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Introduction
This text is a report written for my master’s second year internship from April to June
2024 with Joseph Ayoub, whom I warmly thank.

The purpose is to summarize most of what I studied in motivic homotopy theory,
and possible directions for further work. The main (short-term) goal was to study
[EHK+21] and the recognition principle for motivic infinite loop spaces. This theorem
is a motivic analogue for the classical recognition principle due to Boardman and Vogt
[BV68], stating that connective spectra are equivalent to grouplike E∞-spaces. Here,
connective spectra will become very effective motivic spectra, and grouplike E∞-spaces
will become a notion of “grouplike motivic spaces with transfers”.

In this report, the term space will as usual denote ∞-groupoids (as in [Lur09b]).
We are interested in motivic spaces, which are modeled as presheaves of spaces on some
category of schemes. The base underlying scheme will firstly be a qcqs noetherian
scheme S of finite Krull dimension to give the definitions in a general context, however
the main theorems will have us choose S = Spec k for a perfect field k. For the sake of
conciseness, the proofs of the main theorems will also assume that k is infinite.
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4 Motivic recognition 19

Notations
The following notations are used throughout the text and to avoid any confusion, they
mean the following :

• X+ denotes X with an added disjoint base-point, whenever X is a scheme or a
finite set ;

• C∗ denotes the pointed version under the terminal object C/∗, whenever C is an
∞-category ;

• SchS denotes the category of S-schemes and SmS the category of finitely presented
smooth S-schemes, whenever S is a base scheme ;

• PSh(C) denotes the ∞-category of presheaves of spaces on C, whenever C is an
∞-category ;

• sPre(C) denotes the (model) category of simplicial presheaves on C, whenever C
is a category.

Also, K(C) denotes the K-theory space of a stable∞-category C, satisfying the follow-
ing defining properties :

1. K(0) ' ∗ ;

2. If C ′ → C → C ′′ is a split exact sequence of stable∞-categories, then the induced
map of spaces

K(C)→ K(C ′)×K(C ′′)

is an equivalence ;

3. 1 and 2 induce an E∞-space structure (cf. definition 1.14) on K, which is grouplike
(cf. definition 1.15).

For a scheme X, the space K(X) denotes K(Perf(X)), where Perf(X) is the stable
∞-category of perfect complexes on X.

1 Motivic spaces and spectra

1.1 The ∞-category of motivic spaces
The construction of this ∞-category is due to Morel and Voevodsky. See [AE16] for
further details.

Let S be a quasi-compact, quasi-separated noetherian base scheme of finite Krull
dimension. Denote by SmS the category of finitely presented smooth S-schemes.
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Definition 1.1. A finite family {pi : Vi → U}i∈I in SmS is a Nisnevich cover if each
pi is étale and for every x ∈ U , there is a i ∈ I and a y ∈ Vi such that pi(y) = x
and k(x)→ k(y) is an isomorphism. The associated Grothendieck topology on SmS is
called the Nisnevich topology.

One can show that this topology lies between the étale and the Zariski topology
on SmS, enjoying good properties of both topologies. In particular, Zariski covers are
clearly Nisnevich covers. Another important property is that the Nisnevich topology
is subcanonical (since it is coarser than the étale topology, which already is) : the
representable presheaves are already Nisnevich sheaves. Lurie defines the Nisnevich
topology in another equivalent way in [Lur18] (Definition 3.7.1.1, page 341) :

Definition 1.2. The Nisnevich topology on SmS is the topology generated by the finite
families of étale morphisms {pi : Vi → U}i∈I satisfying the condition that there is a
finite sequence

∅ ⊆ Zn ⊆ Zn−1 ⊆ . . . ⊆ Z1 ⊆ Z0 = U

of finitely presented closed subschemes of U such that for every 0 ≤ m ≤ n − 1, the
morphism ∐

i∈I

p−1
i (Zm − Zm+1)→ Zm − Zm+1

admits a section.

Definition 1.3. A cartesian square in SmS

U ×X V V

U X

y

i

p

is an elementary distinguished Nisnevich square if :

• i is an open immersion ;

• p is étale ;

• p−1(X − U)red → (X − U)red is an isomorphism of schemes.

With this notation, the family {i, p} is a Nisnevich cover of X.

Example 1.4. If k is a field with characteristic different than 2 and a ∈ k is a non-zero
square, then one can Nisnevich-cover A1 with the open immersion A1 − {a} → A1 and
the étale A1 − 0→ A1 sending x to x2. This cover does not come from a distinguished
Nisnevich square, since a has two square roots.
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Definition 1.5. A presheaf of simplicial sets F on SmS satisfies Nisnevich descent (or
is Nisnevich-fibrant) if it is a presheaf of spaces, F (∅) is contractible, and for every
distinguished Nisnevich square as in definition 1.3, the canonical map

F (X)→ F (U)×F (U×XV ) F (V )

is a weak equivalence. In other words, the distinguished square becomes homotopy
cartesian after applying F .

The term Nisnevich-fibrant comes from the fact that the presheaves satisfying Nis-
nevich descent are precisely the fibrant objects in LNis sPre(SmS), the Bousfield localiza-
tion of the projective model structure on simplicial presheaves with respect to Nisnevich
hypercovers.

In particular, one can localize a simplicial presheaf F via Nisnevich sheafification,
yielding a universal morphism F → LNisF from F to a Nisnevich-fibrant simplicial
sheaf.

Definition 1.6. A motivic space over S is a simplicial presheaf F on SmS that satisfies
Nisnevich descent and is A1-homotopy invariant : for every X ∈ SmS, the projection
X × A1 → X induces an equivalence F (X) ' F (X × A1). Denote by H(S) the ∞-
category of motivic spaces over S.

The notion of A1-homotopy invariance can also be defined by means of Bousfield
localizations. Indeed, the motivic spaces are precisely the fibrant objects in the model
category LA1LNis sPre(SmS) obtained as the Bousfield localization of LNis sPre(SmS)
with respect to the maps A1 ×S X → X.

Example 1.7. The multiplicative group Gm (say, over a field) is already a motivic
space, without even having to A1-localize it. Indeed, one already has Hom(X,Gm) '
Hom(X × A1,Gm) since any morphism A1 → Gm has to be constant. This property,
known as A1-rigidity, will not be used here. One can consult subsection 4.4 in [AE16]
for a few details.

In particular, one can (and usually has to) A1-localize a Nisnevich-fibrant simplicial
presheaf to obtain a motivic space. In practice, this is hard to compute. However, one
has the following useful interpretation. Denote by ∆• the cosimplicial scheme with

∆n = Spec k[x0, . . . , xn]/ (x0 + · · ·+ xn = 1)

and the usual faces and degeneracies. Define a functor SingA1

: sPre(SmS)→ sPre(SmS)
by letting

SingA
1

(F ) : X 7→ |F (X ×∆•)|.

Theorem 1.8. Let F ∈ sPre(SmS). Then SingA
1

(F ) is A1-invariant. Moreover,
the functor Lmot = LA1LNis is naturally equivalent to the countable composition power(
LNis Sing

A1
)◦N

.
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Proof. For n ∈ N and 0 ≤ i ≤ n, define θi : ∆n+1 → ∆n ×S A1 sending the vertex vj to
vj × {0} for j ≤ i and to vj−1 × {1} for j > i. We obtain a simplicial decomposition of
∆n ×S A1 :

For X ∈ SmS, one obtains a diagram

. . . ∆2 ×S X ∆1 ×S X X

. . . ∆2 ×S A1 ×S X ∆1 ×S A1 ×S X A1 ×S X

0 1 θi×SX 0 1 θi×SX

Apply the presheaf F to get a simplicial homotopy between the maps

F (0), F (1) : SingA
1

(F )(X ×S A1)→ SingA
1

(F )(X).

Denoting µ : A1×SA1 → A1 the multiplication (x, y) 7→ xy, the following diagram then
commutes :

F (X ×S A1) F (X)

F (X ×S A1) F (X ×S A1 ×S A1) F (X ×S A1)

F (0)

id
F (idX×µ) F (prX)

F (1×idA1 ) F (0×idA1 )

Since the two bottom maps are homotopic, the composite F (prX) ◦ F (0) is homotopic
to the identity, and since prX has a section, F (prX) is an equivalence.

The last statement is rather technical. Writing Φ = LNis Sing
A1 , for any simplicial

presheaf F , the countable composition

Φ◦N(F ) ' hocolimn

(
LNis Sing

A1
)◦n

(F ) ' hocolimn

(
SingA

1

LNis

)◦n
(F )

is both a filtered homotopy colimit of Nisnevich local presheaves of spaces, and a homo-
topy colimit of A1-invariant presheaves. Hence the functor Φ◦N takes values in motivic
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spaces. To conclude, it suffices to show that Φ preserves A1-local weak equivalences,
from which will follow the right-hand equivalence in :

Φ◦N(F ) ' Φ◦N(LA1LNisF ) ' LA1LNisF.

See [AE16], theorem 4.27 for the remaining details.
Example 1.9. Once A1-localized, the affine line A1 evidently becomes contractible -
this is the main purpose of A1-localization here. The projection A1 ' A1 ×S ∗ → ∗ is
among the morphisms which became weak equivalences after the Bousfield localization
LA1 .
Example 1.10. As in classical homotopy theory, one can construct spaces as homotopy
cofibers of pointed spaces, that is, “topological quotients”. The most important in our
study is the Tate sphere, which is the homotopy cofiber T = A1/(A1 − 0) of the open
inclusion A1 − 0 ⊆ A1, seen as a morphism of pointed motivic spaces (at 1). Recall
that by definition, this is the homotopy pushout of the diagram ∗ ← A1 − 0→ A1.
Proposition 1.11. If the base scheme S is a noetherian scheme of finite Krull dimen-
sion, then any elementary distinguished Nisnevich square (as in definition 1.3) in SmS,
seen as a diagram of simplicial presheaves, is a homotopy pushout in LA1LNis sPre(SmS).
Proof. Recall from earlier that the Nisnevich topology is coarser than the étale topology,
so it is subcanonical. Hence, an elementary distinguished Nisnevich square can indeed
be seen without modification as a diagram in LA1LNis sPre(SmS). For any motivic space
X, its representable presheaf is a Nisnevich sheaf, so it satisfies Nisnevich descent : after
applying it, the square becomes homotopy cartesian. Since it is true for all spaces X,
the original square is indeed a homotopy pushout.
Corollary 1.12. The open (Zariski, hence Nisnevich) covering of the projective line by
two copies of the affine line (say, pointed at 1) determines the following distinguished
square :

Gm A1

A1 P1

Since A1 is contractible, this exhibits P1 as the homotopy cofiber A1/Gm. This in turns
is equivalent to the Tate sphere, as Gm ' A1 − 0.
Remark 1.13. More generally, one can define a collection of bigraded motivic spheres
Sa,b = G∧b

m ∧ (S1)∧(a−b) for any pair of integers a ≥ b ≥ 0 and prove that S2n−1,n is
weakly equivalent to An − 0. The case of the multiplicative group is n = 1, and S2,1 is
the Tate sphere.

The equivalence T ' S1 ∧ Gm ' P1 will be used implicitely from now on. Mo-
tivic spectra will be introduced to formally invert the operation − ∧ P1, which will
automatically invert smashing with S1 or Gm.
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1.2 Unframed recognition
To finish this section, we study the unframed version of the main recognition theorem.
Let SHS1

(S) = Stab(H(S)∗) = H(S)∗ ⊗ Spt be the usual ∞-categorical stabilization
of H(S)∗ (see [Lur17] for more details). An object of this ∞-category is an S1-motivic
spectrum : a sequence (Xn)n≥0 of pointed motivic spaces equipped with equivalences
Xn ' ΩS1Xn+1, where the functor ΩS1 = Hom∗(S

1,−) is the usual loop space functor,
right adjoint to the suspension functor ΣS1 = S1 ∧ −.

Definition 1.14. Let C be an∞-category with finite products. A commutative monoid
or E∞-object in C is a functor X : Fin∗ → C from the category of finite pointed sets
such that for every n ≥ 0, the maps {1, . . . , n}+ → {i}+ induce together an equivalence
:

X({1, . . . , n}+) '
n∏

i=1

X({i}+).

A symmetric monoidal ∞-category is an E∞-object in the ∞-category of ∞-categories.

In [Lur17] the Bar construction is defined, providing n-fold deloopings, over any
(presentable)∞-category C, of En-objects1. The details of the construction are of little
interest here, the important result being that it provides left adjoints Bn

C a Ωn and
B∞

C a Ω∞ when one considers the target ∞-category of Ωn (resp. Ω∞) to be that of
En-objects (resp. E∞-objects).

In this subsection and thereafter, we will write B (resp. BNis and Bmot) for the Bar
construction over PSh(SmS) (resp. PShNis(SmS) and H(S)∗). When the compositions
make sense, the Bar constructions commute with the localizations LNis and Lmot.

Definition 1.15. A monoidX ∈ Mon(C) is grouplike if the two shearing mapsX×X →
X×X are equivalences. In the context of Nisnevich sheaves, this is equivalent to πNis

0 (X)
being a sheaf of groups, as the intuition would suggest.

A monoid X ∈ Mon(PShNis(SmS)) is strongly A1-invariant if both X and BNisX
are A1-invariant. Denote by Monmot(H(S)) the corresponding full sub-∞-category of
Mon(H(S)).

A commutative monoid X ∈ CMon(PShNis(SmS)) is strictly A1-invariant if all the
deloopings Bn

NisX are A1-invariant. Denote by CMonmot(H(S)) the corresponding full
sub-∞-category of CMon(H(S)).

Proposition 1.16. The adjunction

B∞
mot : CMon(H(S)) � SHS1

(S) : Ω∞
S1

restricts to an equivalence between grouplike and strictly A1-invariant motivic spaces
and connective motivic S1-spectra :

CMongp
mot(H(S)) ' SHS1

(S)≥0.

1The definition of an En-object will not be given here since it will not be used.
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Proof. In the following commutative diagram, the vertical inclusions are those of A1-
invariant objects. Both rows are limit diagrams of ∞-categories.

SHS1

(S) . . . H(S)∗ H(S)∗

Stab(PShNis(SmS)) . . . PShNis(SmS)∗ PShNis(SmS)∗

Ω Ω

Ω Ω

The spectra in SHS1

(S) that are connective are then exactly the connective spec-
tra X ∈ Stab(PShNis(SmS))≥0 such that every component Ω∞−nX ∈ PShNis(SmS)∗
is A1-invariant. These components being the deloopings of the E∞-object Ω∞X ∈
PShNis(SmS)∗, this is the definition of Ω∞X being in CMongp

mot(H(S)).

When S is the spectrum of a perfect field, there is an explicit description of both
sides of this equivalence, whose proof (mostly due to Morel) will not be discussed here
:

Corollary 1.17. Let k be a perfect field. Then the above adjunction

B∞
mot : CMon(H(k)) � SHS1

(k) : Ω∞
S1

restricts to an equivalence between :

• CMongp
mot(H(k)) which consists of the commutative monoids X in H(k) such that

πNis
0 (X) is a strongly A1-invariant sheaf of groups, and

• SHS1

(k)≥0 is the smallest full sub-∞-category of SHS1

(k) which is stable by
taking homotopy colimits and which contains the suspension spectra Σ∞

S1X+ for
any smooth k-scheme X.

Remark 1.18. The usual recognition theorem from classical homotopy theory states
that over ∞-toposes, in particular over the ∞-category of spaces, the Bar construc-
tion and the loop space functors restrict to equivalences between grouplike En-algebras
(resp. grouplike commutative monoids) and pointed n-connective objects (resp. pointed
connective spectra). This theorem could not apply to H(S) which is not an ∞-topos,
and indeed one has to restrict further to A1-invariant objects to obtain the desired
equivalence.

Remark 1.19. The assumption that S = Spec k with k a perfect field will come up
again in later theorems. The reason why k has to be perfect comes from the fact (see
[MVW06], 13.8) that in this case, for all homotopy invariant presheaves with transfers
F , the cohomology presheaves Hn(−, FNis) are also homotopy invariant for n ≥ 0. This
in turn is a consequence of the fact that if k is a perfect field, then every regular local
k-algebra is formally smooth over k.
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2 Framed correspondences
Following Voevodsky and [EHK+21], we introduce the notion of framed correspondences
: they form an ∞-categorical version of the classical notion of correspondences. As
presheaves with transfers are a central object of study in Voevodsky’s theory of motives,
motivic spaces with framed transfers will play a central role in the study of motivic
spectra.

2.1 Three types of framing
Definition 2.1. Let X and Y be S-schemes and n ≥ 0. An equationally framed
correspondence of level n from X to Y is the data (Z,U, ϕ, g) of :

1. A closed subscheme Z ⊆ An
X which is finite over X ;

2. An étale neighborhood U ⊃ Z in An
X ;

3. A morphism ϕ : U → An such that ϕ−1(0) = Z ;

4. A morphism of S-algebraic spaces g : U → Y .

Two such correspondences (Z,U, ϕ, g) and (Z ′, U ′, ϕ′, g′) are equivalent if Z = Z ′, and
if there is an étale neighborhood of it refining both U and U ′, on which ϕ and ϕ′ agree,
as well as g and g′.

Figure 1: An equationally framed correspondence of level 1
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Voevodsky proved that there is a natural bijection :

Correfr,nS (X,Y ) ' Maps(X+ ∧ (P1)∧n,LNis(Y+ ∧ T∧n))

realizing the set of equivalence classes of equationally framed correspondences of level
n from X to Y as a mapping space between pointed presheaves of spaces.

Definition 2.2. For each n ≥ 0, define the suspension map as a natural transformation
:

σX,Y : Correfr,nS (X,Y )→ Correfr,n+1
S (X,Y )

by sending (Z,U, ϕ, g) to (Z × {0}, U × A1, ϕ× idA1 , g ◦ prU). In other words, one can
add trivial additional dimensions. The set of equationally framed correspondences from
X to Y is the colimit

CorrefrS (X,Y ) = colim(Correfr,0S (X,Y )
σ−→ Correfr,1S (X,Y )

σ−→ . . . )

Denote by hefr,nS (Y ) and hefrS (Y ) the presheaves Correfr,nS (−, Y ) and CorrefrS (−, Y )
respectively.

Definition 2.3. A presheaf F on SchS satisfies closed gluing if it sends pushout squares
of closed immersions to pullback squares, and if F (∅) ' ∗.

One can geometrically realize nonsingular simplicial sets K as S-schemes |K|S (in-
stead of CW-complexes), using the cosimplicial scheme ∆• from the first section. This
is done by gluing the affine cells along closed immersions of the faces.

Lemma 2.4. Let F be a presheaf on SchS satisfying closed gluing and let K be a finite
nonsingular simplicial set. Then the natural map

F (−×S |K|S)→ Maps(K,F (−×∆•))

is an equivalence.

Proof. The presheaf F satisfies closed gluing and |K|S is inductively constructed by a
sequence of pushouts of closed immersions.

Denote by PShΣ(SchS) the full sub-∞-category of PSh(SchS) spanned by the pre-
sheaves which transform finite coproducts into finite products.

Proposition 2.5. Let Y be an S-scheme, and h be either hefrS (Y ) or hefr,nS (Y ) for some
n ≥ 0.

1. h ∈ PShΣ(SchS) ;

2. h satisfies closed gluing ;

3. For τ the Nisnevich or the étale topology, if R ↪→ Y is a τ -covering sieve generated
by a single map then h(R)→ h(Y ) is a τ -local equivalence.
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Remark 2.6. Even though hefrS (Y ) transforms finite disjoint unions into finite products,
this is not the case of hefrS itself on-the-nose, and there are no reasons to believe it could
be. In subsection 2.2, it will be proved that it is the case once A1-localized.

One can easily extend the definition of Correfr,nS (−,−) and CorrefrS (−,−) to make
sense (and still be functorial) on SchS+, the full subcategory of (SchS)∗ spanned by the
pointed S-schemes of the form X+. The resulting functors hefr,nS (Y ) and hefrS (Y ) can
then be extended from SchS+ to functors PShΣ(SchS)∗ → PShΣ(SchS)∗ by asking that
they preserve sifted colimits.

Definition 2.7 (Linear structure). Let X and Y be S-schemes and n ≥ 0. Then there
is a natural pointed map

X+ ∧ hefr,nS (Y )→ hefr,nS (X ×S Y )

sending a map a : Z → X and an equationally framed correspondence (W,U, ϕ, g) to
the correspondence (W,U, ϕ, (a× g) ◦ γ) where γ : U → Z×S U is the graph of U → Z.

This construction clearly commutes with suspension (drawing the situation suffices
to convince oneself), so at the colimit n→ +∞ this induces a natural pointed map

X+ ∧ hefrS (Y )→ hefrS (X ×S Y ).

These SchS+-linear structures on the original hefr,nS and hefrS can be extended as before
to PShΣ(SchS)∗-linear structures on the extensions of these presheaves discussed above.

This linearity agrees with the natural maps F ∧G→ hefrS (F ∧G) coming from the
fact that hefr,0S (Y ) is the presheaf represented by Y+.

Proposition 2.8. Let X and Y be S-schemes, and (Z,U, ϕ, g) be an equationally framed
correspondence of level n from X to Y . Denote by i : Z → An

X the inclusion.

1. The conormal sheaf N ∨
i is free of rank n ;

2. i is (Koszul-)regular ;

3. Z → X is syntomic ;

4. If X is affine, then Z → X is a relative global complete intersection.

Proof. Let j : Z → U be the inclusion, which becomes i after composing with U → An
X .

Since the latter is étale, i and j have the same conormal sheaves. Since Z = ϕ−1(0),
we have a cartesian square :

Z U

{0} An
X

j

ϕ
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which by lemmas 29.31.2 and 29.31.3 in Stacks, 01R1, induces a surjective map at the
level of conormal sheaves, On

Z → N ∨
j . By [Vak17], proposition 21.2.16, the regularity of

i will ensure that N ∨
i is locally free of rank n, which together with the above surjection

will prove 1.
It remains to show statements 2 - 4. Since 2 and 3 are local on X, assume that it

is affine, so that U may also be assumed affine. One deduces with Nakayama’s lemma
that Z → X is a relative global complete intersection, which proves statements 2 - 4 at
once (see Stacks, 00SW and 069G).

As seen in the proof, in an equationally framed correspondence the components of
ϕ induce an explicit isomorphism of the conormal sheaf N ∨

i with On
Z . Also, it has

been seen that the finite morphism Z → X is automatically syntomic. One can then
forget the heavy datum of U and ϕ to obtain the lighter notion of normally framed
correspondences.

Definition 2.9. Let X and Y be S-schemes and n ≥ 0. A normally framed correspon-
dence of level n from X to Y is the data (Z, f, h, i, τ) of :

1. A span X
f←− Z

h−→ with f finite syntomic ;

2. A closed immersion i : Z → An
X over X ;

3. A trivialization τ : On
Z → N ∨

i of the conormal sheaf of i.

Even though this notion is much lighter to handle than equationally framed corre-
spondences, they will turn out to be motivically equivalent. As before, one can define
the functors Corrnfr,nS and hnfr,nS , and the suspension morphism is even easier to define,
since it amounts to composing the closed immersion i with An

X → An+1
X , x 7→ (x, 0).

Define CorrnfrS and hnfrS as before, by taking the colimit with respect to these suspension
morphisms.

This proposition is the exact same as 2.5, with the equational framing replaced by
a normal framing.

Proposition 2.10. Let Y be an S-scheme, and h be either hnfrS (Y ) or hnfr,nS (Y ) for
some n ≥ 0.

1. h ∈ PShΣ(SchS) ;

2. h satisfies closed gluing ;

3. For τ the Nisnevich or the étale topology, if R ↪→ Y is a τ -covering sieve generated
by a single map then h(R)→ h(Y ) is a τ -local equivalence.

The discussion inside and after proposition 2.8 show that equationally framings are
special cases of normal framings. We thus obtain natural maps Correfr,nS → Corrnfr,nS

commuting with suspension (again, this is obvious) and inducing a natural map

CorrefrS → CorrnfrS .
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Similarly, one easily defines an SchS+-linear structure on hnfrS and a way to extend
this functor to PShΣ(SchS)∗ by asking it to preserve sifted colimits. As before, this
extension inherits a PShΣ(SchS)∗-linear structure.

One can now make the data of a normal framing even lighter by dropping the closed
immersion i. Indeed, f being finite syntomic in definition 2.9 ensures that its cotangent
complex Lf is canonically equivalent to the complex N ∨

i → On
Z . The additional datum

of the trivialization τ of N ∨
i gives a specific path Lf ' 0 in the K-theory space of Z.

One can now forget about i and τ and only remember this path. Notice that n does
not appear anymore.

Definition 2.11. Let X and Y be S-schemes. A framed correspondence from X to Y
is the data (Z, f, h, τ) of :

1. A span X
f←− Z

h−→ with f finite syntomic ;

2. A trivialization τ : 0 ' Lf in K(Z).

In addition to being a somewhat lighter notion to handle than normally framed
correspondences, the framed correspondences have the nice property of involving the
space K(Z), making CorrfrS(X,Y ) itself form an ∞-groupoid :

CorrfrS(X,Y ) = colim(Z,f,h) MapsK(Z)(0,Lf ).

The same results as before apply to framed correspondences :

Proposition 2.12. Let Y be an S-scheme.

1. hfrS(Y ) ∈ PShΣ(SchS) ;

2. For τ the Nisnevich or the étale topology, if R ↪→ Y is a τ -covering sieve generated
by a single map then hfrS(R)→ hfrS(Y ) is a τ -local equivalence.

As before, hfrS can be extended to a sifted colimit preserving functor PShΣ(SchS)∗ →
PShΣ(SchS)∗.

2.2 These three types are motivically equivalent
A key result in the study of framed correspondences is that the three notions described
above are equivalent, after applying motivic localization Lmot. The precise details of
this theorem will not all be discussed for the sake of conciseness, only the main ideas.

One of the important steps is that after A1-localization, the presheaves hefrS (Y ),
hnfrS (Y ) and hfrS(Y ) are E∞-objects. Let us detail why this is the case for hnfrS (Y ),
the other cases are analogous (see [GP21] for equationally framed correspondences).
Following definition 1.14, put :

hnfrS (Y )(I+) = hnfrS (Y tI)

The desired A1-equivalences induced by the maps {1, . . . , n}+ → {i}+ are part of a
more general result, as follows.

13



Proposition 2.13. Let Y1, . . . , Yk be S-schemes. Then the canonical map

hnfrS (Y1 t · · · t Yk)→ hnfrS (Y1)× · · · × hnfrS (Yk)

is an LA1-equivalence. In particular, LA1hnfrS (Y ) is always an E∞-object.

Proof. It is clear that proving the case k = 2 suffices. The canonical map α is the
colimit of the maps

αn : hnfr,nS (Y1 t Y2)→ hnfr,nS (Y1)× hnfr,nS (Y2).

One can define a map

βn : hnfr,nS (Y1)× hnfr,nS (Y2)→ hnfr,n+1
S (Y1 t Y2)

in the following manner. Let c1 = (Z1, f1, h1, i1, τ1) and c2 = (Z2, f2, h2, i2, τ2) be
normally framed correspondences of level n from someX to Y1 and Y2 respectively. Then
let βn(c1, c2) be the normally framed correspondence (Z1tZ2, f1t f2, h1th2, i, τ) from
X to Y1tY2 of level n+1, with closed immersion i = (0, i1)+(1, i2) : Z1tZ2 → A1×An

X

and trivialization τ induced by τ1 and τ2.
Taking into account the suspension morphisms from before, one has the following

non-necessarily commutative diagram :

hnfr,nS (Y1 t Y2) hnfr,n+1
S (Y1 t Y2)

hnfr,nS (Y1)× hnfr,nS (Y2) hnfr,n+1
S (Y1)× hnfr,n+1

S (Y2)

σ

αn αn+1βn

σ×σ

When n is even, one can show that there are A1-homotopies σ ' βnαn and σ × σ '
αn+1βn, and that composing these two homotopies result in the identity homotopy
(the outer square commutes). At the colimit, the maps LA1βn provide an inverse to
LA1α.

Proposition 2.14. Let X and Y be S-schemes with X affine and Y étale over some
affine bundle over S. Then for every closed subscheme X0 ⊆ X and n ≥ 0, the
restriction-forgetful map

Correfr,nS (X,Y )→ Correfr,nS (X0, Y )×Corrnfr,nS (X0,Y ) Corr
nfr,n
S (X,Y )

is surjective.

The proof of this proposition is not profound, it amounts to finding an extension of
the equational framing of the correspondence from X0 to X, matching the trivialization
of the conormal sheaf. The interesting part here is that together with lemma 2.4, it is
enough to prove the motivic equivalence of equational and normal framings.
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Corollary 2.15. Let Y be a smooth S-scheme which is a finite coproduct of schemes
étale over affine bundles over S. Then the natural map of E∞-objects

LA1hefrS (Y )→ LA1hnfrS (Y )

is an equivalence on affine S-schemes.

Proof. Since the two presheaves are E∞, it suffices to assume that Y itself is étale over
an affine bundle. Apply the previous proposition 2.14 to X = −×An and X0 = −×∂An

to obtain the surjectivity of the map

hefrS (Y )A
n → hefrS (Y )∂A

n ×hnfr
S (Y )∂An h

nfr
S (Y )A

n

on affine S-schemes. Now, apply lemma 2.4, which is possible since both hefrS (Y ) and
hnfrS (Y ) satisfy closed gluing (propositions 2.5, 2.10). We obtain the equivalences

hefrS (Y )∆
• → hnfrS (Y )∆

•

on affine S-schemes.

Corollary 2.16. Let F ∈ PShΣ(SchS)∗. Then the natural map

Lmoth
efr
S (Y )→ Lmoth

nfr
S (Y )

is an equivalence of presheaves of E∞-spaces.

It now remains to compare Lmoth
efr
S ' Lmoth

nfr
S to Lmoth

fr
S . To this end, one first has

to describe a map :
CorrnfrS (X,Y )→ CorrfrS(X,Y ).

To this end, one can describe the functor CorrnfrS in a way much more similar to
CorrfrS :

Definition 2.17. For Z → X finite syntomic, let EmbX(Z,A∞
X ) denote the colimit of

the sets EmbX(Z,An
X) of closed X-immersions Z → An

X .
To take the normal framing into account, let similarly Embfr

X(Z,A∞
X ) denote the

colimit of the sets Embfr
X(Z,An

X) of closed X-immersions together with trivializations
of the conormal sheaf.

Also denote by sVect0(Z) the groupoid of stable vector bundles of rank 0 over Z,
that is, the colimit

Vect0(Z)
⊕OZ−−−→ Vect1(Z)

⊕OZ−−−→ · · · → sVect0(Z).

There are natural maps EmbX(Z,An
X)→ Vectn(Z), i 7→ N ∨

i , inducing a map

EmbX(Z,A∞
X )→ sVect0(Z)
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at the colimit. Together with the map forgetting the framing, we obtain cartesian
squares :

Embfr
X(Z,An

X) EmbX(Z,An
X) Embfr

X(Z,A∞
X ) EmbX(Z,A∞

X )

∗ Vectn(Z) ∗ sVect0(Z)
On

Z 0

natural in the finite syntomic S-morphism Z → X (with respect to cartesian squares).
The key insight to the equivalence Lmoth

nfr
S ' Lmoth

fr
S is that

CorrnfrS (X,Y ) = colim(Z,f,h) Embfr
X(Z,A∞

X ),

which looks a lot like the description of CorrfrS(X,Y ) given after definition 2.11.
There is a natural map sVect0(Z) → K(Z) sending a rank n vector bundle V to

On
Z −V . The discussion before definition 2.11 about Lf being canonically equivalent to
N ∨

i → On
Z shows that we can extend the cartesian square above to :

Embfr
X(Z,A∞

X ) EmbX(Z,A∞
X ) ∗

∗ sVect0(Z) K(Z)

y

Lf

0

The outer square being commutative exhibits an equivalence 0 ' Lf for every
element of Embfr

X(Z,A∞
X ). Hence there is a natural map

Embfr
X(Z,A∞

X )→ MapsK(Z)(0,Lf ).

At the colimit over the groupoid of spans X f←− Z → Y with f finite syntomic, one
obtains the desired comparison map hnfrS (Y )→ hfrS(Y ).

See [EHK+21] for the proof of the following comparison theorem.
Proposition 2.18. The natural LA1-localized map

LA1 Embfr(−,A∞)→ LA1 MapsK(0,L)
between presheaves of spaces on the category FSyn (whose objects are finite syntomic
morphisms and whose morphisms are the cartesian squares) is an equivalence on affine
S-schemes.

We can now conclude that the three types of framed correspondences described in
this section are all motivically equivalent :
Corollary 2.19. Let F ∈ PShΣ(SchS)∗. Then the map

LA1hnfrS (F )→ LA1hfrS(F )

is an equivalence on affine S-schemes. In particular, it induces an equivalence of
presheaves of E∞-spaces

Lmoth
nfr
S (F ) ' Lmoth

fr
S(F ).
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3 Framed motivic spaces and spectra

3.1 The ∞-category of framed motivic spaces
The construction of the ∞-category Corrfr(SmS) of framed correspondences is ex-
tremely technical and is the subject of the section 4 in [EHK+21]. To avoid unnecessary
complications, only the relevant properties will be presented. Intuitively, it is a sym-
metric monoidal ∞-category whose mapping spaces are the∞-groupoids CorrfrS(X,Y ).

Theorem 3.1. There is a symmetric monoidal ∞-category Corrfr(SmS) and a sym-
metric monoidal functor γ : SmS+ → Corrfr(SmS), inducing an adjunction

γ∗ : PSh(SmS+) � PSh(Corrfr(SmS)) : γ∗.

This data satisfies the following intuitive properties :

1. γ is essentially surjective

2. There is a natural equivalence γ∗γ∗ ' hfrS , hence a natural equivalence of spaces

CorrfrS(X,Y ) ' MapsCorrfr(SmS)
(γ(X+), γ(Y+))

3. The natural framing map X+ → hfrS(X) agrees with the unit X+ → γ∗γ
∗(X+)

4. The linear structure maps X+∧hfrS(Y )→ hfrS(X×S Y ) agrees with the composition

X+ ∧ γ∗γ∗(Y+)
unit−−→ γ∗γ

∗(X+) ∧ γ∗γ∗(Y+)
monoidal−−−−−→ γ∗γ

∗((X ×S Y )+)

Intuitively, the functor γ embeds SmS+ in the ∞-category of framed correspon-
dences. The functor γ∗ forgets the framed transfers of a presheaf, and the functor γ∗
adds framed transfers to a classical presheaf, in a universal way.

Remark 3.2. The composition map

π0Corr
fr
S(X,Y )× π0CorrfrS(Y, Z)→ π0Corr

fr
S(X,Z)

in the homotopy category hCorrfr(SmS) sends framed correspondences (T, f, g, α : 0 '
Lf ) and (W,h, k, β : 0 ' Lh) to the following framed correspondence. First, form the
pullback :

T ×Y W

T W

X Y Z

prT prW

f g h k

17



to get a span (T ×Y W, f ◦prT , k◦prW ). Now the canonical cofiber sequence of cotangent
complexes

pr∗TLf → Lf◦prT → LprT

induces an isomorphism ϕ : pr∗TLf ⊕ LprT → Lf◦prT in τ≤1K(T ×Y W ). Letting ψ be
the canonical isomorphism g∗Lh → LprT , we obtain a trivialization of the cotangent
complex of f ◦ prT as required :

ϕ ◦ (pr∗Tα⊕ (ψ ◦ g∗β)) ∈ π0MapsK(T×Y W )(0,Lf◦prT ).

This∞-category lets us define framed motivic spaces in the same fashion as motivic
spaces, with additional framed transfers.

Definition 3.3. A framed motivic space over S is a presheaf F ∈ PShΣ(Corrfr(SmS))
whose restriction to SmS is both A1-invariant and Nisnevich-local. Denote by Hfr(S)
the full sub-∞-category of PShΣ(Corrfr(SmS)) spanned by framed motivic spaces.

Again, there are localization functors LA1 , LNis and Lmot from PShΣ(Corrfr(SmS))
to the three corresponding full sub-∞-categories.

The next three propositions about framed motivic spaces and the functor γ will be
admitted, since their proofs are technical and not enlightening.

Proposition 3.4. The ∞-category Hfr(S) of framed motivic spaces is generated under
sifted colimits by the objects Lmotγ(X+) for affine smooth S-schemes X. Moreover, this
object is compact for every X ∈ SmS.

Proposition 3.5. The functor forgetting the framing

γ∗ : PShΣ(Corrfr(SmS))→ PShΣ(SmS)∗

commutes with the three localizations LA1, LNis and Lmot. The functor γ∗γ∗ preserves
motivic equivalences.

Proposition 3.6. The functor γ∗ : Hfr(S) → H(S)∗ is conservative and preserves
sifted colimits.

3.2 Effective and framed motivic spectra
The Tate sphere T = (A1/A1 − 0, 1) and the multiplicative group G = (Gm, 1) in
PShΣ(SmS)∗ may be promoted to presheaves with framed transfers using the functor
γ∗ (see theorem 3.1). From now on, we let Tfr = γ∗T and Gfr = γ∗G. Notice that much
like the unframed version, Tfr ' S1 ∧Gfr in Hfr(S).

Definition 3.7. The symmetric monoidal ∞-category of framed motivic spectra is
obtained from Hfr(S) by formally inverting the suspension operation − ⊗ Tfr. De-
note SHfr(S) = Hfr(S)

[
(Tfr)−1

]
the corresponding ∞-category. One has the usual

suspension-loop adjunction :

Σ∞
T,fr : H

fr(S) � SHfr(S) : Ω∞
T,fr.

18



Proposition 3.8. The ∞-category SHfr(S) of framed motivic spectra is stable, and
generated under sifted colimits by the objects (Tfr)⊗n ⊗ Σ∞

T,frγ
∗(X+) for X an affine

smooth S-scheme and n ≤ 0.
The framed suspension T-spectrum Σ∞

T,frγ
∗(X+) is compact for every smooth S-

scheme X.

Proof. The stability is obvious. The second and third statements come directly from
proposition 3.4

Definition 3.9. The∞-category SHeff(S) of effective motivic spectra is the smallest full
sub-∞-category of SH(S) closed under taking homotopy colimits containing Σ−nΣ∞

T X+

for X ∈ SmS and n ≥ 0. The ∞-category SHveff(S) of very effective motivic spectra is
the smallest sub-∞-category of SH(S) closed under taking extensions and homotopy
colimits containing the suspension spectra Σ∞

T X+ for X ∈ SmS.

Lemma 3.10. The ∞-category SHveff(S) of very effective motivic spectra is closed
under taking smash products.

Proof. We begin by proving it when one argument is a suspension spectrum. Let
E ∈ SHveff(S) and X ∈ SmS. Then the smash product Σ∞

T X ∧ E is clearly very
effective in the case where E itself is a suspension spectrum. In the general induction
case :

• either E is a homotopy colimit hocolimEi of spectra whose smash product with
Σ∞

T X+ is very effective, and in this case

Σ∞
T X+ ∧ E ' hocolimΣ∞

T X+ ∧ Ei

is very effective since SHveff(S) is stable under taking homotopy colimits ;

• or E is an extension A → E → B
+1−→ of spectra whose smash product with

Σ∞
T X+ is very effective, and in this case Σ∞

T X+ is an extension of very effective
spectra, hence it is also very effective.

Now that we know that Σ∞
T X+ ∧ E is very effective for X ∈ SmS and E ∈ SHveff(S),

the exact same argument shows that SHveff(S) is stable under taking smah products
in the general case.

In particular, SHveff(S) is a symmetric monoidal ∞-category. The same argument
applies to SHeff(S).

4 Motivic recognition
Let us first recall the several (∞-)categories in play. From SmS+, one can construct
the ∞-category of framed correspondences (theorem 3.1) Corrfr(SmS). Considering
Nisnevich-local and A1-invariant presheaves of spaces on these lead to the definition of
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unframed pointed and framed motivic spaces, respectively H(S)∗ and Hfr(S). As seen in
subsection 1.2, one can then stabilize H(S)∗ to obtain SHS1

(S) and the corresponding
suspension and loop space functors Σ∞

S1 a Ω∞
S1 . The same construction applied to the

∞-category Hfr(S) of framed motivic spaces yields the ∞-category of framed motivic
S1-spectra SHS1,fr(S). By further inverting the multiplicative group G or Gfr as in
subsection 3.2, one obtains the∞-categories SH(S) of motivic (T-)spectra and SHfr(S)
of framed motivic (T-)spectra.

Notice that since T ' S2,1 ' G∧ S1, inverting S1 and then G amounts to inverting
T. In this sense, the corresponding suspension and loop space functors factorize as
Σ∞

T ' Σ∞
G ◦Σ∞

S1 (and the same with Ω∞ and their framed versions). All in all, there is
a commutative diagram of adjunctions :

SmS+ H(S)∗ SHS1

(S) SH(S)

Corrfr(SmS) Hfr(S) SHS1,fr(S) SHfr(S)

γ

Σ∞
S1

γ∗
Ω∞

S1

Σ∞
G

γ∗
Ω∞

G
γ∗γ∗

Σ∞
S1,fr

γ∗

Ω∞
S1,fr

Σ∞
G,fr

γ∗

Ω∞
G,fr

Proposition 4.1. The two functors γ∗ on the right of this diagram, forgetting the
framing of motivic S1- and T-spectra, are conservative and preserve colimits.

Proof. By proposition 3.6, they are conservative and preserve filtered colimits. Being
right adjoints and the ∞-categories being stable, they are right exact, so they preserve
all finite colimits.

Proposition 4.2. The restriction of the S1-suspension spectrum functor

Σ∞
S1,fr : H

fr(S)→ SHS1,fr(S)

to the full sub-∞-category spanned by grouplike and strictly A1-invariant framed motivic
spaces is fully faithful.

Proof. From the adjunction Σ∞
S1,fr a Ω∞

S1,fr, it suffices to prove that the unit map X →
Ω∞

S1,frΣ
∞
S1,frX is an equivalence for any grouplike and strictly A1-invariant framed motivic

space X.
By conservativity of γ∗ (proposition 4.1), it suffices to prove that the unframed map

γ∗X → Ω∞
S1B∞

motγ∗X

is an equivalence. This is the unit map on grouplike and strictly A1-invariant objects
from proposition 1.16.

Theorem 4.3 (Cancellation theorem). Let k be a perfect field and M ∈ SHS1,fr(k).
Then the unit map of the suspension-loop adjunction M → ΩG(Gfr ⊗M) is an equiva-
lence.
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Proof. We only treat the case where k is infinite. See appendix B in [EHK+21] for
the general case. By 4.1, it suffices to treat the case where M = γ∗γ

∗Σ∞
S1X+ for some

smooth k-scheme X. In this case, using the equivalence γ∗γ∗ ' hfr from theorem 3.1,
the unit map becomes

B∞
motLmoth

fr(X)→ ΩGB∞
motLmoth

fr(G ∧X+)

induced by linearity of hfr.
Since framed correspondences are motivically equivalent to equationally framed cor-

respondences, it now suffices to prove that

B∞
motLmoth

efr(X)→ ΩGB∞
motLmoth

efr(G ∧X+)

is an equivalence. This comes directly from theorem B in [AGP21], after unwrapping
the definition of the framed motive of X from definition 5.2 in [GP21] : the map of
interest here is one of the structure maps of the spectrum in theorem B.

Corollary 4.4. Let k be a perfect field. Then the framed G-suspension spectrum functor

Σ∞
G,fr : SH

S1,fr(k)→ SHfr(k)

is fully faithful.

Proof. From the adjunction Σ∞
G,fr a Ω∞

G,fr, it suffices to show that the unit map M →
Ω∞

G,frΣ
∞
G,frM is an equivalence for every M ∈ SHS1,fr(k). This map is the colimit of the

unit maps appearing in the cancellation theorem :

M → ΩG(Gfr ⊗M)→ Ω2
G((Gfr)⊗2 ⊗M)→ . . .

each of which is an equivalence.

The same result is true when we replace G-suspension spectra by T-suspension
spectra :

Corollary 4.5. Let k be a perfect field. Then the framed T-suspension spectrum functor

Σ∞
T,fr : H

fr(k)gp → SHfr(k)

is fully faithful.

Proof. We have the factorization Σ∞
T,fr ' Σ∞

G,fr ◦ Σ∞
S1,fr. The G-suspension functor is

fully faithful by the previous corollary, and the S1-suspension functor is fully faithful
by 4.2.

Theorem 4.6 (Reconstruction theorem). Let k be a perfect field. Then the adjunction

γ∗ : SH(k) � SHfr(k) : γ∗

is an equivalence of symmetric monoidal ∞-categories.
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Proof. Let η : id → γ∗γ
∗ and ε : γ∗γ∗ → id be the unit and counit of the adjunction

respectively. It suffices to show that η is an equivalence. Indeed, the triangle identity
γ∗ε ◦ ηγ∗ ' id will ensure that γ∗ε is an equivalence, which in turn shows that ε is an
equivalence, by the conservativity of γ∗ (proposition 4.1).

By proposition 4.1, it suffices to show that Σ∞−n
T X+ → γ∗γ

∗Σ∞−n
T X+ is an equiva-

lence for all X ∈ SmS and n ≥ 0. Since γ∗γ∗ commutes with ΣT, it suffices to show it
for n = 0.

By proposition 3.5, this motivic spectrum γ∗γ
∗Σ∞

T X+ is the G-spectrification of the
G-prespectrum (B∞

motLmotγ∗γ
∗(G∧k∧X+))k≥0. By theorem 3.1, one can replace γ∗γ∗ by

hfrk . The corresponding unit map from Σ∞
T X+ is induced by the sequence of maps

G∧k ∧X+ → hefr(G∧k ∧X+)→ hfr(G∧k ∧X+)

whose second map is a motivic equivalence by corollaries 2.16 and 2.19, and whose first
map is also a motivic equivalence by theorem 11 in [GP21].

In other words, over a perfect field, the framed stable motivic homotopy theory is
equivalent to the classical stable motivic homotopy theory.

All the hard work to prove the motivic recognition principle is now done.

Theorem 4.7 (Motivic recognition principle). Let k be a perfect field. Then the functor

γ∗Σ
∞
T,fr : H

fr(k)gp → SH(k)

is fully faithful and induces an equivalence of symmetric monoidal ∞-categories

Hfr(k)gp ' SHveff(k).

Proof. The fully faithfulness is immediate from the fully faithfulness of Σ∞
T,fr (corollary

4.5) and that of γ∗ (reconstruction theorem 4.6). To obtain an equivalence of ∞-
categories, it now suffices to compute the essential image of this functor γ∗Σ∞

T,fr.
This image is the full sub-∞-category of SH(k) generated under taking homotopy

colimits by the T-suspension spectra Σ∞
T,frX+ for X ∈ Smk. One can show (see [Bac17],

proposition 4) that the construction of SHveff(S) doesn’t necessitate stability under
extensions, hence this essential image is exactly the very effective motivic spectra.

In other words, the underlying pointed motivic space X = Ω∞
T E ∈ H(S)∗ of a very

effective (intuitively, connective) motivic P1-spectrum E ∈ SHveff(S), together with its
framing γ∗X and its grouplike E∞ structure, determines the whole delooping spectrum
E up to motivic homotopy equivalence.

Directions for further study
• Understand the details of the construction of the ∞-category Corrfr(SmS) of

framed correspondences
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• Read more about the consequences of theorem 4.7, especially the representability
of the motivic sphere spectrum. (But first, learn about Hilbert schemes.)

• Is there a way to weaken the assumption S = Spec k for k perfect ? The case
dim(S) ≥ 2 over an algebraically closed field breaks down, but maybe when S is
a curve, or even just the spectrum of a non-perfect field ?
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