FOREST AUGMENTATION PROBLEM

Semester project under the supervision of Ola Svensson

Igor MARTAYAN
June 14, 2022

EPFL

Introduction

How to make a network both resilient and affordable?

Introduction

How to make a network both resilient and affordable?

- resilient: stay connected even if some nodes / edges fail

Introduction

How to make a network both resilient and affordable?

- resilient: stay connected even if some nodes / edges fail
- affordable: minimize the cost of the network

Robustness of a network

k-edge-connectivity

For every pair (s, t), there are at least k edge-disjoint paths between s and t

example of 2-edge-connected graph

Robustness of a network

k-edge-connectivity

For every pair (s, t), there are at least k edge-disjoint paths between s and t
most of these problems are NP-hard

Robustness of a network

k-edge-connectivity

For every pair (s, t), there are at least k edge-disjoint paths between s and t
most of these problems are NP-hard \rightarrow approximation algorithms

example of 2-edge-connected graph

OUTLINE

- Graph augmentation: formulation, hardness, recent progress
- Matching augmentation: LP-based approximation algorithm

GRAPH AUGMENTATION PROBLEM

Graph augmentation problem

Graph augmentation

Input $G=(V, E)$, set of light edges $F \subseteq E$
Output Set of heavy edges $E^{\prime} \subseteq E$ of min cardinality s.t. $\left(V, F \cup E^{\prime}\right)$ is 2-edge-connected

Graph augmentation problem

Graph augmentation

Input $G=(V, E)$, set of light edges $F \subseteq E$
Output Set of heavy edges $E^{\prime} \subseteq E$ of min cardinality s.t. $\left(V, F \cup E^{\prime}\right)$ is 2-edge-connected
F can be a forest, a tree, a matching, a collection of paths...

GRAPH AUGMENTATION PROBLEM

Graph augmentation

Input $G=(V, E)$, set of light edges $F \subseteq E$
Output Set of heavy edges $E^{\prime} \subseteq E$ of min cardinality s.t. $\left(V, F \cup E^{\prime}\right)$ is 2-edge-connected
F can be a forest, a tree, a matching, a collection of paths...

Weighted version

Input $G=(V, E), w: E \mapsto \mathbb{R}^{+}$, set of light edges $F \subseteq E$
Output Set of heavy edges $E^{\prime} \subseteq E$ of min weight s.t. $\left(V, F \cup E^{\prime}\right)$ is 2-edge-connected

EXAMPLE OF GRAPH AUGMENTATION

EXAMPLE OF GRAPH AUGMENTATION

k-edge-connectivity, cut formulation
Every nontrivial cut has at least k edges
(special case of max-flow min-cut)

CUT FORMULATION OF GRAPH AUGMENTATION

Linear Program

k-edge-connectivity, cut formulation
Every nontrivial cut has at least k edges
(special case of max-flow min-cut)

$$
\begin{aligned}
& \min \sum_{e \in E \backslash F} x_{e} \\
& \sum_{e \in \delta(S)} x_{e} \geq 2 \quad \forall \varnothing \subsetneq S \subsetneq V \\
& x_{e} \in\{0,1\} \quad \forall e \in E
\end{aligned}
$$

x_{e} indicates whether e is selected

CUT FORMULATION OF GRAPH AUGMENTATION

Relaxed Linear Program

k-edge-connectivity, cut formulation
Every nontrivial cut has at least k edges
(special case of max-flow min-cut)

$$
\begin{aligned}
& \min \sum_{e \in E \backslash F} x_{e} \\
& \sum_{e \in \delta(S)} x_{e} \geq 2 \quad \forall \varnothing \subsetneq S \subsetneq V \\
& 0 \leq x \leq 1 \quad \forall e \in E
\end{aligned}
$$

x_{e} indicates whether e is selected

HARDNESS OF APPROXIMATION

APX

NP optimization problems that have a poly-time approximation algorithm with a constant approximation ratio

HARDNESS OF APPROXIMATION

APX

NP optimization problems that have a poly-time approximation algorithm with a constant approximation ratio

APX-hardness

every problem in APX can be reduced to this problem with an approximation-preserving poly-time reduction

HARDNESS OF APPROXIMATION

APX

NP optimization problems that have a poly-time approximation algorithm with a constant approximation ratio

APX-hardness

every problem in APX can be reduced to this problem with an approximation-preserving poly-time reduction

Theorem (Kortsarz \& al. 2004) Tree Augmentation is APX-hard
$\exists \varepsilon$ s.t. approximating TAP with ratio $1+\varepsilon$ is NP-hard

Recent progress

Weighted Tree Augmentation

- [Traub \& al. 2021] $1+\ln 2+\varepsilon$ (Relative Greedy)

Recent progress

Weighted Tree Augmentation

- [Traub \& al. 2021] $1+\ln 2+\varepsilon$ (Relative Greedy)
- [Traub \& al. 2022] $1.5+\varepsilon$ (Local Search)

Recent progress

Weighted Tree Augmentation

- [Traub \& al. 2021] $1+\ln 2+\varepsilon$ (Relative Greedy)
- [Traub \& al. 2022] $1.5+\varepsilon$ (Local Search)

Forest Augmentation
[Grandoni \& al. 2022] <2
(Reduction to path augmentation)

Approximating Matching

AUGMENTATION

LP-BASED APPROXIMATION ALGORITHM

[Bamas, Drygala, Svensson, 2022] A Simple LP-Based Approximation Algorithm for the Matching Augmentation Problem

LP-BASED APPROXIMATION ALGORITHM

[Bamas, Drygala, Svensson, 2022] A Simple LP-Based Approximation Algorithm for the Matching Augmentation Problem

- main result: better-than-2 approximation for MAP
- using only cut-LP and a DFS tree

$$
\begin{aligned}
& \min \sum_{e \in E \backslash M} x_{e} \\
& \sum_{e \in \delta(S)} x_{e} \geq 2 \quad \forall \varnothing \subsetneq S \subsetneq V \\
& 0 \leq x \leq 1 \quad \forall e \in E
\end{aligned}
$$

Overview of the algorithm

```
Algorithm 1: LP-based approximation algorithm for MAP
Input: A graph \(G=(V, E)\) and a matching \(M \subseteq E\).
\(x^{*} \leftarrow\) optimal extreme point solution to \(\operatorname{LP}(G, M)\)
\(G^{\prime} \leftarrow\left(V, \operatorname{Support}\left(x^{*}\right)\right)\)
\(T \leftarrow \operatorname{LIGHTDFS}\left(G^{\prime}, M\right) / /\) depth-first-search tree prioritizing light edges
\(y^{*} \leftarrow\) optimal extreme point solution to \(\operatorname{LP}\left(G^{\prime}, T\right)\)
\(A \leftarrow \operatorname{Support}\left(y^{*}\right)\)
return \(T \cup A\)
```


WhY ARE WE INTERESTED IN A DFS TREE?

DFS TREE AND UP-LINKS

- after building a DFS tree, the remaining edges are up-links
- up-link: one endpoint is an ancestor of the other

UP-LINKS AND TRACTABILITY

Having only up-links makes the problem tractable

UP-LINKS AND TRACTABILITY

Having only up-links makes the problem tractable
Total unimodularity
For every square submatrix M of A, $\operatorname{det} M \in\{-1,0,1\}$

UP-LINKS AND TRACTABILITY

Having only up-links makes the problem tractable

Total unimodularity

For every square submatrix M of A, $\operatorname{det} M \in\{-1,0,1\}$

Theorem

If $A \in \mathbb{R}^{m \times n}$ is totally unimodular and $b \in \mathbb{Z}^{m}$, then the extreme point solutions of

$$
\left\{\begin{array}{l}
A x \geq b \\
x \in[0,1]^{n}
\end{array}\right.
$$

are integral

WhY ShOULD WE RESTRICT THE DFS TREE TO THE SUPPORT?

WHERE DOES THE BETTER-THAN-2 RATIO COME FROM?

HALF-INTEGRAL EDGES

Suppose $\forall e, x_{e}^{*} \in\left\{0, \frac{1}{2}, 1\right\}$

HALF-INTEGRAL EDGES

Suppose $\forall e, x_{e}^{*} \in\left\{0, \frac{1}{2}, 1\right\}$

- cost of the DFS tree: $\operatorname{cost}(T)=n-1-|M|$

HALF-INTEGRAL EDGES

Suppose $\forall e, x_{e}^{*} \in\left\{0, \frac{1}{2}, 1\right\}$

- cost of the DFS tree: $\operatorname{cost}(T)=n-1-|M|$
- "overcost" of T.

$$
\begin{aligned}
\operatorname{cost}(T)-x^{*}(T \backslash M) & =\sum_{e \in T \backslash M} \underbrace{1-x_{e}^{*}}_{\leq \frac{1}{2}} \\
& \leq \frac{n-1-|M|}{2} \\
& \leq \frac{x^{*}(E \backslash M)}{2}
\end{aligned}
$$

HALF-INTEGRAL EDGES

Suppose $\forall e, x_{e}^{*} \in\left\{0, \frac{1}{2}, 1\right\}$

- cost of the DFS tree: $\operatorname{cost}(T)=n-1-|M|$
- "overcost" of T.

$$
\operatorname{cost}(T)-x^{*}(T \backslash M) \leq \frac{x^{*}(E \backslash M)}{2}
$$

- since x^{*} is feasible for $L P\left(G^{\prime}, T\right)$,

$$
y^{*}(E \backslash T) \leq x^{*}(E \backslash T)
$$

HALF-INTEGRAL EDGES

Suppose $\forall e, x_{e}^{*} \in\left\{0, \frac{1}{2}, 1\right\}$

- cost of the DFS tree: $\operatorname{cost}(T)=n-1-|M|$
- "overcost" of T.

$$
\operatorname{cost}(T)-x^{*}(T \backslash M) \leq \frac{x^{*}(E \backslash M)}{2}
$$

- since x^{*} is feasible for $L P\left(G^{\prime}, T\right)$,

$$
y^{*}(E \backslash T) \leq x^{*}(E \backslash T)
$$

- total cost:

$$
\operatorname{cost}(T)+y^{*}(E \backslash T) \leq x^{*}(T \backslash M)+\frac{x^{*}(E \backslash M)}{2}+x^{*}(E \backslash T)=\frac{3}{2} x^{*}(E \backslash M)
$$

BOUNDING THE NUMBER OF FRACTIONAL EDGES

Each fractional edge is associated to a tight constraint

$$
\mathcal{S}=\left\{S \subsetneq V ; x^{*}(\delta(S))=2\right\}
$$

BOUNDING THE NUMBER OF FRACTIONAL EDGES

Each fractional edge is associated to a tight constraint

$$
\mathcal{S}=\left\{S \subsetneq V ; x^{*}(\delta(S))=2\right\}
$$

Theorem

\mathcal{S} can be reduced to a laminar family

Bounding the number of fractional edges

Each fractional edge is associated to a tight constraint

$$
\mathcal{S}=\left\{S \subsetneq V ; x^{*}(\delta(S))=2\right\}
$$

Theorem

\mathcal{S} can be reduced to a laminar family
Laminar family
$\mathcal{F} \subseteq 2^{V}$ is laminar: for every sets $A, B \in \mathcal{F}$, either $A \subseteq B, B \subseteq A$ or $A \cap B=\varnothing$

Bounding the number of fractional edges

Each fractional edge is associated to a tight constraint

$$
\mathcal{S}=\left\{S \subsetneq V ; x^{*}(\delta(S))=2\right\}
$$

Theorem

\mathcal{S} can be reduced to a laminar family
Laminar family
$\mathcal{F} \subseteq 2^{V}$ is laminar: for every sets $A, B \in \mathcal{F}$, either $A \subseteq B, B \subseteq A$ or $A \cap B=\varnothing$
Cardinality of a laminar family
If $|V|=n$ and \mathcal{F} is laminar, then $|\mathcal{F}| \leq 2 n-1$

REDUCTION TO A LAMINAR FAMILY

$$
1_{\delta(A \cap B)}+1_{\delta(A \cup B)} \leq 1_{\delta(A)}+1_{\delta(B)}
$$

Uncrossing property

If $S, T \in \mathcal{S}$ are not disjoint, then $S \cap T \in \mathcal{S}$ and $S \cup T \in \mathcal{S}$

REDUCTION TO A LAMINAR FAMILY

$$
1_{\delta(A \cap B)}+1_{\delta(A \cup B)} \leq 1_{\delta(A)}+1_{\delta(B)}
$$

Uncrossing property

If $S, T \in \mathcal{S}$ are not disjoint, then $S \cap T \in \mathcal{S}$ and $S \cup T \in \mathcal{S}$

$$
\operatorname{span}(\mathcal{F})=\operatorname{span}\left\{1_{\delta(S)} ; S \in \mathcal{F}\right\}
$$

Theorem
Let \mathcal{F} be the maximal laminar subfamily of \mathcal{S}, then $\operatorname{span}(\mathcal{F})=\operatorname{span}(\mathcal{S})$

CONCLUSION AND NEXT DIRECTIONS

- forest augmentation is still
a very active problem
- despite its hardness, the approximations keep improving
- analyzing it involves many elegant constructions

Next directions:

- refine the approximation ratio
- use other techniques such as tree carving
- extend to path augmentation

APPENDIX

DFS TREE WITH PATHS

