Families of curves parametrized by $\mathcal{A}_q(n)$

Éloan Rapion, supervized by Yohan Brunebarbe

Algebraic varieties

Let k be a field.

Affine k-variety: zeros in \bar{k}^n of polynomials with coefficients in k.

Projective k-variety: affine variety \sqcup points at infinity.

Morphism of k-varieties: application whose coordinates are rational functions with coefficients in k.

Smooth: without singularities (complex case: manifold).

Curves

Curve: Algebraic variety of dimension 1.

A connected curve has a **genus** $g \in \mathbb{N}$.

Complex case: smooth projective curves are compact Riemann surfaces.

Connected smooth complex projective curves

Abelian varieties

Abelian variety: Connected projective variety with a compatible group structure.

Abelian varieties are smooth and are Abelian groups.

Complex case: quotients of \mathbb{C}^n by lattices satisfying Riemann condition. Isomorphic to $\mathbb{R}^{2n}/\mathbb{Z}^{2n}$ as real Lie groups.

Lattice of \mathbb{C}

Families

Let B be an algebraic variety.

Family of [curves] over B: Data of an algebraic k-variety F and a morphism $F \to B$ whose fibers are [curves]. Trivial family: Projection $C \times B \to B$ with C a [curve]. Isotrivial family: Families with isomorphic geometric fibers.

Family of curves parametrized by $\mathbb{A}^1_{\mathbb{R}}$

Moduli spaces

Moduli space of [curves]: "Object" \mathcal{M} such that we have the following correspondence:

$$F$$
 \Leftrightarrow $B \to \mathcal{M}$ Families of [curves] over B Morphisms

Allows to define "separable families" (a technical condition for positive characteristic).

 \mathcal{M}_g : Moduli space of connected smooth projective curves of genus g.

 \mathcal{A}_g : Moduli space of principally polarized Abelian varieties of dimension g.

 $\mathcal{A}_g(n)$: Moduli space of principally polarized Abelian varieties of dimension g with n-level structure.

 $\mathcal{A}_q(n)$ is an algebraic variety.

Theorem

For every integers $g, h \ge 2, n \ge 3$, for all but finitely many prime numbers p, for every field k of characteristic 0 or p, every separable family of curves of genus h over $\mathcal{A}_q(n)$ is isotrivial.

References

- [1] Pierre Deligne and David Mumford. "The irreducibility of the space of curves of given genus". In: *Publications Mathématiques de l'IHES* 36 (1969), pp. 75–109.
- [2] Robin Hartshorne. Algebraic geometry. Vol. 52. Springer Science & Business Media, 2013.