Leçon 106 : Groupe linéaire d'un ev de dimension finie E, sous groupes de $\mathrm{GL}(E)$. Applications.

Développements :

Théorème de Burnside, Nombre d'automorphismes diagonalisables sur un corps fini. Simplicité de SO(3).

Bibliographie:

Szpirglas Mathématiques L3 Algèbre, Caldero Germoni Histoires hédonistes de groupes et de géométrie Tome 1 (H2G2), Perrin (P), OA

Plan

K un corps commutatif, E un K-ev de dim finie n.

1 Le groupe linéaire et le groupe spécial linéaire

1.1 Définitions et caractérisations

Définition 1 (S p.294). groupe linéaire. Structure de groupe pour la composition des endomorphismes. $GL_n(K)$ et isomorphisme avec GL(E).

Remarque~2 (S p.294). Isomorphe à l'ensemble des matrices inversibles de taille n

Proposition 3 (S p.295). Caratérisation des éléments de $\mathrm{GL}(E)$: avec noyau, det, image.

Remarque 4 (S p.295). Faux en dimension infine!

Proposition 5 (sans réf). envoie une base sur une base

Proposition 6 (S p.295). Cardinal de $GL(\mathbb{F}_q)$

Définition 7 (S p.296). $SL_n(K)$

Proposition 8 (S p.296). est distingué

1.2 Générateurs

Lemme 9 (P p. 98). Si laisse invariantes toutes les droites vectorielles alors homothétie

Définition 10 (S p.297). dilatation

Proposition 11 (S p.297). Caractérisation des dilatations

Définition 12 (S p.297). réflexion

Définition 13 (S p.298). transvection

Proposition 14 (S p.298). Caractérisation des transvections

Proposition 15 (S p.300). Caractérisation des dilatations

Théorème 16. $\operatorname{SL}_n(K)$ engendré par transvections. $\operatorname{GL}_n(K)$ engendré par transvections et dilatations.

2 Quelques sous-groupes particuliers

2.1 Centre et groupe dérivé

Théorème 17 (S p.302). Centre de $SL_n(K)$ et $GL_n(K)$

Définition 18 (S p.302). groupe projectif linéaire $PGL_n(K)$ et $PSL_n(K)$.

Théorème 19 (S p.302). Groupe dérivé de $SL_n(K)$ et $GL_n(K)$

Et Perrin pour les cas particuliers

2.2 Groupe orthogonal

Ici $Car(K) \neq 2$.

Définition 20 (S p.314-323). groupe orthogonal O(E, q), isométrie. Muni du produit scalaire canonique et $K = \mathbb{R}$, on note $O_n(\mathbb{R})$

Proposition 21 (S p.314). Déf équivalente avec la forme polaire

Remarque 22 (S p.314). équivalence avec écriture matricielle

Proposition 23 (S p.314). O(q) implique $det = \pm 1$.

Définition 24 (S p.315-323). sg des isométries positives SO(q). Muni du produit scalaire canonique et $K = \mathbb{R}$, on note $O_n(\mathbb{R})$

Exemple 25 (S p.315-316). Symétrie, dilatation, renversement, symétrie orthogonale, réflexion orthogonale

Théorème 26 (S p.316-318). O(q) engendré par les réflexions orthogonales (au plus n). SO(q) engendré par les renversements (au plus n)

Pour avoir des résultats supplémentaires quand muni du produit scalaire canonique et $K=\mathbb{R},$ voir S p. 323

2.3 Sous-groupes finis de $GL_n(K)$

Ici $K = \mathbb{R}$ ou \mathbb{C} .

Définition 27 (S p.308). exposant d'un groupe

Théorème 28 (S p.308). Burnside

Proposition 29 (S p.310). $GL_n(K)$ ne possède pas de sous-groupes arbitrairement petits

3 Actions de GL(E)

3.1 Action sur les sev de E

g.x = g(x)

Proposition 30. GL agit transitivement par translation à gauche sur E

[H2G2 p.62] action : g.F = g(F). espace quotient : $0, \dots, n$, invariant : dimension rajouter le dvlpt sur le nombre d'automorphismes diagonalisables

3.2 Sur les espaces de matrices

3.2.1 Action par multiplication à gauche de GL_m sur $\mathcal{M}_{m,n}$

P.A = PA

Proposition 31 (H2G2 p.130). Deux matrices sont dans la même orbite ssi elles ont même noyau

3.2.2 Action par équivalence de $GL_m \times GL_n$ sur $\mathcal{M}_{m,n}$

Définition 32 (H2G2 p.2). équivalence

On considère l'action à gauche $(P,Q,A) \mapsto (P,Q).A = PAQ^{-1}$

Proposition 33 (H2G2 p.3). équivalentes ssi ont même rang

Les orbites de l'action sont donc paramétrées par le rang.

3.2.3 Actions par conjugaison

Définition 34 (H2G2 p.84). Matrice semblables

Action par conjuguaison de $\mathrm{GL}_n(K)$ sur matrices diagonalisables, $K=\mathbb{C}$ [H2G2 p.62 et 84] $P.A=PAP^{-1}$. Invariant : valeurs propres

Proposition 35. Deux matrices diagonalisables sont semblables ssi leurs valeurs propres avec multiplicité sont les mêmes.

Proposition 36 (H2G2 p.85). Le polynôme caractéristique est un invariant de similitude

Remarque 37 (H2G2 p.85). Ce n'est pas le cas du polynôme minimal

Action par conjugaison de $\mathrm{GL}_n(K)$ sur matrices carrées [H2G2 p.62 et 101] $P.A = PAP^{-1}$. Invariant : invariants de similitude

Théorème 38 (H2G2 p.106-107). Thm de Frobenius

Proposition 39 (H2G2 p. 107). Deux matrices sont semblables ssi elles ont même facteur invariants

3.2.4 Action par congruence

H2G2

4 Eléments de topologie

Bonus: H2G2 p.26 et suivantes

4.1 Densité

Proposition 40 (S p.310). $GL_n(K)$ ouvert dense $\mathcal{M}_n(K)$, $K = \mathbb{R}$ ou \mathbb{C}

Application 41 (S p.310). Egalité des polynômes caractéristiques de MN et NM.

4.2 Connexité

Proposition 42 (S p.311-312). $GL_n(\mathbb{C})$ et $SL_n(\mathbb{C})$ sont connexes

Définition 43 (S p.311). GL + et GL -

Proposition 44 (S p.313). $GL_n(\mathbb{R})$ a deux composantes connexes GL+ et GL-.

Proposition 45 (S p.311). homéomorphisme entre GL+ et GL-

Proposition 46 (S p.311). Homéomorphismes $GL_n(\mathbb{C}) \simeq \mathbb{C}^* \times SL_n(\mathbb{C})$, $GL_n + (\mathbb{R}) \simeq \mathbb{R}^* + \times SL_n(\mathbb{R})$

Proposition 47 (S p.313). $SL_n(\mathbb{R})$ est connexe

Proposition 48 (S p.329). $SO_n(\mathbb{R})$ est connexe

4.3 Compacité

Proposition 49 (S p. 328). $O_n(\mathbb{R})$ est compact

Remarque 50 (S p. 328). Faux en général

Application 51 (S p. 342). décomposition polaire est un homéo

Proposition 52. $SO_n(\mathbb{R})$ est compact

Application 53. SO(3) est simple.