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Random groups

Group presentation
(generators & relations) m

.

N ’
~ .
~ ’
S v

N »
{ What does a typically }

random group look like ?

Motivations

» Trivial groups, Finite groups, Free groups

» Hyperbolic groups: “Most of random group are Hyperbolic” (Gromov')
o Decidability of problems (word problem)

o Representation with Automata

o Application: networks?

1 Gromov, “Hyperbolic Groups’, 1987.
2Chepoi, Dragan, and Vaxés, ""Core congestion is inherent in hyperbolic networks”, 2017.
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Generators, Words & Relations

» Generators S = {a, b}, S ={a, b, c}.
» Word: a, ab, abb™ta, abcch™t.
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» Relations: cancelling word w = e

Examples of relations:

abb™l=e

b

acb=ce

b
NN
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[Cyclically unreduced)
b~ lab=e
b

bt a

[Cyclically Reduced]

ablch=e
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a,a *, bbbt
b b) b) .
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» No relations, only generators (a, b) : words made with letters
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R C(5+US_)" (relations)

Cancellation rule : Vw € R,w = eg in G
Consequence: w € R = wy - wE  ws =wi -wa in G

» Example:
o How to represent the commutative group, generated by a and b ?
Y ={a, b}, R={aba 'b7'}

a,b|aba bt
(ab]

Elements aba~'b~tbb = bb, abb = bab

6/19 Emily Clement Classification of random groups



Group presentation

» No relations, only generators (a, b) : words made with letters
a,a *, bbbt
b b) b) .

» Group presentation :

S, Cx t
G=(S5:|R)|s.t. t = . (gene.ra or)
RC(S:US_)" (relations)
Cancellation rule : Vw € R,w = eg in G
Consequence: w € R = wy - wE  ws =wi -wa in G

» Example:
o How to represent the commutative group, generated by a and b ?
Y ={a, b}, R={aba 'b7'}

a,b|aba bt
(ab]

Elements aba~'b~tbb = bb, abb = bab
o What about (Z/2Z,+) ?

6/19 Emily Clement Classification of random groups



Group presentation

» No relations, only generators (a, b) : words made with letters
a,a *, bbbt
b b) b) .

» Group presentation :

S, Cx t
G=(S5:|R)|s.t. t = . (gene.ra or)
RC(S:US_)" (relations)
Cancellation rule : Vw € R,w = eg in G
Consequence: w € R = wy - wE  ws =wi -wa in G

» Example:
o How to represent the commutative group, generated by a and b ?
Y ={a, b}, R={aba 'b7'}

a,b|aba bt
(ab]

Elements aba~'b~tbb = bb, abb = bab
o What about (Z/2Z,+) ?

<a|32:e>

Elements are exactly e and a
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Random group and geometric properties

» |G =(S|R)|, parameters:

Parameters
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Random group and geometric properties

» |G =(S|R)|, parameters:

[Set of generators S]

A

m = |S|
4

Parameters
e

\

( Y reduced
exact or upper -
bound) length ¢ Type unreduced

cyclically reduced
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» |G =(S|R)|, parameters:

[Set of generators S]

A

*

N

( *+, reduced
exact or upper
bound) length ¢ unreduced

cyclically reduced

Probability
law

Density d

Set of possible relations SRJ

~ |

[Set of (randomly picked) relations R]

» P occurs a.as. (w.rt. £, or m...) if | P(P) oo L
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Motivation & our model: random triangular groups

» Motivation: geometric properties

Finite ?

What does a typically -
! ?
Free 7 { random group look like ? Trivial 7

Hyperbolic ?
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Motivation & our model: random triangular groups

» Motivation: geometric properties

Finite ?

What does a typically -
! ?
Free 7 { random group look like ? Trivial 7

Hyperbolic ?

» Our model: triangular ([ﬁ = 3, exact Iengthj) random group, with:

© |unreduced words |-

o Relations picked uniformly, independently with probability m .

» Example of unreduced relations:
abb™'=e
b

a b71
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What has been proven ?

» Models:
Words Reduced, cyclically | Unreduced words
Parameters
reduced words
m> 20— 400 Yann Ollivier® Yann Ollivier*
m— +oo, =3 Antoniuk et al.® Our model

3Ollivier, “A january 2005 Invitation to Random Groups’, 2005.

40llivier, "A january 2005 Invitation to Random Groups’, 2005.

5 Antoniuk, Friedgut, and tuczak, “A sharp threshold for collapse of the random triangular group”, 2014;
Antoniuk, tuczak, and Swn:atkowskl, Co||apse of random triangular groups: a closer look”, 2013; Antomuk
tuczak, and Swi R tr lar groups at density 1/3", 2013.
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Our contribution

» Our model: triangular ([é = 3, exact Iength}) random group, with

. Relations picked uniformly, independently with
probability .

» Our results when m — +o0:

‘ Free ) No-Free ‘
[ § |
|

Hyperbolic & Infinite 9 Trivial

| —
| | | |
I T T f g
0 1/3  4/9 1/2 density d

_ 4 L
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Some group properties

Let G=(S|R). Gis:
» Finite: |G| < +o0
» Trivial: all word from (S | R) are equal to e

» Free: for some set of generators S’ C G, all elements of G have a unique
representation (as sequence of S').
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Group hyperbolicity

Representation of empty word
For any word w = eg:
N(w)
w = H gi- r,-il 'g,-fl,gi €S, rneR
i=1

» N(w): the minimal number of relations needed to write w.

» Example: a* = a°a® in (a| a*), N(a) =2

Word problem

Given G a group, determine the set of word w s.t. w = eg?
Hyperbolic groups: linear bound of N

G is hyperbolic iff 3C > 0,Vw € G s.t. w = eg, | N(w) < C|w]| |

Examples

» Hyperbolic: Finite groups, Z
» Non-hyperbolic: Z>
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Geometric point of view: Van Kampen Diagram D

» Intuition: “Glue” relations together to form a word equal to e.
» S ={a, b}, Relations R = {abb, aba}, G = (S| R).

> Is bba b7t = eg?

o T

bba~'b™' = a '(abb)aa '(aba) 'a = ec
Sois a~'h...

» Hyperbolicity caracterisation: 3C > 0, s.t. for any D, |D| < C |6D|
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Our contribution

Our contribution
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What relation exists a.a.s. in our model?

Relation of type i

» Type i: contains exactly i different letters (inverse does not count).

1

> abb, aba™!: type 2, aaa~!: type 1, abc: type 3.

Counting relations

> E[X,] = m2d—3+i

» When d < 2/3, E[Xi] —— 0
£—+oo

» When d < 1/3, i = 1,2, E[X] — 0.
£—+o0
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Case of d < 1/3

» When d < 1/3, a.a.s. relations are of type 3
» Type 3 = reduced word of length 3

» Reduction to Antoniuk et al.® results:

. Free , No-Free ‘

Hyperbolic & Infinite Trivial

| |
T T

| |
T T .

5Antoniukl tuczak, and Swicatkowski, “Collapse of random triangular groups: a closer look”, 2013; Antoniuk,
tuczak, and Swicatl ki, “R tri. lar groups at density 1/3", 2013; Antoniuk, Friedgut, and tuczak, “A
sharp threshold for collapse of the random triangular group”, 2014.
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Case when d > 1/2: Trivial

Compute the set of trivial generators T (using graph theory)

» Initialise T = @&
> Relation of type” aaa ' =eorabb ' =e:addain T
» Relation of type 3, of the form [T][T][?]: add [?] to T.
» Results: T=35

Free . No-Free

Hyperbolic & Infinite Trivial

| 0 |

7 up to permutation

17 /19 Emily Clement Classification of random groups



Case when 1/3 < d < 4/9

Adapt our model to Yann Ollivier's one

Yann Ollivier's model: fixed number of relations.

Free No-Free

Hyperbolic & Infinite Trivial

|
] 1
|
| |
T T

1/3  4/9 1)2

density d

o+ -
- L
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Case when 1/3 < d < 4/9

Adapt our model to Yann Ollivier's one
Yann Ollivier's model: fixed number of relations.

> 1): Give a lower and upper bound of |R|.

» 2): Give an equivalent model, with varying probability (to pick a relation).

Free No-Free

Hyperbolic & Infinite Trivial

|
] 1
|
| |
T T

1/3  4/9 1)2

density d

o+ -
- L
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Conclusion

Parameters

Words

Reduced, cyclically
reduced words

Unreduced words

m>2/{— 400

Yann Ollivier

Yann Ollivier

m— oo, £ =3 Antoniuk et al. Our model
Our results
\ Free J No-Free J
| i |
|
Hyperbolic & Infinite | 7?7 | Trivial
| — |

Current & Future work
What about 4/9 < d <1/27
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