Affine symmetric groups

Jad Abou Yassin

Semaine des jeunes de l'IDP
Supervisors: Thomas Gobet \& Cédric Lecouvey
June 17, 2024

Summary

1. Symmetric groups

- Permutations
- Definition
- Transposition, cycles and decomposition into disjoints cycles
- Group presentation
- \mathfrak{S}_{n} as a reflection group

2. Affine symmetric groups

- As an affine reflection group
- Action of $\widehat{\mathfrak{S}}_{n}$ on the alcoves
- Group presentation

■ Combinatorial model

- Affine transpositions, pseudo-cycles
- An example: affine braid groups

Permutations

Let X be a set. A permutation of X is a bijection $X \rightarrow X$. We denote $\mathfrak{S}(X)$ the set of all permutations of X.

Permutations

Let X be a set. A permutation of X is a bijection $X \rightarrow X$. We denote $\mathfrak{S}(X)$ the set of all permutations of X.

Example : permutations of a set of three colors

Symmetric groups

The set $\mathfrak{S}(X)$ has a group structure with composition of function. As a group, it is called the symmetric group over X.

Symmetric groups

The set $\mathfrak{S}(X)$ has a group structure with composition of function. As a group, it is called the symmetric group over X.
If X is a finite set of cardinality n, then its symmetric group and the symmetric group $\mathfrak{S}(\llbracket 1, n \rrbracket)$ are isomorphic.

Symmetric groups

The set $\mathfrak{S}(X)$ has a group structure with composition of function. As a group, it is called the symmetric group over X.
If X is a finite set of cardinality n, then its symmetric group and the symmetric group $\mathfrak{S}(\llbracket 1, n \rrbracket)$ are isomorphic.

When studying symmetric groups of finite sets, we can only look at the symmetric group of the sets $\llbracket 1, n \rrbracket$ for $n \in \mathbb{N}$. We call them symmetric groups of rank n and we denote them \mathfrak{S}_{n} instead of $\mathfrak{S}(\llbracket 1, n \rrbracket)$.

Transpositions

A transposition is a permutation that fixes all but exactly two points. If $i \neq j$, we denote (i, j) the transposition that does not fix i and j. We have $(i, j)=(j, i)$, so we will always assume $i<j$ when writing a transposition like that.

Transpositions

A transposition is a permutation that fixes all but exactly two points. If $i \neq j$, we denote (i, j) the transposition that does not fix i and j. We have $(i, j)=(j, i)$, so we will always assume $i<j$ when writing a transposition like that.

Theorem (Transpositions are a generating set)

Let σ be a permutation in \mathfrak{S}_{n}. Then there exist transpositions t_{1}, \ldots, t_{r} such that $\sigma=t_{1} \ldots t_{r}$.

Transpositions

A transposition is a permutation that fixes all but exactly two points. If $i \neq j$, we denote (i, j) the transposition that does not fix i and j. We have $(i, j)=(j, i)$, so we will always assume $i<j$ when writing a transposition like that.

Theorem (Transpositions are a generating set)

Let σ be a permutation in \mathfrak{S}_{n}. Then there exist transpositions t_{1}, \ldots, t_{r} such that $\sigma=t_{1} \ldots t_{r}$.

A simple transposition is a transposition $(i, i+1)$. We denote them σ_{i}. If (i, j) is a transposition, then

$$
(i, j)=\sigma_{i} \sigma_{i+1} \ldots \sigma_{j-2} \sigma_{j-1} \sigma_{j-2} \ldots \sigma_{i+1} \sigma_{i}
$$

This means that simple transpositions are also a generating set of \mathfrak{S}_{n}.

Decomposition into disjoints cycles

A cycle is a permutation σ such that there exist distinct elements i_{1}, \ldots, i_{r} such that

- $\forall 1 \leq k \leq r-1, \sigma\left(i_{k}\right)=i_{k+1}$,
- $\sigma\left(i_{r}\right)=i_{1}$
- $\forall x \in \llbracket 1, n \rrbracket \backslash\left\{i_{1}, \ldots, i_{r}\right\}, \sigma(x)=x$.

We denote such a cycle $\left(i_{1}, \ldots, i_{r}\right)$.

Decomposition into disjoints cycles

A cycle is a permutation σ such that there exist distinct elements i_{1}, \ldots, i_{r} such that

- $\forall 1 \leq k \leq r-1, \sigma\left(i_{k}\right)=i_{k+1}$,
- $\sigma\left(i_{r}\right)=i_{1}$
- $\forall x \in \llbracket 1, n \rrbracket \backslash\left\{i_{1}, \ldots, i_{r}\right\}, \sigma(x)=x$.

We denote such a cycle $\left(i_{1}, \ldots, i_{r}\right)$.
Theorem (Decomposition into disjoints cycles)
Let $\sigma \in \mathfrak{S}_{n}$. There exists a unique r-tuple of non trivial cycles up to ordering and $\left(c_{1}, \ldots, c_{r}\right)$ such that:

1. The c_{i} are pairwise disjoint,
2. $\sigma=c_{1} \ldots c_{r}$.

Group presentation

The symmetric group of rank n is isomorphic to the group of presentation

$$
\left\lvert\, \begin{array}{l|ll}
s_{1}, \ldots, s_{n-1} & \forall 1 \leq i \leq n-1 \\
s_{i}^{2}=1 & \forall 1 \leq i \leq n-1 \\
s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} & \forall 1 \leq i, j \leq n-1,|i-j|>1 \\
s_{i} s_{j}=s_{j} s_{i} & \forall 1
\end{array}\right.
$$

under the isomorphism sending the simple transposition σ_{i} to the generator s_{i}.
This makes \mathfrak{S}_{n} a Coxeter group. We say it is of type A_{n-1}.

Figure: Coxeter diagram of type A_{n}

Reflection groups

If V is a vector space, a reflection of V is an element f of $\mathrm{GL}(V)$ such that

- f fixes a hyperplane pointwise,
- there exists a vector $\alpha \in V$ such that $f(\alpha)=-\alpha$

Orthogonal symmetries are an example of reflections.

Reflection groups

If V is a vector space, a reflection of V is an element f of $\mathrm{GL}(V)$ such that

- f fixes a hyperplane pointwise,
- there exists a vector $\alpha \in V$ such that $f(\alpha)=-\alpha$

Orthogonal symmetries are an example of reflections.
A reflection group is a subgroup of $\mathrm{GL}(V)$ generated by reflections.

Reflection groups

If V is a vector space, a reflection of V is an element f of $\mathrm{GL}(V)$ such that

- f fixes a hyperplane pointwise,
- there exists a vector $\alpha \in V$ such that $f(\alpha)=-\alpha$

Orthogonal symmetries are an example of reflections.
A reflection group is a subgroup of $\mathrm{GL}(V)$ generated by reflections.

Example: Let s, t be two distinct reflections of a vector space V. Then the group generated by both s and t is a dihedral group of order the order of the product st.

Figure: Generators of D_{7}

Reflection groups

If V is a vector space, a reflection of V is an element f of $\mathrm{GL}(V)$ such that

- f fixes a hyperplane pointwise,
- there exists a vector $\alpha \in V$ such that $f(\alpha)=-\alpha$

Orthogonal symmetries are an example of reflections.
A reflection group is a subgroup of $\mathrm{GL}(V)$ generated by reflections.

Example: Let s, t be two distinct reflections of a vector space V. Then the group generated by both s and t is a dihedral group of order the order of the product st.

Figure: Generators of D_{7}

\mathfrak{S}_{n} as a reflection group

Let $V=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} ; x_{1}+\cdots+x_{n}=0\right\}$. It is a subspace of \mathbb{R}^{n} of dimension $n-1$.

\mathfrak{S}_{n} as a reflection group

Let $V=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} ; x_{1}+\cdots+x_{n}=0\right\}$. It is a subspace of \mathbb{R}^{n} of dimension $n-1$.
If $1 \leq i<j \leq n$, consider the hyperplanes $H_{i, j}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in V ; x_{i}-x_{j}=0\right\}$ of V.

We denote $t_{i, j}$ the (orthogonal) reflection that fixes $H_{i, j}$.

\mathfrak{S}_{n} as a reflection group

Let $V=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} ; x_{1}+\cdots+x_{n}=0\right\}$. It is a subspace of \mathbb{R}^{n} of dimension $n-1$.
If $1 \leq i<j \leq n$, consider the hyperplanes $H_{i, j}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in V ; x_{i}-x_{j}=0\right\}$ of V.

We denote $t_{i, j}$ the (orthogonal) reflection that fixes $H_{i, j}$.

Theorem

The symmetric group of order n is isomorphic to the reflection group generated by the $t_{i, j}$.

$$
\mathfrak{S}_{n} \simeq\left\langle t_{i, j} ; 1 \leq i<j \leq n\right\rangle
$$

\mathfrak{S}_{n} as a reflection group

The isomorphism between \mathfrak{S}_{n} and the reflection group generated by the $t_{i, j}$ is given by

$$
\forall 1 \leq i<j \leq n,(i, j) \mapsto t_{i, j} .
$$

Because \mathfrak{S}_{n} is generated by the simple reflections, the reflections $t_{i, i+1}$ also generate the reflection group above.

\mathfrak{S}_{n} as a reflection group

The isomorphism between \mathfrak{S}_{n} and the reflection group generated by the $t_{i, j}$ is given by

$$
\forall 1 \leq i<j \leq n,(i, j) \mapsto t_{i, j}
$$

Because \mathfrak{S}_{n} is generated by the simple reflections, the reflections $t_{i, i+1}$ also generate the reflection group above.

Figure: The hyperplanes $H_{i, j}$.

Affine reflections

We denote $\operatorname{Aff}(V)$ the affine group: it is the set of automorphisms of the affine space V.

Affine reflections

We denote $\operatorname{Aff}(V)$ the affine group: it is the set of automorphisms of the affine space V.

We have $\operatorname{Aff}(V) \simeq \operatorname{GL}(V) \ltimes V$: an element $f \in \operatorname{Aff}(V)$ is defined by

1. a linear endomorphism $\vec{f} \in \mathrm{GL}(V)$,
2. a vector $\alpha \in V$,
and we have $\forall x \in V, f(x)=\vec{f}(x)+\alpha$.

Affine reflections

We denote $\operatorname{Aff}(V)$ the affine group: it is the set of automorphisms of the affine space V.
We have $\operatorname{Aff}(V) \simeq \operatorname{GL}(V) \ltimes V$: an element $f \in \operatorname{Aff}(V)$ is defined by

1. a linear endomorphism $\vec{f} \in \mathrm{GL}(V)$,
2. a vector $\alpha \in V$,
and we have $\forall x \in V, f(x)=\vec{f}(x)+\alpha$.

Definition (Affine reflections)

An affine reflection is an element $f \in \operatorname{Aff}(V)$ such that \vec{f} is a (linear) reflection.

Affine hyperplanes

We recall the vector space $V=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1}+\cdots+x_{n}=0\right\}$ used when we studied \mathfrak{S}_{n}.

Affine hyperplanes

We recall the vector space $V=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1}+\cdots+x_{n}=0\right\}$ used when we studied \mathfrak{S}_{n}.
For each $1 \leq i<j \leq n$ and $p \in \mathbb{Z}$, we define

$$
H_{(i, j), p}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in V \mid x_{i}-x_{j}=p\right\} .
$$

It is an affine hyperplane.

Affine hyperplanes

We recall the vector space $V=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1}+\cdots+x_{n}=0\right\}$ used when we studied \mathfrak{S}_{n}.
For each $1 \leq i<j \leq n$ and $p \in \mathbb{Z}$, we define

$$
H_{(i, j), p}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in V \mid x_{i}-x_{j}=p\right\} .
$$

It is an affine hyperplane.
Let $t_{(i, j), p}=t_{i, j}+p\left(e_{i}-e_{j}\right)$. It is an affine reflection whose set of fixed points is $H_{(i, j), p}$.

Affine symmetric groups

Figure: The hyperplanes $H_{(i, j), p}$ alongside some affine reflections $(n=3)$.

Affine symmetric groups

Figure: The hyperplanes $H_{(i, j), p}$ alongside some affine reflections ($n=3$).

The group generated by all the $t_{(i, j), p}$ is isomorphic to the affine symmetric group of rank n :

$$
\left\langle t_{(i, j), p} \mid 1 \leq i<j \leq n, p \in \mathbb{Z}\right\rangle \simeq \widehat{\mathfrak{S}}_{n}
$$

Affine symmetric groups

The group generated by all the $t_{(i, j), p}$ is isomorphic to the affine symmetric group of rank n :

$$
\left\langle t_{(i, j), p} \mid 1 \leq i<j \leq n, p \in \mathbb{Z}\right\rangle \simeq \widehat{\mathfrak{S}}_{n}
$$

We say that $\widehat{\mathfrak{S}}_{n}$ is an affine reflection group. It belongs to the family of affine Coxeter groups.

Figure: The hyperplanes $H_{(i, j), p}$ alongside some affine reflections $(n=3)$.

Transitive action of \widetilde{S}_{n} on the alcoves

An alcove is a connected component of $V \backslash \bigcup_{H} H$ where the union describes all the hyperplanes $H_{(i, j), p}$.

Transitive action of $\widehat{\mathfrak{S}}_{n}$ on the alcoves

An alcove is a connected
component of $V \backslash \bigcup_{H} H$ where
the union describes all the
hyperplanes $H_{(i, j), p}$.
Choose an alcove A_{0}. The affine symmetric group acts on the set of alcoves by permuting them.

Transitive action of $\widehat{\mathfrak{S}}_{n}$ on the alcoves

An alcove is a connected component of $V \backslash \bigcup_{H} H$ where the union describes all the hyperplanes $H_{(i, j), p}$.
Choose an alcove A_{0}. The affine symmetric group acts on the set of alcoves by permuting them.

Figure: Alcoves obtained by action of the $t_{(i, j), p}$.

Transitive action of $\widehat{\mathfrak{S}}_{n}$ on the alcoves

The action of $\widehat{\mathfrak{S}}_{n}$ on the alcoves satisfies:

1. For each alcove A, there exists $\sigma \in \widehat{\mathfrak{S}}_{n}$ such that $\sigma\left(A_{0}\right)=A$ (transitive action)
2. If $\sigma\left(A_{0}\right)=\sigma^{\prime}\left(A_{0}\right)$, then $\sigma=\sigma^{\prime}$ (faithful action)

This gives us a bijection between the set of alcoves and the elements of $\widehat{\mathfrak{S}}_{n}$.

Transitive action of $\widehat{\mathfrak{S}}_{n}$ on the alcoves

The action of $\widehat{\mathfrak{S}}_{n}$ on the alcoves satisfies:

1. For each alcove A, there exists $\sigma \in \widehat{\mathfrak{S}}_{n}$ such that $\sigma\left(A_{0}\right)=A$ (transitive action)
2. If $\sigma\left(A_{0}\right)=\sigma^{\prime}\left(A_{0}\right)$, then $\sigma=\sigma^{\prime}$ (faithful action)

This gives us a bijection between the set of alcoves and the elements of $\widehat{\mathfrak{S}}_{n}$.
Notice that we can reach any alcove from A_{0} only by applying the following affine reflections

$$
t_{(1,2), 0}, \ldots, t_{(n-1, n), 0}, t_{(1, n),-1}
$$

Transitive action of $\widehat{\mathfrak{S}}_{n}$ on the alcoves

The action of $\widehat{\mathfrak{S}}_{n}$ on the alcoves satisfies:

1. For each alcove A, there exists $\sigma \in \widehat{\mathfrak{S}}_{n}$ such that $\sigma\left(A_{0}\right)=A$ (transitive action)
2. If $\sigma\left(A_{0}\right)=\sigma^{\prime}\left(A_{0}\right)$, then $\sigma=\sigma^{\prime}$ (faithful action)

This gives us a bijection between the set of alcoves and the elements of $\widehat{\mathfrak{S}}_{n}$.
Notice that we can reach any alcove from A_{0} only by applying the following affine reflections

$$
t_{(1,2), 0}, \ldots, t_{(n-1, n), 0}, t_{(1, n),-1}
$$

This implies that $\widehat{\mathfrak{S}}_{n}$ is finitely generated:

$$
\widehat{\mathfrak{S}}_{n} \simeq\left\langle t_{(i, j), p} \mid 1 \leq i<j \leq n, p \in \mathbb{Z}\right\rangle \simeq\left\langle t_{(1,2), 0}, \ldots, t_{(n-1, n), 0}, t_{(1, n),-1}\right\rangle
$$

An example

Figure: The alcove $t_{(1,2), 0} t_{(1,3),-1} t_{(1,2), 0} t_{(2,3), 0} t_{(1,2), 0} A_{0}$

An example

Figure: The alcove $t_{(1,3),-1} t_{(1,2), 0} t_{(1,3),-1} t_{(2,3), 0} t_{(1,2), 0} A_{0}$

$\widehat{\mathfrak{S}}_{n}$ is a CoXeter group

The group with the following presentation

$$
\left\lvert\, \begin{array}{l|ll}
s_{0}, s_{1}, \ldots, s_{n} & \forall 0 \leq i \leq n \\
s_{i}^{2}=1 & \forall 0 \leq i \leq n \quad\left(s_{n+1}=s_{0}\right) \\
s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} & \forall 0 \leq i, j \leq n,|i-j| \bmod n>1 \\
s_{i} s_{j}=s_{j} s_{i} & \forall 0
\end{array}\right.
$$

$\widehat{\mathfrak{S}}_{n}$ is a CoXeter group

The group with the following presentation

$$
\left\lvert\, \begin{array}{l|ll}
s_{0}, s_{1}, \ldots, s_{n} & \forall 0 \leq i \leq n \\
s_{i}^{2}=1 & \forall 0 \leq i \leq n \quad\left(s_{n+1}=s_{0}\right) \\
s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} & \forall 0 \leq i, j \leq n,|i-j| \bmod n>1 \\
s_{i} s_{j}=s_{j} s_{i} & \forall 0
\end{array}\right.
$$

is isomorphic to $\widehat{\mathfrak{S}}_{n+1}$ via the isomorphism

$$
\begin{aligned}
& s_{0} \mapsto \\
& t_{(1, n),-1} \\
& s_{i} \mapsto
\end{aligned} t_{(i, i+1), 0} \quad \forall 1 \leq i \leq n .
$$

$\widehat{\mathfrak{S}}_{n}$ is a CoXeter group

The group with the following presentation

$$
\left\lvert\, \begin{array}{l|ll}
s_{0}, s_{1}, \ldots, s_{n} & \forall 0 \leq i \leq n \\
s_{i}^{2}=1 & \forall 0 \leq i \leq n \quad\left(s_{n+1}=s_{0}\right) \\
s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} & \forall 0 \leq i, j \leq n,|i-j| \bmod n>1 \\
s_{i} s_{j}=s_{j} s_{i} &
\end{array}\right.
$$

is isomorphic to $\widehat{\mathfrak{S}}_{n+1}$ via the isomorphism

$$
\begin{array}{rll}
s_{0} & \mapsto & t_{(1, n),-1} \\
s_{i} & \mapsto & t_{(i, i+1), 0}
\end{array} \quad \forall 1 \leq i \leq n .
$$

Figure: Coxeter diagram of type \widetilde{A}_{n}

Periodic permutations of \mathbb{Z}

Combinatorial definition:

$$
\widehat{\mathfrak{S}}_{n}=\left\{\begin{array}{l|l}
\sigma \in \mathfrak{S}(\mathbb{Z}) & \begin{array}{l}
\forall x \in \mathbb{Z}, \sigma(x+n)=\sigma(x)+n \\
\sigma(1)+\cdots+\sigma(n)=1+\cdots+n=n(n+1) / 2
\end{array}
\end{array}\right\}
$$

Periodic permutations of \mathbb{Z}

Combinatorial definition:

$$
\widehat{\mathfrak{S}}_{n}=\left\{\begin{array}{l|l}
\sigma \in \mathfrak{S}(\mathbb{Z}) & \begin{array}{l}
\forall x \in \mathbb{Z}, \sigma(x+n)=\sigma(x)+n \\
\sigma(1)+\cdots+\sigma(n)=1+\cdots+n=n(n+1) / 2
\end{array}
\end{array}\right\} .
$$

Example, $n=4$:

$$
\left(\begin{array}{ccccccccccccc}
\ldots & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & \ldots \\
\ldots & -2 & -11 & 0 & -1 & 2 & -7 & 4 & 3 & 6 & -3 & 8 & \ldots
\end{array}\right)
$$

Periodic permutations of \mathbb{Z}

Combinatorial definition:

$$
\widehat{\mathfrak{S}}_{n}=\left\{\begin{array}{l|l}
\sigma \in \mathfrak{S}(\mathbb{Z}) & \begin{array}{l}
\forall x \in \mathbb{Z}, \sigma(x+n)=\sigma(x)+n \\
\sigma(1)+\cdots+\sigma(n)=1+\cdots+n=n(n+1) / 2
\end{array}
\end{array}\right\} .
$$

Example, $n=4$:

$$
\left(\begin{array}{ccccccccccccc}
\ldots & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & \ldots \\
\ldots & -2 & -11 & 0 & -1 & 2 & -7 & 4 & 3 & 6 & -3 & 8 & \ldots
\end{array}\right)
$$

Periodic permutations of \mathbb{Z}

Combinatorial definition:

$$
\widehat{\mathfrak{S}}_{n}=\left\{\begin{array}{l|l}
\sigma \in \mathfrak{S}(\mathbb{Z}) & \begin{array}{l}
\forall x \in \mathbb{Z}, \sigma(x+n)=\sigma(x)+n \\
\sigma(1)+\cdots+\sigma(n)=1+\cdots+n=n(n+1) / 2
\end{array}
\end{array}\right\} .
$$

Example, $n=4$:

$$
\left(\begin{array}{ccccccccccccc}
\ldots & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & \ldots \\
\ldots & -2 & -11 & 0 & -1 & 2 & -7 & 4 & 3 & 6 & -3 & 8 & \ldots
\end{array}\right)
$$

Window notation:

$$
[4,3,6,-3] .
$$

Affine transpositions

If $x \not \equiv y[n]$, we note (x, y) the affine permutation which exchanges $x+p n$ and $y+p n$ for all $p \in \mathbb{Z}$. For any $k \in \mathbb{Z}$, the equality $(x, y)=(x+k n, y+k n)$ holds.

Affine transpositions

If $x \not \equiv y[n]$, we note (x, y) the affine permutation which exchanges $x+p n$ and $y+p n$ for all $p \in \mathbb{Z}$. For any $k \in \mathbb{Z}$, the equality $(x, y)=(x+k n, y+k n)$ holds.
If $1 \leq i<j \leq n$ and $p \in \mathbb{Z}$, we also note $(i, j)_{p}=(i, j+p n)$.

Affine transpositions

If $x \not \equiv y[n]$, we note (x, y) the affine permutation which exchanges $x+p n$ and $y+p n$ for all $p \in \mathbb{Z}$. For any $k \in \mathbb{Z}$, the equality $(x, y)=(x+k n, y+k n)$ holds.
If $1 \leq i<j \leq n$ and $p \in \mathbb{Z}$, we also note $(i, j)_{p}=(i, j+p n)$.
The set of all affine transpositions is

$$
T=\{(x, y) \mid x, y \in \mathbb{Z}, x \not \equiv y[n]\}=\left\{(i, j)_{p} \mid 1 \leq i<j \leq n, p \in \mathbb{Z}\right\}
$$

Affine transpositions

If $x \not \equiv y[n]$, we note (x, y) the affine permutation which exchanges $x+p n$ and $y+p n$ for all $p \in \mathbb{Z}$. For any $k \in \mathbb{Z}$, the equality $(x, y)=(x+k n, y+k n)$ holds.
If $1 \leq i<j \leq n$ and $p \in \mathbb{Z}$, we also note $(i, j)_{p}=(i, j+p n)$.
The set of all affine transpositions is

$$
T=\{(x, y) \mid x, y \in \mathbb{Z}, x \not \equiv y[n]\}=\left\{(i, j)_{p} \mid 1 \leq i<j \leq n, p \in \mathbb{Z}\right\}
$$

Bijection between $\widehat{\mathfrak{S}}_{n}$ and the geometric definition:

$$
\forall 1 \leq i<j<n, \forall p \in \mathbb{Z}, t_{(i, j), p} \leftrightarrow(i, j)_{p} .
$$

Cycles

Example: $[3,1,4,2]$.

This is a cycle: $[3,1,4,2]=(1,3,4,2)$.

Cycles

Example: $[3,1,4,2]$.

This is a cycle: $[3,1,4,2]=(1,3,4,2)$.

Definition (Cycle)

A cycle $\left(i_{1}, \ldots, i_{r}\right)$ where each i_{k} is in a distinct class modulo n is the affine permutation sending $i_{k}+a n$ to $i_{k+1}+a n$ if $i<r$ and $i_{r}+a n$ to $i_{1}+a n$ for all $a \in \mathbb{Z}$, and fixing all the other points.

Note that an affine transposition is a cycle of length 2.

Pseudo-cycles

Example: $[4,3,6,-3]$.

This is a product of pseudo-cycles: $[4,3,6,-3]=(1,4)_{[-1]}(2,3)_{[1]}$.

Pseudo-cycles

Example: $[4,3,6,-3]$.

This is a product of pseudo-cycles: $[4,3,6,-3]=(1,4)_{[-1]}(2,3)_{[1]}$.

Definition (Pseudo-cycle)

A pseudo-cycle $\left(i_{1}, \ldots, i_{r}\right)_{[p]}$ where each i_{k} is in a distinct class modulo n and $p \in \mathbb{Z}$ is the bijection of \mathbb{Z} sending $i_{k}+a n$ to $i_{k+1}+a n$ if $i<r$ and $i_{r}+a n$ to $i_{1}+a n+p n$ for all $a \in \mathbb{Z}$, and fixing all the other points.

Pseudo-cycles

Example: $[4,3,6,-3]$.

This is a product of pseudo-cycles: $[4,3,6,-3]=(1,4)_{[-1]}(2,3)_{[1]}$.

Definition (Pseudo-cycle)

A pseudo-cycle $\left(i_{1}, \ldots, i_{r}\right)_{[p]}$ where each i_{k} is in a distinct class modulo n and $p \in \mathbb{Z}$ is the bijection of \mathbb{Z} sending $i_{k}+a n$ to $i_{k+1}+a n$ if $i<r$ and $i_{r}+a n$ to $i_{1}+a n+p n$ for all $a \in \mathbb{Z}$, and fixing all the other points.

Remarks:

1. If $p=0$, we obtain a cycle.
2. If $p \neq 0$, a pseudo cycle is not an affine permutation.

Decomposition into disjoint pseudo-cycles

Theorem (Decomposition into disjoint pseudo-cycles)

Let $\sigma \in \widehat{\mathfrak{S}}_{n}$. There exists a unique r-tuple of pseudo-cycles up to ordering $\left(c_{1}, \ldots, c_{r}\right)$ such that:

1. The sum of the indices of the c_{i} vanishes,
2. The c_{i} are pairwise disjoint,
3. $\sigma=c_{1} \ldots c_{r}$.

This is a decomposition of an element of $\widehat{\mathfrak{S}}_{n}$ as a product of elements of $\mathfrak{S}(\mathbb{Z})$ (in fact, of $\overline{\mathfrak{S}}_{n}$, the extended affine symmetric group of rank n).

Braid groups

The symmetric group of order n is linked to the braid group on n strands denoted B_{n}.

Figure: A braid on 5 strands. It induces the permutation 25134 .

Braid groups

The symmetric group of order n is linked to the braid group on n strands denoted B_{n}.

Figure: A braid on 5 strands. It induces the permutation 25134 .

Similarly, the affine symmetric group of rank n appears in braids on n strands on a cylindrical annulus.

Figure: An affine braid on 5 strands. It induces the affine permutation $[-1,3,2,5,6]$.

Thank you for your attention!

Some other generalizations of the symmetric group

The affine symmetric group is not the only generalization of the symmetric group. Here is a list of some other ones:

- Extended affine symmetric group $\overline{\mathfrak{S}}_{n}$. It has the same combinatorial description as $\widehat{\mathfrak{S}}_{n}$ but without the condition on the sum of the n-th first values. It is not a reflection group. It is isomorphic to the semi-direct product $\mathfrak{S}_{n} \ltimes \mathbb{Z}^{n}$. It has countably infinite many elements. It is finitely generated.
- Infinite symmetric group \mathfrak{S}_{∞}. It is the group consisting of all permutations of \mathbb{Z} that fixes all but finitely many elements. It is the direct limit $\underset{\longrightarrow}{\lim } \mathfrak{S}_{n}$. It is not a reflection group. It has countably infinite many elements. It is not finitely generated.
- Symmetric group over $\mathbb{Z} \mathfrak{S}(\mathbb{Z})$. It is the set of all permutations of the set \mathbb{Z}. It is not a reflection group. It has uncountably infinite many elements. It is not finitely generated.

