
Extraction of memory access profiles using Time
Interest Points: a comparison with StAMP

TANGUY-LEGAC Erwan
ENS Rennes

Rennes, France

Abstract—Multi-core architectures suffer from pre-
dictability issues due to possible interferences when tasks
try to access shared resources simultaneously. To address
this, static analysis is used to extract the memory ac-
cess profile of a task, describing when memory accesses
may happen. In this paper, we provide an experimental
comparison between the Time Interest Point framework
and the StAMP method, both of them being state-of-
art techniques for extracting memory access profiles in
multi-core architectures. We present the Time Interest
Point framework and extend and implement it within the
Heptane software, so that it supports the same features as
StAMP, resulting in a fair comparison.

Index Terms—Worst-Case Execution Time Estimation,
Static Analysis, Multicore, Interference

I. INTRODUCTION

Real-time systems require strong timing guarantees to
ensure their correctness. Static scheduling can be used
to verify such properties of our programs, but it requires
some knowledge about the tasks, such as their Worst-
Case Execution Time (WCET). In this context, multi-
core architectures come with an important problem: the
tasks cannot be analyzed in complete isolation, and we
have to consider the possible execution of tasks on other
cores which may interfere with the task targeted by our
analysis. These interferences may occur when multiple
tasks try to simultaneously access a resource shared
between multiple cores (like a shared interconnect or a
memory controller). Knowing when these interferences
may happen gives more information for efficient schedul-
ing.

In this paper we consider architectures with multiple
cores, each of them containing a private L1 data and
instruction cache, and connected to some shared memory
(which could be a higher-level cache or a memory
controller) through a shared bus. Using this model, we
provide an experimental comparison between two state-
of-the-art techniques which produce a memory access
profile of the analyzed task, giving a precise description

of when a task may try to access the processor’s shared
resources. This profile can then be used to perform static
scheduling or worst-case response time analysis [1].

The StAMP technique [3] separates the code into
single-entry single-exit (SESE) regions, and uses a subset
of those regions, covering the analyzed code. Each
region in this subset is then analyzed individually using
the Implicit Path Enumeration Technique (IPET) [6],
producing the memory access profile of a task in a
reasonable time while mapping the time intervals to
actual code. The Time Interest Points (TIP) framework
[2] is the other method producing memory access profiles
of a task, which we want to compare against StAMP. It
relies on execution trace enumeration to have the finest
level of detail during the analysis. For this work, the TIP
framework was implemented in the Heptane software [5]
(which contains StAMP’s implementation) in an attempt
to provide a fair comparison between both techniques.
This required extending the TIP framework with features
supported by StAMP, such as a more detailed cache
analysis and support of function calls (which was not
detailed in the original paper). As such, the focus of this
work is the implementation and extension of the TIP
framework.

The rest of this paper is organized as follows. Sec-
tion II presents the TIP framework and our extensions.
Section III covers the memory profile extraction using
the TIP framework. Section IV gives an experimental
comparison between the TIP framework and StAMP.

II. EXTRACTING TIPS FROM A CFG

A. The basics of the TIP framework

The basics of the TIP framework are defined in [2]. A
Time Interest Point is an instruction which may result
or suffer from interferences with other tasks. In our
model, these are memory references which may result
in a memory access.

A memory reference is found for every instruction (be-
cause the instruction has to be loaded from memory), and



additional ones can be found in memory instructions (i.e.
instructions which perform a load or store operation). To
get this information, a static cache analysis is run on the
program, labeling each memory reference with a Cache
Hit-Miss Classification (CHMC) for the corresponding
cache. A CHMC label for a memory reference is one of
the following:

• AH (Always Hit): a memory access will never be
performed by this reference

• AM (Always Miss): a memory access will always
be performed by this reference

• FM (First Miss): the reference will always result in
a cache hit after its first occurrence

• NC (Not Classified): all other cases
Because the WCET estimation must be pessimistic, we
treat NC labels as AM ones. Using this CHMC, we
can define TIPs as instructions containing a memory
reference which is not labeled with AH.

The TIP framework is based on the isolation of TIPs
and abstraction of any instruction which will never
perform a memory access. To have a global overview
of this framework, it can be separated in 3 steps.

First, the Control Flow Graph (CFG) is extracted from
the compiled program. A CFG of a program is a graph
whose vertices are sequences of consecutive instructions
called Basic Blocks (BB) and edges are induced from
the possible flow of control (i.e. execution path) between
basic blocks. The extraction of the CFG of a task is a
built-in component of Heptane and is not detailed here.
In practice, Heptane produces one CFG per function, and
a program consists of a set of CFGs linked together.

From the CFG, we extract the TIPs to produce a TIP
Graph. This intermediate representation is then used to
enumerate all possible execution traces of our program.
Each of these traces gets converted into a time segment.

Finally, the time segments are merged together to
produce the memory access profile of the program. All
the mentioned intermediate representations are defined
in [2] and later in this paper.

The following subsections present (in execution order)
each step of the extraction process: subsection II-C
covers the handling of function calls, subsection II-D
details how loops are processed, and subsection II-E
finally describes how TIPs are extracted from a CFG.

B. TIP Graph definition

A TIP Graph is a graph extracted from the control flow
graph (CFG) of a task, where each node corresponds to
a TIP, and each edge represents all possible execution
paths between two TIPs (that don’t encounter any other

TIP). The edges are labeled with their corresponding
WCET, and the nodes with the number of possible mem-
ory accesses of the corresponding TIP. TIP Graphs also
contain nodes which do not represent any instructions.
We call such a node an empty TIP, because it does not
perform any memory access. There are four of those
empty TIPs: CFG start and end, call nodes and loop
heads.

Fig. 1 gives an example of a CFG and its correspond-
ing TIP Graph. The dashed node corresponds to the
loop’s head duplication (which is detailed in subsection
II-D). All other nodes correspond to a sequence of TIPs
contained in a basic block of the CFG.

addiu ...
sw ...
bnez ...

...
lw ...
lw ...

...

beqz ...
lw ...

add ...
lw ...

lw ...

start

1

2 head 1

11 1

end

21

18
9

25

33

25

17

0

12

52

Figure 1. A CFG (left) and the corresponding TIP Graph (right)

C. Handling function calls

The cache analysis of a function may differ if we
consider the context from where the function is called
from. As an example, the data a function accesses may
already be located in the cache if the function is called
from within a loop (because of the previous iterations)
whereas if the function is called from outside the loop,
the cache may not be populated with the accessed data.
Because of this, Heptane runs one cache analysis per
call context for each CFG.

To make use of this contextual analysis, we create
one TIP Graph per call context for each function and
only take into consideration the cache analysis of the
corresponding context. This is done using virtual inlining
(we duplicate the CFGs and only keep the cache analysis
labeling of the considered context).

Also, each call is represented by an empty TIP in the
TIP Graph, which links to the callee TIP Graph. This
TIP must be placed right after the last instruction of the
basic block corresponding to the call to ensure that the
edges are labeled with correct WCETs.

Fig. 2 illustrates this: the function main makes two
different calls to the function f. We create two TIP



Graphs for f, one per call context: the TIPs are extracted
as explained in subsection II-E. For f, they are extracted
by considering the corresponding context-aware cache
analysis.

main0

start

call f(x)

head

2
call f(y)

end

12

102

86
19 232

96

f1

start

2

end

4

10

f2

start

end

18

Figure 2. Representation of calls in the TIP Graph

D. Handling loops

1) Representing loops in the TIP Graph: To correctly
handle loops, we have to create an empty TIP represent-
ing the head of the loop. It ensures correct labeling of
the edges (the ones originally in the loop are exactly
the ones in the loop after extraction). Because the loop’s
head gets executed one more time than the loop’s body,
we duplicate and add its duplicate right after the new
head, outside of the loop.

2) Loop peeling: To provide a fair comparison with
StAMP, support of First-Miss (FM) labeling by the cache
analysis is required. These labels are encountered on
instructions in a loop. They are mainly handled during
the trace enumeration step presented in section III, but
a partial support of them is presented in this subsection.
This partial support is based on what is called loop
peeling: the unrolling the first iteration of each loop in
the CFG. Fig. 3 illustrates this process.

It should be noted that loop peeling produces an
exponential number of new basic blocs in the CFG when
encountering nested loops, which increases memory us-
age. In practice, this is still reasonable because loops are
nested only up to a small and manageable depth.

Once the first iteration of a loop is unrolled, we want
to check whether an instruction labeled as FM can be
relabeled to AH. This is possible if all execution paths to
the given instruction contain its duplicate in the unrolled
iteration, which is checked by performing a dominator
analysis after the peeling of the loops. In the example of

BB0

BB1

BB2

BB3

BB′
0

BB′
1

BB′
2

BB0

BB1

BB2

BB3

Figure 3. Example of loop peeling: original loop on the left, peeled
loop on the right

Fig. 3, in the peeled loop, BB0 and BB2 are dominated
by BB′

0 and BB′
2. If they contain an instruction with

a FM label, it is relabeled with AH and the duplicated
instruction in the dominating BB gets relabeled with AM.
This reduces the number of TIPs in the loops once the
TIP Graph is extracted. However, loop peeling is optional
and disabling it still produces a valid TIP Graph, but a
less precise one.

3) Addressing the edge cases of loop peeling: The
reason loop peeling is optional is because it limits over-
approximations but is not enough on its own. StAMP
uses IPET and counts the number of executions of each
BB along the worst-case-execution-path and uses the
WCET calculation of the first execution of this block and
the next ones accordingly. Loop peeling does not cover
all cases and results in over-estimations. The example of
Fig. 3 illustrates this: BB1 is not dominated by BB′

1,
so we can not relabel any of its instructions labeled FM
using our dominator analysis.

To overcome this, we will have to keep a set of visited
TIPs during the trace enumeration presented in section
III. This makes the loop peeling step optional, as it does
not improve the accuracy of the produced memory access
profile. However, it can speed up the process by reducing
the number of visited TIPs.

E. Extraction of TIPs

Finally, we can extract the TIPs of each CFG and
build the corresponding TIP Graphs (remember that we
create one TIP Graph per context for each CFG). This
is done by iterating over the set of instructions of each
basic block in the CFG, and extracting the TIPs from
them. Instructions which are not TIPs get abstracted and



are only represented by the WCET of edges which corre-
spond to an execution flow going through the instruction.
Whenever we encounter two or more consecutive TIPs,
we merge them into a single one to reduce the empirical
complexity of the TIP Graph, and label the resulting TIP
with the sum of possible memory accesses of each TIP.

III. EXTRACTING MEMORY ACCESS PROFILES

From the TIP Graphs of a task, we extract its memory
access profile. A memory access profile is defined in [3]
as a sequence of pairs (wcet, wcma) representing a time-
sequence of code intervals of maximum duration wcet
in which at most wcma memory access can happen.
The extraction of the memory access profile presented
in [2] is done in three steps, which are detailed in the
following subsections: first, all possible execution traces
are enumerated using the TIP Graphs. Then, using this
intermediate representation, we extract a memory access
profile for each trace which is named Time Segment.
Lastly, all the Time Segments are merged together to
obtain the task’s memory access profile. A parameter
named delta controls the allowed size of time intervals
which do not contain any memory accesses: if such a
time interval with a duration less than delta exists, it gets
merged with its surroundings time intervals. All these
steps are detailed in the following subsections.

A. Trace enumeration

The execution traces are enumerated by using the
algorithm presented in [2], which we extended to support
FM (First Miss) labeling by the cache analysis as ex-
plained in II-D3, and function calls as described in II-C.
To ensure termination of the algorithm, the number of
iterations for each loop must be bounded. In the Heptane
software, this is done manually.

The algorithm works by traversing the TIP Graph.
When a new TIP is encountered, we add a Trace Node to
the current trace. A Trace Node consists of a reference
to the newly encountered TIP and the WCET at which
this TIP has been encountered. A Trace is a sequence
of such Trace Nodes. When the TIP end is encountered,
we know that the current trace is finished, and we can
proceed to with next one.

When a call node is reached, the traces of the callee
TIP Graph are recursively enumerated (or retrieved from
a previously completed enumeration) and inserted into
the current trace.

When a node with an instruction labeled by FM is
encountered, the algorithm checks if the same instruction
was already visited in the current trace. If it has, the

instruction is treated as being labeled with AH (Always
Hit) by the cache analysis.

Fig. 4 gives an example of such enumerated timed
execution traces. Note that for readability, the TIPs are
not represented in the example, only the corresponding
number of memory accesses are. The memory latency is
set to 99, and the WCET for an instruction is set to 1.

0

0

1

21

2

139

1

351

0

503
21 18 12 52

0

0

1

21

0

130

1

155

1

272

0

372

1

397

1

530

0

682
21 9 25 17 0 25 33 52

0

0

1

21

0

130

1

155

1

288

0

440
21 9 25 33 52

Figure 4. 3 enumerated traces from the TIP Graph in Fig. 1

B. Time segment conversion

This step converts each trace into a Time Segment. A
Time Segment is an intermediate representation which
abstracts the TIPs themselves. It is made of a sequence of
Segments. A Segment is a triplet (start, end, accesses)
of integers where start and end are the start and end
times of the Time Segment, and accesses is the number
of memory accesses occurring during the time interval
in the trace it was converted from.

The conversion from a Trace to a Time Segment
is straightforward: for each Trace Node, we create a
Segment accounting for the corresponding TIP of the
Trace Node (with the WCET at which the TIP has been
encountered as start, end set to account for the WCET
of the TIP itself, and accesses set to the number of
memory accesses made by the TIP); then we create an-
other Segment representing the edge between the current
Trace Node and the next one (start set to the previously
created Time Segment’s end, end set to the next Trace
Node’s WCET and accesses set to 0). Fig. 5 shows the
Time Segments converted from the traces in Fig. 4.

C. Time segment fusion

The last step is the to fuse all the Time Segments
together. To do this, we first merge them one by one
into one Time Segment. To merge two Time Segments
together, we run through every pair of Segments of the
two Time Segments and intersect the corresponding time
intervals while merging the memory accesses. To limit
over-estimations, we use a map to compute the new



0

0

1

21

0

121

2

139

0

339

1

351

0

451 503

0

0

1

21

0

121

0

130

1

155

0

255

1

272

0

372

1

397

0

497

1

530

0

630 682

0

0

1

21

0

121

0

130

1

155

0

255

1

288

0

388 440

Figure 5. Time Segments of the traces in Fig. 4

number of memory accesses in the intersected Segment:
each access is assigned to its original Time Segment.

To produce the memory access profile, the Segments
of the new Time Segment must be fused together. This
is done with two passes over the Time Segment: the
first one fuses the consecutive Segments which do not
perform any memory access and fuses the consecutive
Segments which do perform at least one memory access.
The second pass fuses every Segment which does not
perform any memory access and has a duration smaller
than delta with its neighbours.

The resulting Time Segment is the memory access
profile, if we consider the maximum number assigned
to each time interval.

Fig. 6 show the result of merging and fusing the first
and last Time Segment of Fig. 5. Each resulting Segment
has two number in it: the one above is the number of
memory accesses performed by the first Time Segment in
this interval, and the one below is the number of memory
accesses performed by the third Time Segment in this
interval. The Time Segment at the bottom of the figure
represents the memory access profile.

0
0

0

1
1

21

0
0

121

0
0

130

2
0

139

2
1

155

2
0

255

2
1

288

0
1

339

1
1

351

1
0

388

1
0

440

0
0

451 503

0
0

0

1
1

21

0
0

121

3
2

139

0
0

451 503

0

0

1

21

0

121

3

139

0

451 503

Figure 6. Intersection (above), fusion (middle) and extracted profile
(below) of Time Segments 1 and 3 of Fig. 5

IV. COMPARISON OF TIP AND STAMP

To compare both methods, we used the Mälardalen
benchmarks [4] compiled to the MIPS target architecture.

The loop bounds are manually set.
The SESE regions for StAMP are extracted using

unlimited fuel and an edge-centric definition. Ideally,
the node-centric definition should be used, because it
has been proved in [3] that this results in more distinct
intervals. We had to use the edge-centric definition
because on some benchmarks, StAMP’s implementation
results in different total WCET calculations, and the ones
obtained using the edge-centric definition are smaller.

For the TIPs framework, two profiles are extracted for
each benchmark: one with the parameter delta set to 0,
and one with the parameter delta set to the maximum
duration of the time intervals not containing any memory
access.

Fig. 7 shows three memory access profiles side-by-
side extracted using both methods.

Figure 7. Memory profiles of benchmark fibcall

As it can be seen, the TIP framework produces
more detailed memory access profiles than StAMP: the
provided example shows that the memory accesses are
divided in 38 separate intervals by the TIP framework
but only 3 of those intervals appear when using StAMP.
However, the TIP framework over-estimates the total
number of memory accesses: in the example depicted
by Fig. 7, StAMP counts at most 10 memory accesses
whereas the TIP framework counts at most 38 memory
accesses. This is because it considers all memory ac-
cesses of all execution traces, even if they are mutually
exclusive.

To fix this over-estimation, the parameter delta can
be modified. Intervals with a duration less than delta in
which no memory accesses occur are fused with their
neighbours. This reduces the number of intervals and
limits the addition of memory accesses produced by



Table I
COMPARISON OF EXTRACTED PROFILES BY STAMP AND THE TIPS FRAMEWORK

StAMP Time Interest Points (delta = 0) Time Interest Points (delta = w1)
Benchmark Intervals Accesses Intervals Accesses Intervals Accesses

bs 3 18 4 20 3 18
expint 2 26 2 26 2 26
fibcall 3 10 32 38 3 10

insertsort 2 21 3 21 3 21
jfdctint 6 114 80 270 2 114
lcdnum 2 20 2 20 2 20
select 4 39 3 39 3 39
simple 1 5 1 5 1 5
sqrt 3 34 4 38 2 34

1 w is the size of the largest time interval not containing any memory access

mutually exclusive execution traces. Table I presents an
overall comparison of the produced memory accesses
profiles. The profiles can be found in Appendix A of
this paper.

The last difference is not shown by the extracted
profiles and is their usability. What we compute is the
WCET of each memory access, nothing guarantees that
they cannot happen before this date. By dividing the
program in SESE regions, StAMP makes it possible to
link the start of an interval to a specific instruction. This
makes it possible to easily enforce the WCET of the
given interval, ensuring that the memory accesses happen
when we expect and not before. On the opposite, this
seems much more complicated with intervals extracted
by the TIP framework. It may be possible, but to this
date, we did not find any practical solution to this
problem.

V. CONCLUSION AND FUTURE WORKS

In this paper, we extended the TIP framework with
support for function calls and contextual cache analysis,
as well as First-Miss labels support. We presented the
memory access profile extraction process, and finally,
we compared the TIP framework with the state-of-the-
art StAMP method.

We left for future works the automatic selection of
parameter delta to produce the most precise memory
access profiles, or the creation of a different fusion
algorithm.

As discussed in section IV, practical use of the pro-
duced memory access profile and the enforcing of the
WCET to keep the profiles correct is also left for future
works.

Another improvement could be the use of Best-Case
Execution Times to increase the knowledge about the
memory accesses and refine the memory profiles.

REFERENCES

[1] Giorgio C. Buttazzo. Hard Real-Time Computing
Systems: Predictable Scheduling Algorithms and
Applications. 3rd. Springer Publishing Company,
Incorporated, 2011. ISBN: 1461406757.

[2] Thomas Carle and Hugues Cassé. “Static extraction
of memory access profiles for multi-core interfer-
ence analysis of real-time tasks”. In: Architecture
of Computing Systems: 34th International Confer-
ence, ARCS 2021, Virtual Event, June 7–8, 2021,
Proceedings 34. Springer. 2021, pp. 19–34. DOI:
10.48550/arXiv.2103.17082.

[3] Théo Degioanni and Isabelle Puaut. “StAMP: Static
Analysis of Memory access Profiles for real-time
tasks”. In: WCET 2022-20th International Work-
shop on Worst-Case Execution Time Analysis. 2022.
DOI: 10.4230/OASIcs.WCET.2022.1.

[4] Jan Gustafsson et al. “The Mälardalen WCET
benchmarks: Past, present and future”. In: 10th
International Workshop on Worst-Case Execution
Time Analysis (WCET 2010). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik. 2010. DOI: 10 .
4230/OASIcs.WCET.2010.136.

[5] Damien Hardy, Benjamin Rouxel, and Isabelle
Puaut. “The Heptane Static Worst-Case Execu-
tion Time Estimation Tool”. In: 17th International
Workshop on Worst-Case Execution Time Analysis
(WCET 2017). Schloss-Dagstuhl-Leibniz Zentrum
für Informatik. 2017. DOI: 10.4230/OASIcs.WCET.
2017.8.

[6] Yau-Tsun Steven Li and Sharad Malik. “Perfor-
mance analysis of embedded software using im-
plicit path enumeration”. In: vol. 30. 11. New York,
NY, USA: Association for Computing Machinery,
1995. DOI: 10.1145/216633.216666.

https://doi.org/10.48550/arXiv.2103.17082
https://doi.org/10.4230/OASIcs.WCET.2022.1
https://doi.org/10.4230/OASIcs.WCET.2010.136
https://doi.org/10.4230/OASIcs.WCET.2010.136
https://doi.org/10.4230/OASIcs.WCET.2017.8
https://doi.org/10.4230/OASIcs.WCET.2017.8
https://doi.org/10.1145/216633.216666


APPENDIX A: EXTRACTED MEMORY ACCESS PROFILES

Figure A.1. Memory profiles of benchmark bs

Figure A.2. Memory profiles of benchmark expint

Figure A.3. Memory profiles of benchmark fibcall

Figure A.4. Memory profiles of benchmark insertsort

Figure A.5. Memory profiles of benchmark lcdnum

Figure A.6. Memory profiles of benchmark jfdctint



Figure A.7. Memory profiles of benchmark select Figure A.8. Memory profiles of benchmark simple

Figure A.9. Memory profiles of benchmark sqrt


	Introduction
	Extracting TIPs from a CFG
	The basics of the TIP framework
	TIP Graph definition
	Handling function calls
	Handling loops
	Representing loops in the TIP Graph
	Loop peeling
	Addressing the edge cases of loop peeling

	Extraction of TIPs

	Extracting memory access profiles
	Trace enumeration
	Time segment conversion
	Time segment fusion

	Comparison of TIP and StAMP
	Conclusion and future works
	Appendix A: extracted memory access profiles

