Jad Abou Yassin

Semaine des jeunes de l'IDP Supervisors: Thomas GOBET & Cédric LECOUVEY

June 17, 2024

Summary

- 1. Symmetric groups
 - Permutations
 - Definition
 - Transposition, cycles and decomposition into disjoints cycles
 - Group presentation
 - \mathfrak{S}_n as a reflection group
- 2. Affine symmetric groups
 - As an affine reflection group
 - Action of $\widehat{\mathfrak{S}}_n$ on the alcoves
 - Group presentation
 - Combinatorial model
 - Affine transpositions, pseudo-cycles
 - An example: affine braid groups

Permutations

Let X be a set. A **permutation** of X is a bijection $X \to X$. We denote $\mathfrak{S}(X)$ the set of all permutations of X.

Permutations

Let X be a set. A **permutation** of X is a bijection $X \to X$. We denote $\mathfrak{S}(X)$ the set of all permutations of X.

Example : permutations of a set of three colors

Symmetric groups

The set $\mathfrak{S}(X)$ has a group structure with composition of function. As a group, it is called the symmetric group over X.

Symmetric groups

The set $\mathfrak{S}(X)$ has a group structure with composition of function. As a group, it is called the symmetric group over X.

If X is a finite set of cardinality n, then its symmetric group and the symmetric group $\mathfrak{S}(\llbracket 1,n \rrbracket)$ are isomorphic.

Symmetric groups

The set $\mathfrak{S}(X)$ has a group structure with composition of function. As a group, it is called the symmetric group over X.

If X is a finite set of cardinality n, then its symmetric group and the symmetric group $\mathfrak{S}(\llbracket 1,n \rrbracket)$ are isomorphic.

When studying symmetric groups of finite sets, we can only look at the symmetric group of the sets $[\![1, n]\!]$ for $n \in \mathbb{N}$. We call them symmetric groups of rank n and we denote them \mathfrak{S}_n instead of $\mathfrak{S}([\![1, n]\!])$.

Transpositions

A transposition is a permutation that fixes all but exactly two points. If $i \neq j$, we denote (i, j) the transposition that does not fix i and j. We have (i, j) = (j, i), so we will always assume i < j when writing a transposition like that.

Transpositions

A transposition is a permutation that fixes all but exactly two points. If $i \neq j$, we denote (i, j) the transposition that does not fix i and j. We have (i, j) = (j, i), so we will always assume i < j when writing a transposition like that.

Theorem (Transpositions are a generating set)

Let σ be a permutation in \mathfrak{S}_n . Then there exist transpositions t_1, \ldots, t_r such that $\sigma = t_1 \ldots t_r$.

Transpositions

A transposition is a permutation that fixes all but exactly two points. If $i \neq j$, we denote (i, j) the transposition that does not fix i and j. We have (i, j) = (j, i), so we will always assume i < j when writing a transposition like that.

Theorem (Transpositions are a generating set)

Let σ be a permutation in \mathfrak{S}_n . Then there exist transpositions t_1, \ldots, t_r such that $\sigma = t_1 \ldots t_r$.

A simple transposition is a transposition (i, i + 1). We denote them σ_i . If (i, j) is a transposition, then

$$(i,j) = \sigma_i \sigma_{i+1} \dots \sigma_{j-2} \sigma_{j-1} \sigma_{j-2} \dots \sigma_{i+1} \sigma_i.$$

This means that simple transpositions are also a generating set of \mathfrak{S}_n .

Decomposition into disjoints cycles

A cycle is a permutation σ such that there exist distinct elements i_1, \ldots, i_r such that

- $\forall 1 \leq k \leq r-1$, $\sigma(i_k) = i_{k+1}$,
- $\sigma(i_r) = i_1$
- $\forall x \in \llbracket 1, n \rrbracket \setminus \{i_1, \dots, i_r\}, \ \sigma(x) = x.$

We denote such a cycle (i_1, \ldots, i_r) .

Decomposition into disjoints cycles

A cycle is a permutation σ such that there exist distinct elements i_1, \ldots, i_r such that

- $\forall 1 \leq k \leq r-1$, $\sigma(i_k) = i_{k+1}$,
- $\sigma(i_r) = i_1$
- $\forall x \in \llbracket 1, n \rrbracket \setminus \{i_1, \dots, i_r\}, \ \sigma(x) = x.$

We denote such a cycle (i_1, \ldots, i_r) .

Theorem (Decomposition into disjoints cycles)

Let $\sigma \in \mathfrak{S}_n$. There exists a unique *r*-tuple of non trivial cycles up to ordering and (c_1, \ldots, c_r) such that:

1. The c_i are pairwise disjoint,

2. $\sigma = c_1 \dots c_r$.

Group presentation

The symmetric group of rank \boldsymbol{n} is isomorphic to the group of presentation

$$\begin{vmatrix} s_1, \dots, s_{n-1} \\ s_i \\ s_{i+1} \\ s_i \\ s_i$$

under the isomorphism sending the simple transposition σ_i to the generator s_i . This makes \mathfrak{S}_n a COXETER group. We say it is of type A_{n-1} .

Figure: COXETER diagram of type A_n

If V is a vector space, a **reflection** of V is an element f of GL(V) such that

- f fixes a hyperplane pointwise,
- there exists a vector $\alpha \in V$ such that $f(\alpha) = -\alpha$

Orthogonal symmetries are an example of reflections.

If V is a vector space, a **reflection** of V is an element f of GL(V) such that

- f fixes a hyperplane pointwise,
- there exists a vector $\alpha \in V$ such that $f(\alpha) = -\alpha$

Orthogonal symmetries are an example of reflections.

A reflection group is a subgroup of GL(V) generated by reflections.

If V is a vector space, a reflection of V is an element f of $\operatorname{GL}(V)$ such that

- f fixes a hyperplane pointwise,
- there exists a vector $\alpha \in V$ such that $f(\alpha) = -\alpha$

Orthogonal symmetries are an example of reflections.

A reflection group is a subgroup of $\mathsf{GL}(V)$ generated by reflections.

Example: Let s, t be two distinct reflections of a vector space V. Then the group generated by both s and t is a dihedral group of order the order of the product st.

Figure: Generators of D_7

If V is a vector space, a **reflection** of V is an element f of GL(V) such that

- f fixes a hyperplane pointwise,
- there exists a vector $\alpha \in V$ such that $f(\alpha) = -\alpha$

Orthogonal symmetries are an example of reflections.

A reflection group is a subgroup of GL(V) generated by reflections.

Example: Let s, t be two distinct reflections of a vector space V. Then the group generated by both s and t is a dihedral group of order the order of the product st.

Figure: Generators of D_7

Let $V = \{(x_1, \ldots, x_n) \in \mathbb{R}^n ; x_1 + \cdots + x_n = 0\}$. It is a subspace of \mathbb{R}^n of dimension n-1.

Let $V = \{(x_1, \ldots, x_n) \in \mathbb{R}^n ; x_1 + \cdots + x_n = 0\}$. It is a subspace of \mathbb{R}^n of dimension n-1. If $1 \le i < j \le n$, consider the hyperplanes $H_{i,j} = \{(x_1, \ldots, x_n) \in V ; x_i - x_j = 0\}$ of V.

We denote $t_{i,j}$ the (orthogonal) reflection that fixes $H_{i,j}$.

Let $V = \{(x_1, \ldots, x_n) \in \mathbb{R}^n ; x_1 + \cdots + x_n = 0\}$. It is a subspace of \mathbb{R}^n of dimension n-1. If $1 \le i < j \le n$, consider the hyperplanes $H_{i,j} = \{(x_1, \ldots, x_n) \in V ; x_i - x_j = 0\}$ of V.

We denote $t_{i,j}$ the (orthogonal) reflection that fixes $H_{i,j}$.

Theorem

The symmetric group of order n is isomorphic to the reflection group generated by the $t_{i,j}$.

$$\mathfrak{S}_n \simeq \langle t_{i,j} ; 1 \leq i < j \leq n \rangle.$$

The isomorphism between \mathfrak{S}_n and the reflection group generated by the $t_{i,j}$ is given by

 $\forall 1 \leq i < j \leq n, \ (i,j) \mapsto t_{i,j}.$

Because \mathfrak{S}_n is generated by the simple reflections, the reflections $t_{i,i+1}$ also generate the reflection group above.

The isomorphism between \mathfrak{S}_n and the reflection group generated by the $t_{i,j}$ is given by

 $\forall 1 \le i < j \le n, \ (i,j) \mapsto t_{i,j}.$

Because \mathfrak{S}_n is generated by the simple reflections, the reflections $t_{i,i+1}$ also generate the reflection group above.

Figure: The hyperplanes $H_{i,j}$.

Affine reflections

We denote $\operatorname{Aff}(V)$ the affine group: it is the set of automorphisms of the affine space V.

Affine reflections

We denote Aff(V) the affine group: it is the set of automorphisms of the affine space V.

We have $\mathrm{Aff}(V)\simeq \mathrm{GL}(V)\ltimes V$: an element $f\in \mathrm{Aff}(V)$ is defined by

- 1. a linear endomorphism $\vec{f} \in \mathsf{GL}(V)$,
- 2. a vector $\alpha \in V$,

and we have $\forall x \in V, f(x) = \vec{f}(x) + \alpha$.

Affine reflections

We denote Aff(V) the **affine group**: it is the set of automorphisms of the affine space V.

We have $\operatorname{Aff}(V) \simeq \operatorname{GL}(V) \ltimes V$: an element $f \in \operatorname{Aff}(V)$ is defined by

- 1. a linear endomorphism $\vec{f} \in \mathsf{GL}(V)$,
- 2. a vector $\alpha \in V$,

and we have $\forall x \in V, f(x) = \vec{f}(x) + \alpha$.

Definition (Affine reflections)

An affine reflection is an element $f \in Aff(V)$ such that \vec{f} is a (linear) reflection.

Affine hyperplanes

We recall the vector space $V = \{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_1 + \cdots + x_n = 0\}$ used when we studied \mathfrak{S}_n .

Affine hyperplanes

We recall the vector space $V = \{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_1 + \cdots + x_n = 0\}$ used when we studied \mathfrak{S}_n .

For each $1 \leq i < j \leq n$ and $p \in \mathbb{Z}$, we define

$$H_{(i,j),p} = \{ (x_1, \dots, x_n) \in V \mid x_i - x_j = p \}.$$

It is an affine hyperplane.

Affine hyperplanes

We recall the vector space $V = \{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_1 + \cdots + x_n = 0\}$ used when we studied \mathfrak{S}_n .

For each $1 \leq i < j \leq n$ and $p \in \mathbb{Z}$, we define

$$H_{(i,j),p} = \{ (x_1, \dots, x_n) \in V \mid x_i - x_j = p \}.$$

It is an affine hyperplane.

Let $t_{(i,j),p} = t_{i,j} + p(e_i - e_j)$. It is an affine reflection whose set of fixed points is $H_{(i,j),p}$.

Figure: The hyperplanes $H_{(i,j),p}$ alongside some affine reflections (n = 3).

Figure: The hyperplanes $H_{(i,j),p}$ alongside some affine reflections (n = 3).

The group generated by all the $t_{(i,j),p}$ is isomorphic to the affine symmetric group of rank n:

$$\langle t_{(i,j),p} \mid 1 \le i < j \le n, \, p \in \mathbb{Z} \rangle \simeq \widehat{\mathfrak{S}}_n.$$

Figure: The hyperplanes $H_{(i,j),p}$ alongside some affine reflections (n = 3).

The group generated by all the $t_{(i,j),p}$ is isomorphic to the affine symmetric group of rank n:

$$\langle t_{(i,j),p} \mid 1 \le i < j \le n, \, p \in \mathbb{Z} \rangle \simeq \widehat{\mathfrak{S}}_n.$$

We say that $\widehat{\mathfrak{S}}_n$ is an affine reflection group. It belongs to the family of affine COXETER groups.

An **alcove** is a connected component of $V \setminus \bigcup_H H$ where the union describes all the hyperplanes $H_{(i,j),p}$.

An alcove is a connected component of $V \setminus \bigcup_H H$ where the union describes all the hyperplanes $H_{(i,j),p}$. Choose an alcove A_0 . The affine symmetric group acts on the set of alcoves by permuting them.

An **alcove** is a connected component of $V \setminus \bigcup_H H$ where the union describes all the hyperplanes $H_{(i,j),p}$. Choose an alcove A_0 . The affine symmetric group acts on the set of alcoves by permuting them.

Figure: Alcoves obtained by action of the $t_{(i,j),p}$.

The action of $\widehat{\mathfrak{S}}_n$ on the alcoves satisfies :

- 1. For each alcove A, there exists $\sigma \in \widehat{\mathfrak{S}}_n$ such that $\sigma(A_0) = A$ (transitive action)
- 2. If $\sigma(A_0) = \sigma'(A_0)$, then $\sigma = \sigma'$ (faithful action)

This gives us a bijection between the set of alcoves and the elements of $\widehat{\mathfrak{S}}_n$.

The action of $\widehat{\mathfrak{S}}_n$ on the alcoves satisfies :

1. For each alcove A, there exists $\sigma \in \widehat{\mathfrak{S}}_n$ such that $\sigma(A_0) = A$ (transitive action)

2. If
$$\sigma(A_0) = \sigma'(A_0)$$
, then $\sigma = \sigma'$ (faithful action)

This gives us a bijection between the set of alcoves and the elements of $\widehat{\mathfrak{S}}_n$. Notice that we can reach any alcove from A_0 only by applying the following affine reflections

$$t_{(1,2),0}, \ldots, t_{(n-1,n),0}, t_{(1,n),-1}.$$

Transitive action of $\widehat{\mathfrak{S}}_n$ on the alcoves

The action of $\widehat{\mathfrak{S}}_n$ on the alcoves satisfies :

1. For each alcove A, there exists $\sigma \in \widehat{\mathfrak{S}}_n$ such that $\sigma(A_0) = A$ (transitive action)

2. If
$$\sigma(A_0) = \sigma'(A_0)$$
, then $\sigma = \sigma'$ (faithful action)

This gives us a bijection between the set of alcoves and the elements of $\widehat{\mathfrak{S}}_n$. Notice that we can reach any alcove from A_0 only by applying the following affine reflections

$$t_{(1,2),0}, \ldots, t_{(n-1,n),0}, t_{(1,n),-1}.$$

This implies that $\widehat{\mathfrak{S}}_n$ is finitely generated:

$$\widehat{\mathfrak{S}}_n \simeq \langle t_{(i,j),p} \mid 1 \le i < j \le n, \ p \in \mathbb{Z} \rangle \simeq \langle t_{(1,2),0}, \ \dots, \ t_{(n-1,n),0}, \ t_{(1,n),-1} \rangle$$

An example

Figure: The alcove $t_{(1,2),0}t_{(1,3),-1}t_{(1,2),0}t_{(2,3),0}t_{(1,2),0}A_0$

An example

Figure: The alcove $t_{(1,3),-1}t_{(1,2),0}t_{(1,3),-1}t_{(2,3),0}t_{(1,2),0}A_0$

$\widehat{\mathfrak{S}}_n$ is a COXETER group

The group with the following presentation

$$\begin{vmatrix} s_0, s_1, \dots, s_n \\ s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} \\ s_i s_{j} = s_j s_i \end{vmatrix} \begin{array}{l} \forall 0 \le i \le n \\ \forall 0 \le i \le n \\ \forall 0 \le i, j \le n, |i-j| \mod n > 1 \end{vmatrix}$$

$\widehat{\mathfrak{S}}_n$ is a COXETER group

The group with the following presentation

$$\begin{vmatrix} s_0, s_1, \dots, s_n \\ s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} \\ s_i s_{j} = s_j s_i \end{vmatrix} \begin{array}{l} \forall 0 \le i \le n \\ \forall 0 \le i \le n \\ \forall 0 \le i, j \le n, |i-j| \mod n > 1 \end{vmatrix}$$

is isomorphic to $\widehat{\mathfrak{S}}_{n+1}$ via the isomorphism

$$\begin{array}{lll} s_0 & \mapsto & t_{(1,n),-1} \\ s_i & \mapsto & t_{(i,i+1),0} & \forall 1 \leq i \leq n. \end{array}$$

$\widehat{\mathfrak{S}}_n$ is a COXETER group

The group with the following presentation

$$\begin{vmatrix} s_0, s_1, \dots, s_n \\ s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} \\ s_i s_j = s_j s_i \end{vmatrix} \begin{array}{l} \forall 0 \le i \le n \\ \forall 0 \le i \le n \\ \forall 0 \le i, j \le n, |i-j| \mod n > 1 \end{array}$$

is isomorphic to $\widehat{\mathfrak{S}}_{n+1}$ via the isomorphism

$$\begin{aligned} s_0 & \mapsto \quad t_{(1,n),-1} \\ s_i & \mapsto \quad t_{(i,i+1),0} \quad \forall 1 \leq i \leq n. \end{aligned}$$

 $\widehat{\mathfrak{S}}_n$ is a COXETER group of type \widetilde{A}_{n-1} .

Figure: Coxeter diagram of type \widetilde{A}_n

Periodic permutations of $\ensuremath{\mathbb{Z}}$

Combinatorial definition:

$$\widehat{\mathfrak{S}}_n = \left\{ \sigma \in \mathfrak{S}(\mathbb{Z}) \middle| \begin{array}{l} \forall x \in \mathbb{Z}, \ \sigma(x+n) = \sigma(x) + n \\ \sigma(1) + \dots + \sigma(n) = 1 + \dots + n = n(n+1)/2 \end{array} \right\}.$$

Periodic permutations of \mathbb{Z}

Combinatorial definition:

$$\widehat{\mathfrak{S}}_n = \left\{ \sigma \in \mathfrak{S}(\mathbb{Z}) \middle| \begin{array}{l} \forall x \in \mathbb{Z}, \ \sigma(x+n) = \sigma(x) + n \\ \sigma(1) + \dots + \sigma(n) = 1 + \dots + n = n(n+1)/2 \end{array} \right\}.$$

Example, n = 4:

Periodic permutations of \mathbb{Z}

Combinatorial definition:

$$\widehat{\mathfrak{S}}_n = \left\{ \sigma \in \mathfrak{S}(\mathbb{Z}) \middle| \begin{array}{l} \forall x \in \mathbb{Z}, \ \sigma(x+n) = \sigma(x) + n \\ \sigma(1) + \dots + \sigma(n) = 1 + \dots + n = n(n+1)/2 \end{array} \right\}.$$

Example, n = 4:

Periodic permutations of \mathbb{Z}

Combinatorial definition:

$$\widehat{\mathfrak{S}}_n = \left\{ \sigma \in \mathfrak{S}(\mathbb{Z}) \middle| \begin{array}{l} \forall x \in \mathbb{Z}, \ \sigma(x+n) = \sigma(x) + n \\ \sigma(1) + \dots + \sigma(n) = 1 + \dots + n = n(n+1)/2 \end{array} \right\}.$$

Example, n = 4:

Window notation:

$$[4, 3, 6, -3].$$

If $x \neq y[n]$, we note (x, y) the affine permutation which exchanges x + pn and y + pn for all $p \in \mathbb{Z}$. For any $k \in \mathbb{Z}$, the equality (x, y) = (x + kn, y + kn) holds.

If $x \neq y[n]$, we note (x, y) the affine permutation which exchanges x + pn and y + pn for all $p \in \mathbb{Z}$. For any $k \in \mathbb{Z}$, the equality (x, y) = (x + kn, y + kn) holds. If $1 \leq i < j \leq n$ and $p \in \mathbb{Z}$, we also note $(i, j)_p = (i, j + pn)$.

If $x \neq y[n]$, we note (x, y) the affine permutation which exchanges x + pn and y + pn for all $p \in \mathbb{Z}$. For any $k \in \mathbb{Z}$, the equality (x, y) = (x + kn, y + kn) holds. If $1 \leq i < j \leq n$ and $p \in \mathbb{Z}$, we also note $(i, j)_p = (i, j + pn)$. The set of all affine transpositions is

$$T = \{(x, y) \mid x, y \in \mathbb{Z}, \, x \not\equiv y[n]\} = \{(i, j)_p \mid 1 \le i < j \le n, \, p \in \mathbb{Z}\}.$$

If $x \neq y[n]$, we note (x, y) the affine permutation which exchanges x + pn and y + pn for all $p \in \mathbb{Z}$. For any $k \in \mathbb{Z}$, the equality (x, y) = (x + kn, y + kn) holds. If $1 \leq i < j \leq n$ and $p \in \mathbb{Z}$, we also note $(i, j)_p = (i, j + pn)$. The set of all affine transpositions is

$$T = \{(x, y) \mid x, y \in \mathbb{Z}, \, x \not\equiv y[n]\} = \{(i, j)_p \mid 1 \le i < j \le n, \, p \in \mathbb{Z}\}.$$

Bijection between $\widehat{\mathfrak{S}}_n$ and the geometric definition:

$$\forall 1 \leq i < j < n, \, \forall p \in \mathbb{Z}, \, t_{(i,j),p} \leftrightarrow (i,j)_p.$$

Cycles

Example: [3, 1, 4, 2].

$$\cdots \xrightarrow{-5}_{-5} \xrightarrow{-4}_{-4} \xrightarrow{-3}_{-2} \xrightarrow{-2}_{-1} \xrightarrow{0}_{0} \xrightarrow{1}_{1} \xrightarrow{2}_{-2} \xrightarrow{3}_{-4} \xrightarrow{4}_{5} \cdots$$

This is a cycle: [3, 1, 4, 2] = (1, 3, 4, 2).

Cycles

Example: [3, 1, 4, 2].

This is a cycle: [3, 1, 4, 2] = (1, 3, 4, 2).

Definition (Cycle)

A cycle (i_1, \ldots, i_r) where each i_k is in a distinct class modulo n is the affine permutation sending $i_k + an$ to $i_{k+1} + an$ if i < r and $i_r + an$ to $i_1 + an$ for all $a \in \mathbb{Z}$, and fixing all the other points.

Note that an affine transposition is a cycle of length 2.

Pseudo-cycles

This is a product of pseudo-cycles: $[4, 3, 6, -3] = (1, 4)_{[-1]}(2, 3)_{[1]}$.

Pseudo-cycles

This is a product of pseudo-cycles: $[4, 3, 6, -3] = (1, 4)_{[-1]}(2, 3)_{[1]}$.

Definition (Pseudo-cycle)

A pseudo-cycle $(i_1, \ldots, i_r)_{[p]}$ where each i_k is in a distinct class modulo n and $p \in \mathbb{Z}$ is the bijection of \mathbb{Z} sending $i_k + an$ to $i_{k+1} + an$ if i < r and $i_r + an$ to $i_1 + an + pn$ for all $a \in \mathbb{Z}$, and fixing all the other points.

Pseudo-cycles

This is a product of pseudo-cycles: $[4, 3, 6, -3] = (1, 4)_{[-1]}(2, 3)_{[1]}$.

Definition (Pseudo-cycle)

A pseudo-cycle $(i_1, \ldots, i_r)_{[p]}$ where each i_k is in a distinct class modulo n and $p \in \mathbb{Z}$ is the bijection of \mathbb{Z} sending $i_k + an$ to $i_{k+1} + an$ if i < r and $i_r + an$ to $i_1 + an + pn$ for all $a \in \mathbb{Z}$, and fixing all the other points.

Remarks:

- 1. If p = 0, we obtain a cycle.
- 2. If $p \neq 0$, a pseudo cycle is not an affine permutation.

Decomposition into disjoint pseudo-cycles

Theorem (Decomposition into disjoint pseudo-cycles)

Let $\sigma \in \widehat{\mathfrak{S}}_n$. There exists a unique *r*-tuple of pseudo-cycles up to ordering (c_1, \ldots, c_r) such that:

- 1. The sum of the indices of the c_i vanishes,
- 2. The c_i are pairwise disjoint,

3. $\sigma = c_1 \dots c_r$.

This is a decomposition of an element of $\widehat{\mathfrak{S}}_n$ as a product of elements of $\mathfrak{S}(\mathbb{Z})$ (in fact, of $\overline{\mathfrak{S}}_n$, the extended affine symmetric group of rank n).

Braid groups

The symmetric group of order n is linked to the braid group on n strands denoted B_n .

Figure: A braid on 5 strands. It induces the permutation 25134.

Braid groups

The symmetric group of order n is linked to the braid group on n strands denoted B_n .

Figure: A braid on 5 strands. It induces the permutation 25134.

Similarly, the affine symmetric group of rank n appears in braids on n strands on a cylindrical annulus.

Figure: An affine braid on 5 strands. It induces the affine permutation [-1, 3, 2, 5, 6].

Thank you for your attention!

Some other generalizations of the symmetric group

The affine symmetric group is not the only generalization of the symmetric group. Here is a list of some other ones:

- Extended affine symmetric group G_n. It has the same combinatorial description as G_n but without the condition on the sum of the *n*-th first values. It is not a reflection group. It is isomorphic to the semi-direct product G_n K Zⁿ. It has countably infinite many elements. It is finitely generated.
- Infinite symmetric group 𝔅_∞. It is the group consisting of all permutations of ℤ that fixes all but finitely many elements. It is the direct limit lim 𝔅_n. It is not a reflection group. It has countably infinite many elements. It is not finitely generated.
- Symmetric group over Z 𝔅(Z). It is the set of all permutations of the set Z. It is not a reflection group. It has uncountably infinite many elements. It is not finitely generated.