Problèmes Originaux – Errata

21 juin 2025

Un grand merci à MM. Quet et Reverte pour ces corrections.

Page 12

▷ Une suite réelle $(u_n)_{n \in \mathbb{N}}$ diverge vers $+\infty$ si tout intervalle de la forme $]M, +\infty[$ contient tous les termes de la suite à partir d'un certain rang. Autrement dit, pour tout $M \in \mathbb{R}$, il existe un entier N_M qui dépend de ε tel que tous les termes de la suite à partir du rang N_M sont dans $]M, +\infty[$. Cela peut s'écrire :

$$\forall M \in \mathbb{R}, \exists N_M \in \mathbb{N}, (n > N_M \implies u_n > M)$$

On note alors

$$\lim_{n\to +\infty} u_n = +\infty$$

De la même façon, la définition de la convergence vers -∞ pour une suite réelle $(u_n)_{n \in \mathbb{N}}$ peut s'écrire de la façon suivante :

$$\forall M \in \mathbb{R}, \exists N_M \in \mathbb{N}, (n \ge N_M \implies u_n < M)$$

Page 13

 \triangleright Soit a et b deux réels, I un intervalle ouvert contenant a et f une fonction définie sur $I \setminus \{a\}$. La fonction f a pour limite b en a si :

$$\forall \varepsilon > 0, \exists \eta > 0, (x \in I \cap]a - \eta, a + \eta [\implies f(x) \in]b - \varepsilon, b + \varepsilon[)$$

Page 19

- \triangleright Pour prouver que deux réels a et b sont égaux, on peut prouver successivement les inégalités " $a \le b$ " et " $a \ge b$ ". C'est une preuve par "double inégalité".
- \triangleright Pour prouver que deux ensembles E et F sont égaux, on peut montrer les inclusions $E \subset F$ et $F \subset E$. C'est une preuve par "double inclusion".
- \triangleright Pour prouver l'équivalence " $\mathscr{A} \Longleftrightarrow \mathscr{B}$ ", on peut prouver successivement les implications " $\mathscr{A} \Rightarrow \mathscr{B}$ " et " $\mathscr{B} \Rightarrow \mathscr{A}$ ". Ce raisonnement s'appelle "raisonnement par analyse-synthèse".

Page 27 Dans l'exemple du nombre 5321897, cela donne

$$5321897 \equiv 0[7] \iff 7u_0 + 9u_1 + 8u_2 + 1u_3 + 2u_4 + 3u_5 + 5u_6 \equiv 0[7]$$
$$\iff 42 \equiv 0[7]$$

Page 82 Pour conclure, il reste à calculer $\overline{E_0}[1]$. On sait que $\overline{E_0} = P^{-1} \times E_0$; calculons P^{-1} :

$$P^{-1} = \frac{1}{\det P} P = \frac{1}{-2} \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

Page 103 C'est bien Alice qui génère le polynôme, ainsi "Ce polynôme est connu d'elle seule."

Page 105

 \triangleright Si n = m, on a alors

$$(P+Q)(X) = (a_0+b_0) + (a_1+b_1)X + \dots + (a_n+b_n)X^n$$

• Si $a_n + b_n \neq 0$, alors on a

$$deg(P+Q) = n$$
 et $max(n,m) = n = m$

• Sinon, on obtient

$$deg(P+Q) < n$$
 soit $deg(P+Q) < max(n,m)$