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Université de Bordeaux



1 What is an o-minimal structure ?

2 What are the examples ?

3 What happens in an o-minimal structure ?

4 What are the applications ?



What is an o-minimal structure ?

If A,B ⊂ Rn are definable sets, we want A ∪ B, A ∩ B, A \ B to be
definable. . .

But also the closure, the interior, the border of A, or the set of
points at distance at least 1 to A. . .
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An example of ”reasonable” definition

Ā = {x ∈ R2|∀ε ∈ R∗
+,∃a ∈ A, d(x , a) ≤ ε}

= {x ∈ R2|∀ε ∈ R, (ε > 0 ⇒ ∃a ∈ A, (x1 − a1)
2 + (x2 − a2)

2 ≤ ε2)}.

For x ∈ R2 :

x ∈ Ā ⇔ ∀ε ∈ R, (ε > 0 ⇒ ∃a ∈ A, (x1 − a1)
2 + (x2 − a2)

2 ≤ ε2)

Ingredients : ∧,∨,∧,∀,∃ in R and A, coordinates, +,−,×,=,≤.
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Logical operators correspond to geometrical constructions

Let ϕ1, ϕ2 be two formulas with n free variables (parameters).

{x ∈ Rn|ϕ1(x) ∧ ϕ2(x)} = {x ∈ Rn|ϕ1(x)} ∩ {x ∈ Rn|ϕ2(x)}
{x ∈ Rn|ϕ1(x) ∨ ϕ2(x)} = {x ∈ Rn|ϕ1(x)} ∪ {x ∈ Rn|ϕ2(x)}

{x ∈ Rn|¬ϕ1(x)} = {x ∈ Rn|ϕ1(x)}c

Let ϕ be a formula with n + m free variables.

{x ∈ Rn|∃y ∈ Rm, ϕ(x , y)} = π{(x , y) ∈ Rn+m|ϕ(x , y)}

with π : Rn+m → Rn.

∀x ∈ Rn, ϕ(x) ↔ ¬∃x ∈ Rn,¬ϕ(x)
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Logical operators correspond to geometrical constructions

Let ϕ be a formula with 1 free variable.

{x ∈ Rn, ϕ(x1)} = {x ′ ∈ R, ϕ(x ′)} × Rn−1

Finally, we need sets of the form {x ∈ Rn,P(x) = 0} and
{x ∈ Rn,P(x) ≥ 0} for P a polynomial.



Definition of a structure

Definition

A structure is the data for each n ∈ N of a set Sn of subsets of Rn

such that :

1 ∅ ∈ Sn, ∀A,B ∈ Sn,A ∪ B,A ∩ B,Ac ∈ Sn ;

2 ∀A ∈ Sn,R× A,A × R ∈ Sn+1 ;

3 ∀m ∈ N, for each projection π : Rn+m → Rn on some
coordinates, ∀A ∈ Sn+m, π(A) ∈ Sn ;

4 for each P ∈ R[X1, . . . ,Xn],
{x ∈ Rn,P(x) = 0}, {x ∈ Rn,P(x) ≥ 0} ∈ Sn.
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Definition of a structure

An element of some Sn is said to be definable in S.

Proposition

Let S be a structure. Let A1, . . . ,Ak be definable in S. If ϕ is a
formula with n ∈ N free variables which quantifies in A1, . . . ,Ak ,
then {x ∈ Rn|ϕ(x)} is definable in S.

Caution

We can quantify only in definable sets.
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Definable functions

Definition

Let A ⊂ Rn,B ⊂ Rm be definable in S. A map f : A → B is
definable if its graph is definable in Rn+m.

If f : A → B and g : B → C are definable, then g ◦ f is
definable.

If f is injective, f −1 is definable.

Images and inverse images of definable sets by definable maps
are definable.

If f : A × B → C is definable, then a 7→ limb→0 f (a, b) is
definable.

If f , g : A → R are definable, f + g , f − g , fg , f
g , f ′ are

definable.

Caution

The antiderivative of a definable function is not necessarily
definable.
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Definition of an o-minimal structure

Definition

A structure S is o-minimal if S1 is the set of finite unions of points
and intervals.



What are the examples ?

Definition

The structure Ralg is the smallest structure.

Definition

A basic semialgebraic subset of Rn is a subset of the form :

{x ∈ Rn|P(x) = 0 ∧ Q1(x) > 0 ∧ · · · ∧ Qk(x) > 0}

for P,Q1, . . . ,Qk ∈ R[X1, . . . ,Xn].

A semialgebraic subset of Rn is a finite union of basic
semialgebraic subsets of Rn.

Semialgebraic subset are the subset of points which satisfies a
formula without quantifiers.
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Ralg

Theorem (Tarski–Seidenberg)

A projection of a semialgebraic subset is semialgebraic.

Example

A projection of {(a, b, c , x) ∈ R4|ax2 + bx + c = 0} is
{(a, b, c) ∈ R3|b2 − 4ac > 0}.

Equivalently, every formula which quantifies over R is equivalent to
a formula without quantifiers :

(∃x ∈ R, ax2 + bx + c = 0) ≡ (b2 − 4ac > 0).

Corollary

Definable sets of Ralg are semialgebraic sets.
In particular, Ralg is o-minimal.



Other examples

Ran : structure generated by functions on [0, 1]n which are
restrictions of (real) analytic functions defined on an open set.
If A is bounded and definable, Ω is open, Ā ⊂ Ω, and f is analytic
on Ω, then its restriction to A is definable.

Caution

An analytic function on a (bounded) open subset is not necessarily
definable in Ran.

Sets of Ran are globally subanalytic sets.

Theorem (Gabrielov 1969)

Ran is o-minimal.



Other examples

Rexp : structure generated by the (global) exponential.
Ran, exp : structure generated by Ran and Rexp.

Theorem (van den Dries, Miller 1994)

Rexp and Ran, exp are o-minimal.



What happens in an o-minimal structure ?

Choose some o-minimal structure S.

Theorem (Monotonicity)

Let I ⊂ R be an interval, let f : I → R be a definable function.
Then, there are x1 < · · · < xk ∈ I such that on each ]xi , xi+1[, f is
constant, or continuous and strictly monotone.



Cell decomposition

A cell decomposition is a partition of Rn in definable sets. We
define it inductively.

A cell decomposition of R is a partition of R in points and open
intervals.

We define a cell decomposition of Rn in the following way :
consider a cell decomposition of Rn. Choose a cell C of Rn.
Choose continuous definable functions f1, . . . , fk : C → R such
that f1 < · · · < fn. Cells of Rn+1 above Rn are graphs of the
functions fi , sets of points between the graphs of fi and fi+1, the
set of points below the graph of f1 and the set of points above the
graph of fk .



Cell decomposition

Proposition

Let C be a cell of a cell decomposition of Rn. Then there exists
0 ≤ m ≤ n and a definable homeomorphism g : C → Rm.



Cell decomposition theorem

Theorem (Cell decomposition)

Let A1, . . . ,Ak ⊂ Rn be definable. Then there exists a cell
decomposition of Rn such that each Ai is a union of cells.

Theorem (Piecewise continuity)

Let A ⊂ Rn be definable, let f : A → R be definable. Then there
exists a cell decomposition of Rn such that A is a union of cells on
which f is continuous.



Uniform finiteness

Theorem (Uniform finiteness)

Let A ⊂ Rn+1 be definable such that for each
x ∈ Rn, {y ∈ R|(x , y) ∈ A} is finite. Then there exists N ∈ N such
that for each x ∈ Rn, card{y ∈ R|(x , y) ∈ A} ≤ N.



Smooth version

Let k ∈ N.
In the cell decomposition theorem, we can suppose the functions to
be C k .
In the piecewise continuity theorem, we can suppose the cell
decomposition to be C k and f to be C k on each cell.

Caution

It is not true for k = ∞.

But it is actually the case in Ran, exp.
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Topology of definable sets

Lemma (Curve selection)

Let A be definable, let x ∈ Ā. Then, there exists a continuous
definable map γ : [0, 1] → Ā such that γ(0) = x and γ(]0, 1]) ⊂ A.

Proposition

A definable set is connected iff it is (definably) path-connected.



Dimension

Definition

The dimension dim(A) of a nonempty definable set A is the biggest
natural integer n such that there is a definable injection Rn → A.

Proposition

If B ⊂ A is nonempty definable : dim(B) ≤ dim(A) ;

if g : A → B is a definable bijection, dim(A) = dim(B) ;

dim(Rn) = n ;

dim(A) ∈ N ;

dim(A ∪ B) = max(dim(A), dim(B)) ;

if a cell decomposition of A is given, dim(A) is the max of the
dimensions of these cells.
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Euler characteristic

Definition

Let A be definable. Suppose we have a cell decomposition of A.
For all k ∈ N, let nk be the number of cells of dimension k. The
Euler characteristic of A is :

χ(A) :=
∑
k

(−1)knk .

Proposition

χ(A) does not depend on the choice of the cell
decomposition ;

if g : A → B is a definable bijection, χ(A) = χ(B).
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Definable equivalence

Theorem

Let A and B be definable. There exists a definable bijection
g : A → B iff dim(A) = dim(B) and χ(A) = χ(B).



Kurdyka- Lojasiewicz functions

Definition

Let Ω ⊂ Rn be open, f : Ω → R be smooth. Then f has the
Kurdyka- Lojasiewicz property if for every x ∈ Ω, there is an open
neighborhood U of a in Ω, η ∈ R∗

+ and a continuous function
ϕ : [0, η[→ R+ such that :

ϕ(0) = 0 ;

ϕ is C 1 on ]0, η[ ;

ϕ′ > 0 on ]0, η[

such that on U ∩ {f (a) < f < f (a) + η}, ∥∇(ϕ ◦ (f − f (a)))∥ ≥ 1.

Theorem (Kurdyka, 1998)

If f is definable in an o-minimal structure, then f has the
Kurdyka- Lojasiewicz property. Moreover, we can suppose ϕ
definable and concave.
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Non Kurdyka- Lojasiewicz functions

Counter-examples

x 7→ sin( 1x )e
−x−2

Figure – Bolte, Daniilidis, Ley, Mazet



Definable spaces

Definition

Let S be a topological space. A definable atlas on S is the data of
a finite open cover (Ui )i∈I of S and of homeomorphisms
gi : Ui → Vi ⊂ Rni , such that :

∀i ∈ I ,Vi is definable ;

∀i , j ∈ I , gi (Ui ∩ Uj) is definable ;

∀i , j ∈ I , gj ◦ g−1
i : gi (Ui ∩ Uj) → gj(Ui ∩ Uj) is definable.

Two definable atlases are equivalent if their union is a definable
atlas.
A definable space is the data of a topological space and an
equivalence class of definable atlases.

There is a notion of definable subset of a definable space. There is
also a notion of morphism between definable spaces.



Definable spaces

Proposition

A complex algebraic variety has a canonical structure of
Ralg-definable space.

Then it has also a structure of definable space for every o-minimal
structure.



O-minimal Chow lemma

Theorem (Peterzil, Starchenko 2009)

A closed analytic subset of Cn is algebraic iff it is definable in an
o-minimal structure.



GAGA

Theorem (Serre 1956)

Let V be a complex projective variety. Let Coh(V ) (resp.
Coh(V an)) be the abelian category of coherent algebraic (resp.
analytic) modules over V . Then the analytification functor
Coh(V ) → Coh(V an) is an equivalence of abelian categories.



O-minimal GAGA

Theorem (Bakker, Brunebarbe, Tsimerman 2023)

Let V be a complex variety. Let Coh(V ) (resp. Coh(V def)) be the
abelian category of coherent algebraic (resp. definable) modules
over V . Then the definabilisation functor Coh(V ) → Coh(V def) is
fully faithful, exact, and its essential image is stable under
subobjects and quotients.



Pila-Wilkie theorem

Definition

Let x =
(
p1
q1
, . . . , pnqn

)
∈ Qn such that ∀i , pi and qi are coprime

integers.
The height of x is H(x) := max(|p1|, . . . , |pn|, |q1|, . . . , |qn|).

For A ⊂ Rn,T ∈ N, we note
N(A,T ) := card(A ∩ {x ∈ Qn,H(x) ≤ T}).

Theorem (Pila, Wilkie 2006)

If A is definable and does not contain an infinite semialgebraic set,
then for every ε ∈ R∗

+,N(A,T ) = o(T ε).
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