline{K}_{j_i}^{MW} \{\nu_{Z_i}\})$ that is sent by $\widetilde{o_i}$ to the class of η^{-j_i} in $H^0(Z_i, \underline{K}_{j_i}^{MW})$.
- We define the **Seifert class** S_{o_i,j_i} with respect to j_i as the unique class in $H^{c-1}(X \setminus Z, \underline{K}_{j_i+c}^{MW})$ that is sent by the boundary map ∂ to the oriented fundamental class $[o_i]_{j_i} \in H^0(Z, \underline{K}_{j_i}^{MW}\{\nu_Z\})$.

The assumptions $H^{c-1}(X, \underline{K}_{j_i+c}^{MW}) = 0$ and $H^c(X, \underline{K}_{j_i+c}^{MW}) = 0$ made earlier are there to ensure the unicity and the existence resp. of the Seifert class.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○ ○

The (ambient) quadratic linking class / degree

The quadratic linking class

We define the **quadratic linking class** with respect to (j_1, j_2) as the image of the intersection product $S_{o_1,j_1} \cdot S_{o_2,j_2}$ by the boundary map $\partial : H^{2c-2}(X \setminus Z, \underline{K}_{j_1+j_2+2c}^{MW}) \to H^{c-1}(Z, \underline{K}_{j_1+j_2+c}^{MW} \{\nu_Z\}).$

The **quadratic linking degree** (couple) is the image of the quadratic linking class by an isomorphism.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The (ambient) quadratic linking class / degree

The quadratic linking class

We define the **quadratic linking class** with respect to (j_1, j_2) as the image of the intersection product $S_{o_1,j_1} \cdot S_{o_2,j_2}$ by the boundary map $\partial : H^{2c-2}(X \setminus Z, \underline{K}_{j_1+j_2+2c}^{MW}) \to H^{c-1}(Z, \underline{K}_{j_1+j_2+c}^{MW} \{\nu_Z\}).$

The **quadratic linking degree** (couple) is the image of the quadratic linking class by an isomorphism.

The ambient quadratic linking class

We define the **ambient quadratic linking class** with respect to (j_1, j_2) as the image of the part of the quadratic linking class which is in $H^{c-1}(Z_1, \underline{K}_{j_1+j_2+c}^{MW}\{\nu_{Z_1}\})$ by the morphism $(i_1)_*: H^{c-1}(Z_1, \underline{K}_{j_1+j_2+c}^{MW}\{\nu_{Z_1}\}) \rightarrow H^{2c-1}(X, \underline{K}_{j_1+j_2+2c}^{MW}).$

The **ambient quadratic linking degree** is the image of the ambient quadratic linking class by an isomorphism.

Clémentine Lemarié--Rieusset

Motivic linking in the projective space

27 May 2025 20 / 25

To make computations easier, we choose a "nice" $D \simeq \mathbb{A}_F^3$ inside \mathbb{P}_F^3 . We let $h := x + y + z + t \in F[x, y, z, t]$ and $D := \{h \neq 0\}$ in X and in D we denote $x' := \frac{x}{h}$, $y' := \frac{y}{h}$ and $z' := \frac{z}{h}$ (so that $\frac{t}{h} = 1 - x' - y' - z'$).

イロト 不得下 イヨト イヨト 二日

To make computations easier, we choose a "nice" $D \simeq \mathbb{A}_F^3$ inside \mathbb{P}_F^3 . We let $h := x + y + z + t \in F[x, y, z, t]$ and $D := \{h \neq 0\}$ in X and in D we denote $x' := \frac{x}{h}$, $y' := \frac{y}{h}$ and $z' := \frac{z}{h}$ (so that $\frac{t}{h} = 1 - x' - y' - z'$).

- the oriented fundamental class $[o_1] \in H^0(Z_1, \underline{K}_{-2}^{MW}\{\nu_{Z_1}\})$ is represented by the cycle $\eta^2 \otimes (\overline{x'}^* \wedge \overline{y'}^*)$;
- the oriented fundamental class $[o_2] \in H^0(Z_2, \underline{K}_{-2}^{MW}\{\nu_{Z_2}\})$ is represented by the cycle $\eta^2 \otimes (\overline{z'}^* \wedge \overline{1 x' y' z'}^*)$;

To make computations easier, we choose a "nice" $D \simeq \mathbb{A}_F^3$ inside \mathbb{P}_F^3 . We let $h := x + y + z + t \in F[x, y, z, t]$ and $D := \{h \neq 0\}$ in X and in D we denote $x' := \frac{x}{h}$, $y' := \frac{y}{h}$ and $z' := \frac{z}{h}$ (so that $\frac{t}{h} = 1 - x' - y' - z'$).

- the oriented fundamental class $[o_1] \in H^0(Z_1, \underline{K}_{-2}^{MW}\{\nu_{Z_1}\})$ is represented by the cycle $\eta^2 \otimes (\overline{x'}^* \wedge \overline{y'}^*)$;
- the oriented fundamental class $[o_2] \in H^0(Z_2, \underline{K}_{-2}^{MW} \{\nu_{Z_2}\})$ is represented by the cycle $\eta^2 \otimes (\overline{z'}^* \wedge \overline{1 x' y' z'}^*)$;
- the Seifert class $S_1 \in H^1(X \setminus Z, \underline{K}_0^{MW})$ is represented by the cycle $\eta \langle x' \rangle \otimes \overline{y'}^*$;
- the Seifert class $S_2 \in H^1(X \setminus Z, \underline{K}_0^{MW})$ is represented by the cycle $\eta \langle z' \rangle \otimes \overline{1 x' y' z'}^*$;

• the intersection product $S_1 \cdot S_2 \in H^2(X \setminus Z, \underline{K}_0^{MW})$ is represented by the cycle $\eta^2 \langle x'z' \rangle \otimes (\overline{1-x'-y'-z'}^* \wedge \overline{y'}^*)$;

イロト イポト イヨト イヨト 二日

- the intersection product $S_1 \cdot S_2 \in H^2(X \setminus Z, \underline{K}_0^{MW})$ is represented by the cycle $\eta^2 \langle x'z' \rangle \otimes (\overline{1-x'-y'-z'}^* \wedge \overline{y'}^*)$;
- the quadratic linking class, i.e. $\partial(S_1 \cdot S_2) \in H^1(Z, \underline{K}_{-2}^{MW}\{\nu_Z\})$, is represented by the cycle $\eta^3 \langle -1 \rangle \otimes (\overline{1-x'-y'-z'}^* \wedge \overline{x'}^* \wedge \overline{y'}^*) \oplus \eta^3 \otimes (\overline{y'}^* \wedge \overline{z'}^* \wedge \overline{1-x'-y'-z'}^*)$ (the first term being over [0:0:1:0] and the second term being over [1:0:0:0]);

- the intersection product $S_1 \cdot S_2 \in H^2(X \setminus Z, \underline{K}_0^{MW})$ is represented by the cycle $\eta^2 \langle x'z' \rangle \otimes (\overline{1-x'-y'-z'}^* \wedge \overline{y'}^*)$;
- the quadratic linking class, i.e. $\partial(S_1 \cdot S_2) \in H^1(Z, \underline{K}_{-2}^{MW}\{\nu_Z\})$, is represented by the cycle $\eta^3 \langle -1 \rangle \otimes (\overline{1-x'-y'-z'}^* \wedge \overline{x'}^* \wedge \overline{y'}^*) \oplus \eta^3 \otimes (\overline{y'}^* \wedge \overline{z'}^* \wedge \overline{1-x'-y'-z'}^*)$ (the first term being over [0:0:1:0] and the second term being over [1:0:0:0]);
- the quadratic linking degree is $(-1,1) \in W(F) \oplus W(F)$ (i.e. $(x \mapsto -x^2, x \mapsto x^2)$).

The isomorphism which gives the QLD from the QLC is the composite:

$$\begin{aligned} & H^{1}(Z_{1},\underline{K}_{-2}^{\mathsf{MW}}\{\nu_{Z_{1}}\}) \oplus H^{1}(Z_{2},\underline{K}_{-2}^{\mathsf{MW}}\{\nu_{Z_{2}}\}) \simeq H^{1}(Z_{1},\underline{K}_{-2}^{\mathsf{MW}}) \oplus H^{1}(Z_{2},\underline{K}_{-2}^{\mathsf{MW}}) \\ & \simeq H^{1}(\mathbb{P}_{F}^{1},\underline{K}_{-2}^{\mathsf{MW}}) \oplus H^{1}(\mathbb{P}_{F}^{1},\underline{K}_{-2}^{\mathsf{MW}}) \simeq \mathsf{W}(F) \oplus \mathsf{W}(F) \end{aligned}$$

Quadratic linking degrees

• The affine Hopf link: $(\langle 1 \rangle + \langle 3 \rangle, \langle -2 \rangle (\langle 1 \rangle + \langle 3 \rangle)) \in W(F) \oplus W(F)$ (i.e. $((x, y) \mapsto x^2 + 3y^2, (x, y) \mapsto -2x^2 - 6y^2)$).

イロト 不得下 イヨト イヨト 二日

Quadratic linking degrees

- The affine Hopf link: $(\langle 1 \rangle + \langle 3 \rangle, \langle -2 \rangle (\langle 1 \rangle + \langle 3 \rangle)) \in W(F) \oplus W(F)$ (i.e. $((x, y) \mapsto x^2 + 3y^2, (x, y) \mapsto -2x^2 - 6y^2)$).
- A projective conic $(\{t = 0, xz = y^2\})$ and a projective line "inside" it $(\{y = 0, z = x\})$: $(\langle -1 \rangle + \langle -1 \rangle, \langle -5 \rangle) \in W(F) \oplus W(F)$ (i.e. $((x, y) \mapsto -x^2 y^2, x \mapsto 5x^2)$).

Quadratic linking degrees

- The affine Hopf link: $(\langle 1 \rangle + \langle 3 \rangle, \langle -2 \rangle (\langle 1 \rangle + \langle 3 \rangle)) \in W(F) \oplus W(F)$ (i.e. $((x, y) \mapsto x^2 + 3y^2, (x, y) \mapsto -2x^2 - 6y^2)$).
- A projective conic $(\{t = 0, xz = y^2\})$ and a projective line "inside" it $(\{y = 0, z = x\})$: $(\langle -1 \rangle + \langle -1 \rangle, \langle -5 \rangle) \in W(F) \oplus W(F)$ (i.e. $((x, y) \mapsto -x^2 y^2, x \mapsto 5x^2)$).
- A projective conic $(\{t = 0, xz = y^2\})$ and a projective line "across" it $(\{t = x, z = -x\})$: $(0, \langle -1 \rangle) \in W(F) \oplus W(F)$ (i.e. $(0 \mapsto 0, x \mapsto -x^2)$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Other interesting contexts for quadratic linking degrees

• $\mathbb{P}_{F}^{n} \sqcup \mathbb{P}_{F}^{n} \subset \mathbb{P}_{F}^{2n+1}$ with $n \geq 1$ odd (and $j_{1}, j_{2} \leq -2$; W(F));

27 May 2025 24 / 25

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Other interesting contexts for quadratic linking degrees

- $\mathbb{P}_F^n \sqcup \mathbb{P}_F^n \subset \mathbb{P}_F^{2n+1}$ with $n \ge 1$ odd (and $j_1, j_2 \le -2$; W(F));
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup \mathbb{A}_{F}^{n} \setminus \{0\} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$ with $n \geq 2$ (W(F) or GW(F));

イロト イポト イヨト イヨト 二日

Other interesting contexts for quadratic linking degrees

- $\mathbb{P}_{F}^{n} \sqcup \mathbb{P}_{F}^{n} \subset \mathbb{P}_{F}^{2n+1}$ with $n \geq 1$ odd (and $j_{1}, j_{2} \leq -2$; W(F));
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup \mathbb{A}_{F}^{n} \setminus \{0\} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$ with $n \geq 2$ (W(F) or GW(F));
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup Q_{n} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$ with $n \geq 3$ (W(F) or GW(F));

Other interesting contexts for quadratic linking degrees

- $\mathbb{P}_{F}^{n} \sqcup \mathbb{P}_{F}^{n} \subset \mathbb{P}_{F}^{2n+1}$ with $n \geq 1$ odd (and $j_{1}, j_{2} \leq -2$; W(F));
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup \mathbb{A}_{F}^{n} \setminus \{0\} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$ with $n \geq 2$ (W(F) or GW(F));
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup Q_{n} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$ with $n \geq 3$ (W(F) or GW(F));
- $\mathbb{A}_F^2 \setminus \{0\} \sqcup Q_2 \to \mathbb{A}_F^4 \setminus \{0\} \ (W(F) \text{ or } GW(F) \text{ or } K_1^{\mathsf{MW}}(F));$

Other interesting contexts for quadratic linking degrees

- $\mathbb{P}_F^n \sqcup \mathbb{P}_F^n \subset \mathbb{P}_F^{2n+1}$ with $n \ge 1$ odd (and $j_1, j_2 \le -2$; W(F));
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup \mathbb{A}_{F}^{n} \setminus \{0\} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$ with $n \geq 2$ (W(F) or GW(F));
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup Q_{n} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$ with $n \geq 3$ (W(F) or GW(F));
- $\mathbb{A}_F^2 \setminus \{0\} \sqcup Q_2 \to \mathbb{A}_F^4 \setminus \{0\} \ (W(F) \text{ or } \mathsf{GW}(F) \text{ or } K_1^{\mathsf{MW}}(F));$
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup Q_{n} \to \mathbb{A}_{F}^{n+\lfloor \frac{n}{2} \rfloor+1} \setminus \{0\}$ with $n \geq 3$ (W(F) or GW(F) or $\mathcal{K}_{1}^{MW}(F)$);

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Other interesting contexts for quadratic linking degrees

- $\mathbb{P}_{F}^{n} \sqcup \mathbb{P}_{F}^{n} \subset \mathbb{P}_{F}^{2n+1}$ with $n \geq 1$ odd (and $j_{1}, j_{2} \leq -2$; W(F));
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup \mathbb{A}_{F}^{n} \setminus \{0\} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$ with $n \ge 2$ (W(F) or GW(F));
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup Q_{n} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$ with $n \geq 3$ (W(F) or GW(F));
- $\mathbb{A}_F^2 \setminus \{0\} \sqcup Q_2 \to \mathbb{A}_F^4 \setminus \{0\} \ (W(F) \text{ or } \mathsf{GW}(F) \text{ or } K_1^{\mathsf{MW}}(F));$
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup Q_{n} \to \mathbb{A}_{F}^{n+\lfloor \frac{n}{2} \rfloor+1} \setminus \{0\}$ with $n \geq 3$ (W(F) or GW(F) or $\mathcal{K}_{1}^{MW}(F)$);
- $Q_2 \sqcup Q_2 \to \mathbb{A}_F^4 \setminus \{0\} \ (W(F) \text{ or } \mathsf{GW}(F) \text{ or } K_1^{\mathsf{MW}}(F));$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Other interesting contexts for quadratic linking degrees

- $\mathbb{P}_F^n \sqcup \mathbb{P}_F^n \subset \mathbb{P}_F^{2n+1}$ with $n \ge 1$ odd (and $j_1, j_2 \le -2$; W(F));
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup \mathbb{A}_{F}^{n} \setminus \{0\} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$ with $n \geq 2$ (W(F) or GW(F));
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup Q_{n} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$ with $n \geq 3$ (W(F) or GW(F));
- $\mathbb{A}_F^2 \setminus \{0\} \sqcup Q_2 \to \mathbb{A}_F^4 \setminus \{0\} \ (W(F) \text{ or } \mathsf{GW}(F) \text{ or } K_1^{\mathsf{MW}}(F));$
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup Q_{n} \to \mathbb{A}_{F}^{n+\lfloor \frac{n}{2} \rfloor+1} \setminus \{0\}$ with $n \geq 3$ (W(F) or GW(F) or $\mathcal{K}_{1}^{MW}(F)$);
- $Q_2 \sqcup Q_2 \to \mathbb{A}_F^4 \setminus \{0\} \ (\mathsf{W}(F) \text{ or } \mathsf{GW}(F) \text{ or } K_1^{\mathsf{MW}}(F));$
- $Q_n \sqcup Q_n \to \mathbb{A}_F^{n+\lfloor \frac{n}{2} \rfloor+1} \setminus \{0\}$ with $n \ge 3$ (W(F) or GW(F) or $K_1^{MW}(F)$);

Other interesting contexts for quadratic linking degrees

- $\mathbb{P}_F^n \sqcup \mathbb{P}_F^n \subset \mathbb{P}_F^{2n+1}$ with $n \ge 1$ odd (and $j_1, j_2 \le -2$; W(F));
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup \mathbb{A}_{F}^{n} \setminus \{0\} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$ with $n \geq 2$ (W(F) or GW(F));
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup Q_{n} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$ with $n \geq 3$ (W(F) or GW(F));
- $\mathbb{A}_F^2 \setminus \{0\} \sqcup Q_2 \to \mathbb{A}_F^4 \setminus \{0\} \ (W(F) \text{ or } GW(F) \text{ or } K_1^{\mathsf{MW}}(F));$
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup Q_{n} \to \mathbb{A}_{F}^{n+\lfloor \frac{n}{2} \rfloor+1} \setminus \{0\}$ with $n \geq 3$ (W(F) or GW(F) or $\mathcal{K}_{1}^{MW}(F)$);
- $Q_2 \sqcup Q_2 \to \mathbb{A}_F^4 \setminus \{0\} \ (\mathsf{W}(F) \text{ or } \mathsf{GW}(F) \text{ or } K_1^{\mathsf{MW}}(F));$
- $Q_n \sqcup Q_n \to \mathbb{A}_F^{n+\lfloor \frac{n}{2} \rfloor+1} \setminus \{0\}$ with $n \ge 3$ (W(F) or GW(F) or $K_1^{MW}(F)$);
- $Q_n \sqcup Q_n \to Q_{n+\lfloor \frac{n}{2} \rfloor+1}$ with $n \ge 2$ (W(F) or GW(F) or $K_1^{MW}(F)$).

く伺 とく ヨ とく ヨ とう

Other interesting contexts for quadratic linking degrees

- $\mathbb{P}_F^n \sqcup \mathbb{P}_F^n \subset \mathbb{P}_F^{2n+1}$ with $n \ge 1$ odd (and $j_1, j_2 \le -2$; W(F));
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup \mathbb{A}_{F}^{n} \setminus \{0\} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$ with $n \ge 2$ (W(F) or GW(F));
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup Q_{n} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$ with $n \geq 3$ (W(F) or GW(F));
- $\mathbb{A}_F^2 \setminus \{0\} \sqcup Q_2 \to \mathbb{A}_F^4 \setminus \{0\} \ (W(F) \text{ or } GW(F) \text{ or } K_1^{\mathsf{MW}}(F));$
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup Q_{n} \to \mathbb{A}_{F}^{n+\lfloor \frac{n}{2} \rfloor+1} \setminus \{0\}$ with $n \geq 3$ (W(F) or GW(F) or $\mathcal{K}_{1}^{MW}(F)$);
- $Q_2 \sqcup Q_2 \to \mathbb{A}_F^4 \setminus \{0\} \ (\mathsf{W}(F) \text{ or } \mathsf{GW}(F) \text{ or } K_1^{\mathsf{MW}}(F));$
- $Q_n \sqcup Q_n \to \mathbb{A}_F^{n+\lfloor \frac{n}{2} \rfloor+1} \setminus \{0\}$ with $n \ge 3$ (W(F) or GW(F) or $K_1^{MW}(F)$);
- $Q_n \sqcup Q_n \to Q_{n+\lfloor \frac{n}{2} \rfloor+1}$ with $n \ge 2$ (W(F) or GW(F) or $K_1^{MW}(F)$).

In the cases $Q_n \sqcup Q_n \to Q_{n+\lfloor \frac{n}{2} \rfloor+1} = X$ with $n \in \{2,3,4\}$, the conditions $H^c(X, \underline{K}_{j_1+c}^{MW}) = 0$ and $H^c(X, \underline{K}_{j_2+c}^{MW}) = 0$ (which are there to ensure the existence of Seifert classes) are not verified (but there are some nice examples there).

Thanks for your attention!

イロト イヨト イヨト イヨト