O-minimal geometry and applications Séminaire Lambda 2024

Éloan Rapion

Université de Bordeaux

What is an o-minimal structure?

2 What are the examples?

What happens in an o-minimal structure?

What are the applications?

What is an o-minimal structure?

If $A, B \subset \mathbb{R}^n$ are definable sets, we want $A \cup B$, $A \cap B$, $A \setminus B$ to be definable...

What is an o-minimal structure?

If $A, B \subset \mathbb{R}^n$ are definable sets, we want $A \cup B$, $A \cap B$, $A \setminus B$ to be definable...

But also the closure, the interior, the border of A, or the set of points at distance at least 1 to A...

An example of "reasonable" definition

$$\bar{A} = \{ x \in \mathbb{R}^2 | \forall \varepsilon \in \mathbb{R}_+^*, \exists a \in A, d(x, a) \le \varepsilon \}
= \{ x \in \mathbb{R}^2 | \forall \varepsilon \in \mathbb{R}, (\varepsilon > 0 \Rightarrow \exists a \in A, (x_1 - a_1)^2 + (x_2 - a_2)^2 \le \varepsilon^2) \}.$$

An example of "reasonable" definition

$$\begin{split} \bar{A} &= \{x \in \mathbb{R}^2 | \forall \varepsilon \in \mathbb{R}_+^*, \exists a \in A, d(x, a) \leq \varepsilon\} \\ &= \{x \in \mathbb{R}^2 | \forall \varepsilon \in \mathbb{R}, (\varepsilon > 0 \Rightarrow \exists a \in A, (x_1 - a_1)^2 + (x_2 - a_2)^2 \leq \varepsilon^2)\}. \end{split}$$

For $x \in \mathbb{R}^2$:

$$x \in \bar{A} \Leftrightarrow \forall \varepsilon \in \mathbb{R}, (\varepsilon > 0 \Rightarrow \exists a \in A, (x_1 - a_1)^2 + (x_2 - a_2)^2 \leq \varepsilon^2)$$

An example of "reasonable" definition

$$\begin{split} \bar{A} &= \{x \in \mathbb{R}^2 | \forall \varepsilon \in \mathbb{R}_+^*, \exists a \in A, d(x, a) \leq \varepsilon\} \\ &= \{x \in \mathbb{R}^2 | \forall \varepsilon \in \mathbb{R}, (\varepsilon > 0 \Rightarrow \exists a \in A, (x_1 - a_1)^2 + (x_2 - a_2)^2 \leq \varepsilon^2)\}. \end{split}$$

For $x \in \mathbb{R}^2$:

$$x \in \bar{A} \Leftrightarrow \forall \varepsilon \in \mathbb{R}, (\varepsilon > 0 \Rightarrow \exists a \in A, (x_1 - a_1)^2 + (x_2 - a_2)^2 \leq \varepsilon^2)$$

Ingredients : $\land, \lor, \land, \forall, \exists$ in \mathbb{R} and A, coordinates, $+, -, \times, =, \leq$.

Let ϕ_1, ϕ_2 be two formulas with *n* free variables (parameters).

```
 \{x \in \mathbb{R}^{n} | \phi_{1}(x) \land \phi_{2}(x) \} = \{x \in \mathbb{R}^{n} | \phi_{1}(x) \} \cap \{x \in \mathbb{R}^{n} | \phi_{2}(x) \} 
 \{x \in \mathbb{R}^{n} | \phi_{1}(x) \lor \phi_{2}(x) \} = \{x \in \mathbb{R}^{n} | \phi_{1}(x) \} \cup \{x \in \mathbb{R}^{n} | \phi_{2}(x) \} 
 \{x \in \mathbb{R}^{n} | \neg \phi_{1}(x) \} = \{x \in \mathbb{R}^{n} | \phi_{1}(x) \}^{c}
```

Let ϕ_1, ϕ_2 be two formulas with n free variables (parameters).

Let ϕ be a formula with n + m free variables.

$$\{x \in \mathbb{R}^n | \exists y \in \mathbb{R}^m, \phi(x, y)\} = \pi\{(x, y) \in \mathbb{R}^{n+m} | \phi(x, y)\}$$

with $\pi: \mathbb{R}^{n+m} \to \mathbb{R}^n$.

Let ϕ_1, ϕ_2 be two formulas with *n* free variables (parameters).

Let ϕ be a formula with n + m free variables.

$$\{x \in \mathbb{R}^n | \exists y \in \mathbb{R}^m, \phi(x, y)\} = \pi\{(x, y) \in \mathbb{R}^{n+m} | \phi(x, y)\}$$

with $\pi: \mathbb{R}^{n+m} \to \mathbb{R}^n$.

$$\forall x \in \mathbb{R}^n, \phi(x) \leftrightarrow \neg \exists x \in \mathbb{R}^n, \neg \phi(x)$$

Let ϕ be a formula with 1 free variable.

$$\{x \in \mathbb{R}^n, \phi(x_1)\} = \{x' \in \mathbb{R}, \phi(x')\} \times \mathbb{R}^{n-1}$$

Finally, we need sets of the form $\{x \in \mathbb{R}^n, P(x) = 0\}$ and $\{x \in \mathbb{R}^n, P(x) \geq 0\}$ for P a polynomial.

Definition

A structure is the data for each $n \in \mathbb{N}$ of a set S_n of subsets of \mathbb{R}^n such that :

- **③** $\forall m \in \mathbb{N}$, for each projection $\pi : \mathbb{R}^{n+m} \to \mathbb{R}^n$ on some coordinates, $\forall A \in \mathcal{S}_{n+m}$, $\pi(A) \in \mathcal{S}_n$;

Definition

A structure is the data for each $n \in \mathbb{N}$ of a set S_n of subsets of \mathbb{R}^n such that :

- \bigcirc $\forall A, B \in \mathcal{S}_n, A \cup B, A^c \in \mathcal{S}_n$;
- **③** For each projection $\pi: \mathbb{R}^{n+1} \to \mathbb{R}^n$ on the n first coordinates, $\forall A \in \mathcal{S}_{n+1}, \ \pi(A) \in \mathcal{S}_n$;
- $\bullet \quad \forall a \in \mathbb{R}, \{a\} \in \mathcal{S}_1;$
 - $\{(x,y) \in \mathbb{R}^2, x = y\}, \{(x,y) \in \mathbb{R}^2, x \le y\} \in \mathcal{S}_2$;
 - $\{(x,y,z) \in \mathbb{R}^2, x+y=z\}, \{(x,y,z) \in \mathbb{R}^2, xy=z\} \in \mathcal{S}_3.$

An element of some S_n is said to be *definable* in S.

Proposition

Let S be a structure. Let A_1, \ldots, A_k be definable in S. If ϕ is a formula with $n \in \mathbb{N}$ free variables which quantifies in A_1, \ldots, A_k , then $\{x \in \mathbb{R}^n | \phi(x)\}$ is definable in S.

An element of some S_n is said to be *definable* in S.

Proposition

Let S be a structure. Let A_1, \ldots, A_k be definable in S. If ϕ is a formula with $n \in \mathbb{N}$ free variables which quantifies in A_1, \ldots, A_k , then $\{x \in \mathbb{R}^n | \phi(x)\}$ is definable in S.

Caution

We can quantify only in definable sets.

Definable functions

Definition

Let $A \subset \mathbb{R}^n$, $B \subset \mathbb{R}^m$ be definable in S. A map $f : A \to B$ is definable if its graph is definable in \mathbb{R}^{n+m} .

- If $f: A \to B$ and $g: B \to C$ are definable, then $g \circ f$ is definable.
- If f is injective, f^{-1} is definable.
- Images and inverse images of definable sets by definable maps are definable.
- If $f: A \times B \to C$ is definable, then $a \mapsto \lim_{b \to 0} f(a, b)$ is definable.
- If $f, g: A \to \mathbb{R}$ are definable, $f + g, f g, fg, \frac{f}{g}, f'$ are definable.

Definable functions

Definition

Let $A \subset \mathbb{R}^n$, $B \subset \mathbb{R}^m$ be definable in S. A map $f : A \to B$ is definable if its graph is definable in \mathbb{R}^{n+m} .

- If $f: A \to B$ and $g: B \to C$ are definable, then $g \circ f$ is definable.
- If f is injective, f^{-1} is definable.
- Images and inverse images of definable sets by definable maps are definable.
- If $f: A \times B \to C$ is definable, then $a \mapsto \lim_{b \to 0} f(a, b)$ is definable.
- If $f, g: A \to \mathbb{R}$ are definable, $f + g, f g, fg, \frac{f}{g}, f'$ are definable.

Caution

The antiderivative of a definable function is not necessarily definable.

Definition of an o-minimal structure

Definition

A structure S is o-minimal if S_1 is the set of finite unions of points and intervals.

What are the examples?

Definition

The structure \mathbb{R}_{alg} is the smallest structure.

What are the examples?

Definition

The structure \mathbb{R}_{alg} is the smallest structure.

Definition

A basic semialgebraic subset of \mathbb{R}^n is a subset of the form :

$$\{x \in \mathbb{R}^n | P(x) = 0 \land Q_1(x) > 0 \land \cdots \land Q_k(x) > 0\}$$

for
$$P, Q_1, ..., Q_k \in R[X_1, ..., X_n]$$
.

What are the examples?

Definition

The structure \mathbb{R}_{alg} is the smallest structure.

Definition

A basic semialgebraic subset of \mathbb{R}^n is a subset of the form :

$$\{x \in \mathbb{R}^n | P(x) = 0 \land Q_1(x) > 0 \land \cdots \land Q_k(x) > 0\}$$

for
$$P, Q_1, ..., Q_k \in R[X_1, ..., X_n]$$
.

A semialgebraic subset of \mathbb{R}^n is a finite union of basic semialgebraic subsets of \mathbb{R}^n .

Semialgebraic subset are the subset of points which satisfies a formula without quantifiers.

Theorem (Tarski–Seidenberg)

A projection of a semialgebraic subset is semialgebraic.

Example

A projection of
$$\{(a, b, c, x) \in \mathbb{R}^4 | ax^2 + bx + c = 0\}$$
 is $\{(a, b, c) \in \mathbb{R}^3 | b^2 - 4ac > 0\}.$

Equivalently, every formula which quantifies over $\mathbb R$ is equivalent to a formula without quantifiers :

$$(\exists x \in \mathbb{R}, ax^2 + bx + c = 0) \equiv (b^2 - 4ac > 0).$$

Corollary

Definable sets of \mathbb{R}_{alg} are semialgebraic sets. In particular, \mathbb{R}_{alg} is o-minimal.

Other examples

 \mathbb{R}_{an} : structure generated by functions on $[0,1]^n$ which are restrictions of (real) analytic functions defined on an open set. If A is bounded and definable, Ω is open, $\bar{A} \subset \Omega$, and f is analytic on Ω , then its restriction to A is definable.

Caution

An analytic function on a (bounded) open subset is not necessarily definable in \mathbb{R}_{an} .

Sets of \mathbb{R}_{an} are globally subanalytic sets.

Theorem (Gabrielov 1969)

 \mathbb{R}_{an} is o-minimal.

Other examples

 $\mathbb{R}_{\mathsf{exp}}$: structure generated by the (global) exponential.

 $\mathbb{R}_{\text{an, exp}}$: structure generated by \mathbb{R}_{an} and $\mathbb{R}_{\text{exp}}.$

Theorem (van den Dries, Miller 1994)

 \mathbb{R}_{exp} and $\mathbb{R}_{an, exp}$ are o-minimal.

What happens in an o-minimal structure?

Choose some o-minimal structure S.

Theorem (Monotonicity)

Let $I \subset \mathbb{R}$ be an interval, let $f: I \to \mathbb{R}$ be a definable function. Then, there are $x_1 < \cdots < x_k \in I$ such that on each $]x_i, x_{i+1}[$, f is constant, or continuous and strictly monotone.

Cell decomposition

A cell decomposition is a partition of \mathbb{R}^n in definable sets. We define it inductively.

A cell decomposition of $\mathbb R$ is a partition of $\mathbb R$ in points and open intervals.

We define a cell decomposition of \mathbb{R}^n in the following way : consider a cell decomposition of \mathbb{R}^n . Choose a cell C of \mathbb{R}^n . Choose continuous definable functions $f_1,\ldots,f_k:C\to\mathbb{R}$ such that $f_1<\cdots< f_n$. Cells of \mathbb{R}^{n+1} above \mathbb{R}^n are graphs of the functions f_i , sets of points between the graphs of f_i and f_{i+1} , the set of points below the graph of f_k .

Cell decomposition

Proposition

Let C be a cell of a cell decomposition of \mathbb{R}^n . Then there exists $0 \le m \le n$ and a definable homeomorphism $g: C \to \mathbb{R}^m$.

Cell decomposition theorem

Theorem (Cell decomposition)

Let $A_1, \ldots, A_k \subset \mathbb{R}^n$ be definable. Then there exists a cell decomposition of \mathbb{R}^n such that each A_i is a union of cells.

Theorem (Piecewise continuity)

Let $A \subset \mathbb{R}^n$ be definable, let $f: A \to \mathbb{R}$ be definable. Then there exists a cell decomposition of \mathbb{R}^n such that A is a union of cells on which f is continuous.

Uniform finiteness

Theorem (Uniform finiteness)

Let $A \subset \mathbb{R}^{n+1}$ be definable such that for each $x \in \mathbb{R}^n$, $\{y \in \mathbb{R} | (x,y) \in A\}$ is finite. Then there exists $N \in \mathbb{N}$ such that for each $x \in \mathbb{R}^n$, $\operatorname{card} \{y \in \mathbb{R} | (x,y) \in A\} \leq N$.

Smooth version

Let $k \in \mathbb{N}$.

In the cell decomposition theorem, we can suppose the functions to be C^k .

In the piecewise continuity theorem, we can suppose the cell decomposition to be C^k and f to be C^k on each cell.

Smooth version

Let $k \in \mathbb{N}$.

In the cell decomposition theorem, we can suppose the functions to be C^k .

In the piecewise continuity theorem, we can suppose the cell decomposition to be C^k and f to be C^k on each cell.

Caution

It is not true for $k = \infty$.

But it is actually the case in $\mathbb{R}_{an, exp}$.

Topology of definable sets

Lemma (Curve selection)

Let A be definable, let $x \in \bar{A}$. Then, there exists a continuous definable map $\gamma: [0,1] \to \bar{A}$ such that $\gamma(0) = x$ and $\gamma(]0,1]) \subset A$.

Proposition

A definable set is connected iff it is (definably) path-connected.

Dimension

Definition

The dimension $\dim(A)$ of a nonempty definable set A is the biggest natural integer n such that there is a definable injection $\mathbb{R}^n \to A$.

Dimension

Definition

The dimension dim(A) of a nonempty definable set A is the biggest natural integer n such that there is a definable injection $\mathbb{R}^n \to A$.

Proposition

- If $B \subset A$ is nonempty definable : $\dim(B) \leq \dim(A)$;
- if $g: A \to B$ is a definable bijection, $\dim(A) = \dim(B)$;
- \bullet dim $(\mathbb{R}^n) = n$;
- $\dim(A) \in \mathbb{N}$;
- $\bullet \ \dim(A \cup B) = \max(\dim(A), \dim(B));$
- if a cell decomposition of A is given, dim(A) is the max of the dimensions of these cells.

Euler characteristic

Definition

Let A be definable. Suppose we have a cell decomposition of A. For all $k \in \mathbb{N}$, let n_k be the number of cells of dimension k. The Euler characteristic of A is :

$$\chi(A) := \sum_{k} (-1)^k n_k.$$

Euler characteristic

Definition

Let A be definable. Suppose we have a cell decomposition of A. For all $k \in \mathbb{N}$, let n_k be the number of cells of dimension k. The Euler characteristic of A is :

$$\chi(A) := \sum_{k} (-1)^k n_k.$$

Proposition

- χ(A) does not depend on the choice of the cell decomposition;
- if $g: A \to B$ is a definable bijection, $\chi(A) = \chi(B)$.

Definable equivalence

Theorem

Let A and B be definable. There exists a definable bijection $g: A \to B$ iff $\dim(A) = \dim(B)$ and $\chi(A) = \chi(B)$.

Kurdyka-Łojasiewicz functions

Definition

Let $\Omega \subset \mathbb{R}^n$ be open, $f: \Omega \to \mathbb{R}$ be smooth. Then f has the Kurdyka-Łojasiewicz property if for every $x \in \Omega$, there is an open neighborhood U of a in Ω , $\eta \in \mathbb{R}_+^*$ and a continuous function $\phi: [0, \eta[\to \mathbb{R}_+ \text{ such that } :$

- $\phi(0) = 0$;
- ϕ is C^1 on $]0, \eta[$;
- $\phi' > 0$ on $]0, \eta[$

such that on $U \cap \{f(a) < f < f(a) + \eta\}, \|\nabla(\phi \circ (f - f(a)))\| \ge 1$.

Kurdyka-Łojasiewicz functions

Definition

Let $\Omega \subset \mathbb{R}^n$ be open, $f:\Omega \to \mathbb{R}$ be smooth. Then f has the Kurdyka-Łojasiewicz property if for every $x \in \Omega$, there is an open neighborhood U of a in Ω , $\eta \in \mathbb{R}_+^*$ and a continuous function $\phi: [0, \eta[\to \mathbb{R}_+ \text{ such that } :$

- $\phi(0) = 0$;
- ϕ is C^1 on $]0, \eta[$;
- $\phi' > 0$ on $]0, \eta[$

such that on $U \cap \{f(a) < f < f(a) + \eta\}, \|\nabla(\phi \circ (f - f(a)))\| \ge 1$.

Theorem (Kurdyka, 1998)

If f is definable in an o-minimal structure, then f has the Kurdyka-Łojasiewicz property. Moreover, we can suppose ϕ definable and concave.

Non Kurdyka-Łojasiewicz functions

Counter-examples

- 0

Figure – Bolte, Daniilidis, Ley, Mazet

Definable spaces

Definition

Let S be a topological space. A definable atlas on S is the data of a finite open cover $(U_i)_{i\in I}$ of S and of homeomorphisms $g_i:U_i\to V_i\subset\mathbb{R}^{n_i}$, such that :

- $\forall i \in I, V_i$ is definable;
- $\forall i, j \in I, g_i(U_i \cap U_j)$ is definable;
- $\forall i, j \in I, g_j \circ g_i^{-1} : g_i(U_i \cap U_j) \rightarrow g_j(U_i \cap U_j)$ is definable.

Two definable atlases are equivalent if their union is a definable atlas.

A definable space is the data of a topological space and an equivalence class of definable atlases.

There is a notion of definable subset of a definable space. There is also a notion of morphism between definable spaces.

Definable spaces

Proposition

A complex algebraic variety has a canonical structure of \mathbb{R}_{alg} -definable space.

Then it has also a structure of definable space for every o-minimal structure.

O-minimal Chow lemma

Theorem (Peterzil, Starchenko 2009)

A closed analytic subset of \mathbb{C}^n is algebraic iff it is definable in an o-minimal structure.

GAGA

Theorem (Serre 1956)

Let V be a complex projective variety. Let Coh(V) (resp. $Coh(V^{an})$) be the abelian category of coherent algebraic (resp. analytic) modules over V. Then the analytification functor $Coh(V) \to Coh(V^{an})$ is an equivalence of abelian categories.

O-minimal GAGA

Theorem (Bakker, Brunebarbe, Tsimerman 2023)

Let V be a complex variety. Let $\operatorname{Coh}(V)$ (resp. $\operatorname{Coh}(V^{\operatorname{def}})$) be the abelian category of coherent algebraic (resp. definable) modules over V. Then the definabilisation functor $\operatorname{Coh}(V) \to \operatorname{Coh}(V^{\operatorname{def}})$ is fully faithful, exact, and its essential image is stable under subobjects and quotients.

Pila-Wilkie theorem

Definition

Let $x = \left(\frac{p_1}{q_1}, \dots, \frac{p_n}{q_n}\right) \in \mathbb{Q}^n$ such that $\forall i$, p_i and q_i are coprime integers.

The height of x is $H(x) := \max(|p_1|, \dots, |p_n|, |q_1|, \dots, |q_n|)$.

For $A \subset \mathbb{R}^n$, $T \in \mathbb{N}$, we note

$$N(A, T) := \operatorname{card}(A \cap \{x \in \mathbb{Q}^n, H(x) \le T\}).$$

Pila-Wilkie theorem

Definition

Let $x = \left(\frac{p_1}{q_1}, \dots, \frac{p_n}{q_n}\right) \in \mathbb{Q}^n$ such that $\forall i$, p_i and q_i are coprime integers.

The height of x is $H(x) := \max(|p_1|, \dots, |p_n|, |q_1|, \dots, |q_n|)$.

For $A \subset \mathbb{R}^n$, $T \in \mathbb{N}$, we note $N(A, T) := \operatorname{card}(A \cap \{x \in \mathbb{Q}^n, H(x) \leq T\})$.

Theorem (Pila, Wilkie 2006)

If A is definable and does not contain an infinite semialgebraic set, then for every $\varepsilon \in \mathbb{R}_+^*$, $N(A, T) = o(T^{\varepsilon})$.

Thanks to Téofil Adamski, Jérôme Milot, Yohan Brunebarbe and Julien Hermant for their advice.