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Let X be a set. A permutation of X is a bijection X — X. We denote G(X) the set

of all permutations of X.
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Let X be a set. A permutation of X is a bijection X — X. We denote G(X) the set
of all permutations of X.

Example : permutations of a set of three colors

e o e e er— o e o0 er— e er— o
o e o e o e o e o e o0
o0 e o L ) o> o e o o> o
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Symmetric groups

The set &(X) has a group structure with composition of function. As a group, it is

called the symmetric group over X.
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Symmetric groups

The set &(X) has a group structure with composition of function. As a group, it is
called the symmetric group over X.

If X is a finite set of cardinality n, then its symmetric group and the symmetric group

S([1,n]) are isomorphic.
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Symmetric groups

The set &(X) has a group structure with composition of function. As a group, it is
called the symmetric group over X.

If X is a finite set of cardinality n, then its symmetric group and the symmetric group

When studying symmetric groups of finite sets, we can only look at the symmetric

S([1,n]) are isomorphic.

group of the sets [1,n] for n € N. We call them symmetric groups of rank n and we
denote them &,, instead of &([1,n]).
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Transpositions

A transposition is a permutation that fixes all but exactly two points. If i £ j, we
denote (i, 7) the transposition that does not fix ¢ and j. We have (i,7) = (j,7), so we

will always assume ¢ < j when writing a transposition like that.
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Transpositions

A transposition is a permutation that fixes all but exactly two points. If i # j, we
denote (i, 7) the transposition that does not fix ¢ and j. We have (i,7) = (j,7), so we

will always assume ¢ < j when writing a transposition like that.

Theorem (Transpositions are a generating set)
Let o be a permutation in G,,. Then there exist transpositions t1,...,t, such that

o=1t1...t.
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Transpositions

A transposition is a permutation that fixes all but exactly two points. If i # j, we
denote (i, 7) the transposition that does not fix ¢ and j. We have (i,7) = (j,7), so we

will always assume ¢ < j when writing a transposition like that.

Theorem (Transpositions are a generating set)
Let o be a permutation in G,,. Then there exist transpositions t1,...,t, such that

o=1t1...t.

A simple transposition is a transposition (7,7 + 1). We denote them o;. If (4,7) is a

transposition, then
(7,,]) = 0i04+1...05-204-105-2...0i4104.

This means that simple transpositions are also a generating set of &,,.
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Decomposition into disjoints cycles

A cycle is a permutation ¢ such that there exist distinct elements i1, ..., such that
o V1<k<r—1, o(ig) =irs1,
e o(iy) =11
o Vx € [1,n]\ {i1,...,ir}, o(z) = z.

We denote such a cycle (i1,...,4,).
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Decomposition into disjoints cycles

A cycle is a permutation ¢ such that there exist distinct elements i1, ..., such that
o V1<k<r—1, o(ig) =irs1,
e o(iy) =11
o Vx € [1,n]\ {i1,...,ir}, o(z) = z.

We denote such a cycle (i1,...,4,).

Theorem (Decomposition into disjoints cycles)

Let 0 € &,,. There exists a unique r-tuple of non trivial cycles up to ordering and
(c1y...,¢p) such that:

1. The ¢; are pairwise disjoint,

2. 0=¢c1...Cp.
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Group presentation

The symmetric group of rank n is isomorphic to the group of presentation

s?=1 Vi<i<n-—1
815 «++y Sn—1| 8iSi+18; = 8i+18iSi+1 V1 <i<n—1
518§ = 5;S; Vi<i,j<n-—1,|i—j]>1

under the isomorphism sending the simple transposition o; to the generator s;.

This makes &,, a COXETER group. We say it is of type A, _1.

Figure: COXETER diagram of type A,
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Reflection groups

If V' is a vector space, a reflection of V' is an element f of GL(V') such that
o f fixes a hyperplane pointwise,
@ there exists a vector a € V' such that f(a) = —«

Orthogonal symmetries are an example of reflections.
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Reflection groups

If V' is a vector space, a reflection of V' is an element f of GL(V') such that
o f fixes a hyperplane pointwise,
@ there exists a vector a € V' such that f(a) = —«

Orthogonal symmetries are an example of reflections.

A reflection group is a subgroup of GL(V') generated by reflections.
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Reflection groups

If V' is a vector space, a reflection of V' is an element f of GL(V') such that
o f fixes a hyperplane pointwise,
@ there exists a vector a € V' such that f(a) = —«

Orthogonal symmetries are an example of reflections.
A reflection group is a subgroup of GL(V') generated by reflections.

Example: Let s,t be two distinct reflections

of a vector space V. Then the group
generated by both s and ¢ is a dihedral
group of order the order of the product st.

Figure: Generators of D7
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Reflection groups

If V' is a vector space, a reflection of V' is an element f of GL(V') such that
o f fixes a hyperplane pointwise,
@ there exists a vector a € V' such that f(a) = —«

Orthogonal symmetries are an example of reflections.
A reflection group is a subgroup of GL(V') generated by reflections.

Example: Let s,t be two distinct reflections
of a vector space V. Then the group
generated by both s and ¢ is a dihedral
group of order the order of the product st.

Figure: Generators of D7
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S, as a reflection group

Let V ={(x1,...,2n) € R"; 21 +--- + 2, = 0}. It is a subspace of R" of dimension

n—1.
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S, as a reflection group

Let V ={(x1,...,2n) € R"; 21 +--- + 2, = 0}. It is a subspace of R" of dimension

n—1.
If 1 <i<j <mn, consider the hyperplanes H; ; = {(z1,...,2,) €V ; 2; — x; = 0} of
V.

We denote ¢; ; the (orthogonal) reflection that fixes H; ;.
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S, as a reflection group

Let V ={(x1,...,2n) € R"; 21 +--- + 2, = 0}. It is a subspace of R" of dimension

n—1.
If 1 <i<j <mn, consider the hyperplanes H; ; = {(z1,...,2,) €V ; 2; — x; = 0} of
V.

We denote ¢; ; the (orthogonal) reflection that fixes H; ;.

Theorem
The symmetric group of order n is isomorphic to the reflection group generated by the

tij.
(‘5n2<tm;1§i<]’§n>.
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S, as a reflection group

The isomorphism between &,, and the
reflection group generated by the ¢; ; is

given by
VI<i<j<n, (i) ti;.

Because G,, is generated by the simple
reflections, the reflections ¢; ;11 also

generate the reflection group above.
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S, as a reflection group

H
The isomorphism between &,, and the b2

reflection group generated by the ¢; ; is

given by
Hiy3

Vi<i<j<mn, (i,7) = ti;.

Because G,, is generated by the simple

reflections, the reflections ¢; ;11 also Ha3

generate the reflection group above.

Figure: The hyperplanes H,Y.
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Affine reflections

We denote Aff(V') the affine group: it is the set of automorphisms of the affine space
V.
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Affine reflections

We denote Aff(V') the affine group: it is the set of automorphisms of the affine space
V.
We have Aff(V) ~ GL(V) x V : an element f € Aff(V) is defined by

1. a linear endomorphism f € GL(V),

2. avectora €V,

—

and we have Vz € V, f(z) = f(z) + .
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Affine reflections

We denote Aff(V') the affine group: it is the set of automorphisms of the affine space
V.
We have Aff(V) ~ GL(V) x V : an element f € Aff(V) is defined by
1. a linear endomorphism f € GL(V),
2. avectora €V,
and we have Vz € V, f(z) = f(z) + a.
Definition (Affine reflections)

An affine reflection is an element f € Aff(V) such that f is a (linear) reflection.

9/21



Symmetric groups Affine symmetric groups
00000000 0000000000000 00

Affine hyperplanes

We recall the vector space V = {(z1,...,25) € R" | 1+ -+ + z,, = 0} used when we
studied &,,.
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Affine hyperplanes

We recall the vector space V = {(z1,...,25) € R" | 1+ -+ + z,, = 0} used when we
studied &,,.

For each 1 <i < j <n and p € Z, we define

H(i’j)7p = {(xh ce 55571) S 14 | €Ty — SL‘] = p}

It is an affine hyperplane.
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Affine hyperplanes

We recall the vector space V = {(z1,...,25) € R" | 1+ -+ + z,, = 0} used when we
studied &,,.

For each 1 <i < j <n and p € Z, we define

H(i’j)7p = {(xh ce 55571) S 14 | €Ty — SL‘] = p}

It is an affine hyperplane.
Let t(; j)p = tij + p(e; — €;). It is an affine reflection whose set of fixed points is

H(i,j),p'
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Transitive action of &,, on the alcoves

An alcove is a connected
component of V'\ Uy H where
the union describes all the

hyperplanes H; ;.
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Transitive action of &,, on the alcoves

An alcove is a connected
component of V'\ Uy H where
the union describes all the
hyperplanes H; ;.
Choose an alcove Ay. The affine
symmetric group acts on the set of

alcoves by permuting them.
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Transitive action of &,, on the alcoves
(1,2),1 (1,3),0 (2,3),1

An alcove is a connected

component of V'\ Uy H where

the union describes all the

hyperplanes H; ;.

Choose an alcove Ay. The affine

symmetric group acts on the set of

alcoves by permuting them. /\ /\ /\ /\ /\

Figure: Alcoves obtained by action of the ¢

i,3),p"
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Transitive action of &,, on the alcoves

The action of én on the alcoves satisfies :
1. For each alcove A, there exists o € &,, such that o(Ay) = A (transitive action)
2. If 0(Ag) = 0’(Ap), then o = ¢’ (faithful action)

This gives us a bijection between the set of alcoves and the elements of Gn.
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Transitive action of &,, on the alcoves

The action of én on the alcoves satisfies :
1. For each alcove A, there exists o € &,, such that o(Ay) = A (transitive action)
2. If 0(Ag) = 0’(Ap), then o = ¢’ (faithful action)

This gives us a bijection between the set of alcoves and the elements of Gn.
Notice that we can reach any alcove from Ag only by applying the following affine

reflections

0(1,2),00 -+ +» tn—1n),00 t(1,n),—1-
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Transitive action of &,, on the alcoves

The action of én on the alcoves satisfies :
1. For each alcove A, there exists o € &,, such that o(Ay) = A (transitive action)
2. If 0(Ag) = 0’(Ap), then o = ¢’ (faithful action)

This gives us a bijection between the set of alcoves and the elements of Gn.

Notice that we can reach any alcove from Ag only by applying the following affine
reflections

0(1,2),00 -+ +» tn—1n),00 t(1,n),—1-

This implies that S, is finitely generated:

Sy~ <t(i,j),p | I<i<j<n,pe Z) = <t(1,2),0a SRR t(n—l,n),07 t(l,n),—l)'
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An example

VAYAYAS VAVAYLY,

N

N\ /\ /\

Figure: The alcove t(l’z))Ot(l)3)7_1t(1,2)70t(273)70t(1y2)70A0
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An example

\/ AV \

NNININININ/NS
TAVAVAVAVAVAVAVAN
VAV

Figure: The alcove t(173))_1t(1)2)’Ot(173)7_1t(273)’0t(1)2)’0A0
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S, is a COXETER group

The group with the following presentation

2

805 15+« Sn | 8iSi15i = Si+15iSi+1 VO <i<n  (Sp41 = S0)
5185 = 5;5; VO <i,7<mn,|i—j| modn>1
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S,, is a COXETER group

The group with the following presentation

2

805 15+« Sn | 8iSi15i = Si+15iSi+1 VO <i<n  (Sp41 = S0)
5185 = 5;5; VO <i,7<mn,|i—j| modn>1

is isomorphic to éinH via the isomorphism

S0 = t(l,n)’_l

S; t(i,i—i—l),O V1 S 7 S n.
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S, is a COXETER group

The group with the following presentation

5% =1 VO<i<n
805 15+« Sn | 8iSi15i = Si+15iSi+1 VO <i<n  (Sp41 = S0)
5185 = 5;5; VO <i,7<mn,|i—j| modn>1
is isomorphic to &,, 1 via the isomorphism @

SO = t(l,n)’_l

S; = t(i,i—i—l),O V1l<i<n. @ g

én is a COXETER group of type /Tn_l.

Figure: Coxeter diagram of type A,
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Periodic permutations of Z

Combinatorial definition:

~

6n:{066(Z)
o)+ ---4+on)=14+---+n=nn+1)/2

Ve €Z, o(x +n)=o(x)+n }
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Periodic permutations of Z

Combinatorial definition:

.= ocs| WL olern) =ol)tn .
o)+ ---4+on)=14+---+n=nn+1)/2
Example, n =4 :
... =5 -4 -3 -2 -1 0 1 2 3 4 5
. =2 11 0 -1 2 -7 4 3 6 -3 8 .. |
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Combinatorial definition:

.= ocs| WL olern) =ol)tn .
o)+ ---4+on)=14+---+n=nn+1)/2
Example, n =4 :
... =5 -4 -3 -2 -1 0 1 2 3 4 5
.. =2 11 0 -1 2 -7 4 3 6 -3 8 .. |
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Periodic permutations of Z

Combinatorial definition:

~

6n:{0€6(Z)
o)+ ---4+on)=14+---+n=nn+1)/2

Ve €Z, o(x +n)=o(x)+n }

Example, n =4 :

... -5 —4 -3 -2 -1 0 1 2 3 4 5 ..
.. -2 11 0 -1 2 -7 4 3 6 -3 8 .. ]°

Window notation:
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Affine transpositions

If = # y[n], we note (x,y) the affine permutation which exchanges x + pn and y + pn
for all p € Z. For any k € Z, the equality (z,y) = (x 4+ kn,y + kn) holds.
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Affine transpositions

If = # y[n], we note (x,y) the affine permutation which exchanges x + pn and y + pn
for all p € Z. For any k € Z, the equality (z,y) = (x 4+ kn,y + kn) holds.
If 1 <i<j<nandpeZ, wealso note (i,j), = (i,j + pn).
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Affine transpositions

If = # y[n], we note (x,y) the affine permutation which exchanges x + pn and y + pn
for all p € Z. For any k € Z, the equality (z,y) = (x 4+ kn,y + kn) holds.
If 1 <i<j<nandpeZ, wealso note (i,j), = (i,j + pn).

The set of all affine transpositions is

T={(z,y) |z, y€Z,xZy[n]} ={(i,j)p |1 <i<j<n,peZ}
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Affine transpositions

If = # y[n], we note (x,y) the affine permutation which exchanges x + pn and y + pn
for all p € Z. For any k € Z, the equality (z,y) = (x 4+ kn,y + kn) holds.
If 1 <i<j<nandpeZ, wealso note (i,j), = (i,j + pn).

The set of all affine transpositions is
T=A{(z,9) [z,y€Z,x#yn]} ={(,j)p [1<i<j<n, pel}
Bijection between @n and the geometric definition:

V1<i< 7 <n, \V/p €7, t(i,j),p g (Z,])p
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Symmetric groups
00000000
Cycles

Example: [3, 1, 4, 2].

This is a cycle: [3, 1, 4, 2] =(1,3,4,2).
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Example: [3, 1, 4, 2].

This is a cycle: [3, 1, 4, 2] =(1,3,4,2).

Definition (Cycle)
A cycle (i1,...,i,) where each iy is in a distinct class modulo n is the affine
permutation sending iy + an to ixy1 +an if ¢ < r and ¢, + an to i1 +an for all a € Z,

and fixing all the other points.

Note that an affine transposition is a cycle of length 2.
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Pseudo-cycles

Example: [4, 3, 6, —3].

This is a product of pseudo-cycles: [4, 3, 6, —=3] = (1,4)[_1](2, 3) -
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Pseudo-cycles

Example: [4, 3, 6, —3].

This is a product of pseudo-cycles: [4, 3, 6, —=3] = (1,4)[_1](2, 3) -

Definition (Pseudo-cycle)

A pseudo-cycle (iy, ... ,ir)[p] where each iy is in a distinct class modulo n and p € Z
is the bijection of Z sending iy + an to ix+1 + an if i < r and 4, + an to iy + an + pn
for all @ € Z, and fixing all the other points.
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Pseudo-cycles

Example: [4, 3, 6, —3].

This is a product of pseudo-cycles: [4, 3, 6, —=3] = (1,4)[_1](2, 3) -
Definition (Pseudo-cycle)
A pseudo-cycle (iy, ... ,ir)[p] where each iy is in a distinct class modulo n and p € Z
is the bijection of Z sending iy + an to ix+1 + an if i < r and 4, + an to iy + an + pn
for all @ € Z, and fixing all the other points.
Remarks:

1. If p =0, we obtain a cycle.

2. If p=#£ 0, a pseudo cycle is not an affine permutation.
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Decomposition into disjoint pseudo-cycles

Theorem (Decomposition into disjoint pseudo-cycles)

Let o € én. There exists a unique r-tuple of pseudo-cycles up to ordering (ci,...,c;)
such that:

1. The sum of the indices of the ¢; vanishes,
2. The ¢; are pairwise disjoint,
3. 0=c1...cCp.

This is a decomposition of an element of &,, as a product of elements of S(Z) (in

fact, of &,,, the extended affine symmetric group of rank n).
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Braid groups

The symmetric group of order n is linked to

the braid group on n strands denoted B,,.

1 2 3
Y

<)

1 2 3 4 5

4 5

Figure: A braid on 5 strands. It induces the
permutation 2513 4.
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Braid groups

The symmetric group of order n is linked to Similarly, the affine symmetric group of

the braid group on n strands denoted B,,. rank n appears in braids on n strands on a

1 2 3
><

cylindrical annulus.
4 5

Figure: A braid on 5 strands. It induces the
permutation 2513 4.

Figure: An affine braid on 5 strands. It induces
the affine permutation [—1, 3, 2, 5, 6].
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Some other generalizations of the symmetric group

The affine symmetric group is not the only generalization of the symmetric group.
Here is a list of some other ones:

o Extended affine symmetric group &,,. It has the same combinatorial description
as én but without the condition on the sum of the n-th first values. It is not a
reflection group. It is isomorphic to the semi-direct product &,, x Z™. It has
countably infinite many elements. It is finitely generated.

@ Infinite symmetric group &. It is the group consisting of all permutations of Z
that fixes all but finitely many elements. It is the direct limit h_rr}Gn. It is not a
reflection group. It has countably infinite many elements. It is not finitely
generated.

e Symmetric group over Z G(Z). It is the set of all permutations of the set Z. It is
not a reflection group. It has uncountably infinite many elements. It is not finitely

generated.
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