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Symmetric groups Affine symmetric groups

Permutations

Let X be a set. A permutation of X is a bijection X → X. We denote S(X) the set
of all permutations of X.

Example : permutations of a set of three colors

• 7→ •
• 7→ •
• 7→ •

• 7→ •
• 7→ •
• 7→ •

• 7→ •
• 7→ •
• 7→ •

• 7→ •
• 7→ •
• 7→ •

• 7→ •
• 7→ •
• 7→ •

• 7→ •
• 7→ •
• 7→ •
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Symmetric groups

The set S(X) has a group structure with composition of function. As a group, it is
called the symmetric group over X.

If X is a finite set of cardinality n, then its symmetric group and the symmetric group
S(J1, nK) are isomorphic.

1 2 3

When studying symmetric groups of finite sets, we can only look at the symmetric
group of the sets J1, nK for n ∈ N. We call them symmetric groups of rank n and we
denote them Sn instead of S(J1, nK).
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Transpositions

A transposition is a permutation that fixes all but exactly two points. If i ̸= j, we
denote (i, j) the transposition that does not fix i and j. We have (i, j) = (j, i), so we
will always assume i < j when writing a transposition like that.

Theorem (Transpositions are a generating set)
Let σ be a permutation in Sn. Then there exist transpositions t1, . . . , tr such that
σ = t1 . . . tr.

A simple transposition is a transposition (i, i + 1). We denote them σi. If (i, j) is a
transposition, then

(i, j) = σiσi+1 . . . σj−2σj−1σj−2 . . . σi+1σi.

This means that simple transpositions are also a generating set of Sn.
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Decomposition into disjoints cycles

A cycle is a permutation σ such that there exist distinct elements i1, . . . , ir such that

∀1 ≤ k ≤ r − 1, σ(ik) = ik+1,

σ(ir) = i1

∀x ∈ J1, nK \ {i1, . . . , ir}, σ(x) = x.

We denote such a cycle (i1, . . . , ir).

Theorem (Decomposition into disjoints cycles)
Let σ ∈ Sn. There exists a unique r-tuple of non trivial cycles up to ordering and
(c1, . . . , cr) such that:

1. The ci are pairwise disjoint,

2. σ = c1 . . . cr.
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Group presentation

The symmetric group of rank n is isomorphic to the group of presentation

⟨s1, . . . , sn−1

∣∣∣∣∣∣∣∣
s2

i = 1 ∀1 ≤ i ≤ n − 1
sisi+1si = si+1sisi+1 ∀1 ≤ i ≤ n − 1
sisj = sjsi ∀1 ≤ i, j ≤ n − 1, |i − j| > 1

⟩
under the isomorphism sending the simple transposition σi to the generator si.
This makes Sn a Coxeter group. We say it is of type An−1.

s1 s2 . . . sn−1 sn

Figure: Coxeter diagram of type An
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Reflection groups

If V is a vector space, a reflection of V is an element f of GL(V ) such that

f fixes a hyperplane pointwise,

there exists a vector α ∈ V such that f(α) = −α

Orthogonal symmetries are an example of reflections.

A reflection group is a subgroup of GL(V ) generated by reflections.

Example: Let s, t be two distinct reflections
of a vector space V . Then the group
generated by both s and t is a dihedral
group of order the order of the product st.

s

t

Figure: Generators of D7
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Sn as a reflection group

Let V = {(x1, . . . , xn) ∈ Rn ; x1 + · · · + xn = 0}. It is a subspace of Rn of dimension
n − 1.

If 1 ≤ i < j ≤ n, consider the hyperplanes Hi,j = {(x1, . . . , xn) ∈ V ; xi − xj = 0} of
V .
We denote ti,j the (orthogonal) reflection that fixes Hi,j .

Theorem
The symmetric group of order n is isomorphic to the reflection group generated by the
ti,j .

Sn ≃ ⟨ti,j ; 1 ≤ i < j ≤ n ⟩.
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Sn as a reflection group

The isomorphism between Sn and the
reflection group generated by the ti,j is
given by

∀1 ≤ i < j ≤ n, (i, j) 7→ ti,j .

Because Sn is generated by the simple
reflections, the reflections ti,i+1 also
generate the reflection group above.

V

H1,3

H1,2

H2,3

Figure: The hyperplanes Hi,j .
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Affine reflections

We denote Aff(V ) the affine group: it is the set of automorphisms of the affine space
V .

We have Aff(V ) ≃ GL(V ) ⋉ V : an element f ∈ Aff(V ) is defined by

1. a linear endomorphism f⃗ ∈ GL(V ),

2. a vector α ∈ V ,

and we have ∀x ∈ V, f(x) = f⃗(x) + α.

Definition (Affine reflections)

An affine reflection is an element f ∈ Aff(V ) such that f⃗ is a (linear) reflection.
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Affine hyperplanes

We recall the vector space V = {(x1, . . . , xn) ∈ Rn | x1 + · · · + xn = 0} used when we
studied Sn.

For each 1 ≤ i < j ≤ n and p ∈ Z, we define

H(i,j),p = {(x1, . . . , xn) ∈ V | xi − xj = p}.

It is an affine hyperplane.
Let t(i,j),p = ti,j + p(ei − ej). It is an affine reflection whose set of fixed points is
H(i,j),p.
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Affine symmetric groups

H(1,3),−2

H(1,3),−1

H(1,3),0

H(1,3),1

H(1,3),2

H(1,2),−1

H(2,3),1

H(1,2),0

H(2,3),0

H(1,2),1

H(2,3),−1

H(1,2),2

H(2,3),−2

H(1,2),3

H(2,3),−3

t(1,2),2

t(2,3),1

t(1,3),0

Figure: The hyperplanes H(i,j),p alongside
some affine reflections (n = 3).

The group generated by all the t(i,j),p is
isomorphic to the affine symmetric group
of rank n:

⟨t(i,j),p | 1 ≤ i < j ≤ n, p ∈ Z⟩ ≃ Ŝn.

We say that Ŝn is an affine reflection
group. It belongs to the family of affine
Coxeter groups.
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Transitive action of Ŝn on the alcoves

An alcove is a connected
component of V \

⋃
H H where

the union describes all the
hyperplanes H(i,j),p.

Choose an alcove A0. The affine
symmetric group acts on the set of
alcoves by permuting them.

A0

(1, 3), 0

(2, 3), 0(1, 2), 0

(1, 3), −1(2, 3), −1 (1, 2), −1

(1, 2), 1 (2, 3), 1

Figure: Alcoves obtained by action of the t(i,j),p.
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An alcove is a connected
component of V \

⋃
H H where

the union describes all the
hyperplanes H(i,j),p.
Choose an alcove A0. The affine
symmetric group acts on the set of
alcoves by permuting them.

A0

(1, 3), 0

(2, 3), 0(1, 2), 0

(1, 3), −1(2, 3), −1 (1, 2), −1

(1, 2), 1 (2, 3), 1

Figure: Alcoves obtained by action of the t(i,j),p.

12 / 21



Symmetric groups Affine symmetric groups

Transitive action of Ŝn on the alcoves
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Transitive action of Ŝn on the alcoves

The action of Ŝn on the alcoves satisfies :

1. For each alcove A, there exists σ ∈ Ŝn such that σ(A0) = A (transitive action)

2. If σ(A0) = σ′(A0), then σ = σ′ (faithful action)

This gives us a bijection between the set of alcoves and the elements of Ŝn.

Notice that we can reach any alcove from A0 only by applying the following affine
reflections

t(1,2),0, . . . , t(n−1,n),0, t(1,n),−1.

This implies that Ŝn is finitely generated:

Ŝn ≃ ⟨t(i,j),p | 1 ≤ i < j ≤ n, p ∈ Z⟩ ≃ ⟨t(1,2),0, . . . , t(n−1,n),0, t(1,n),−1⟩.
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An example

A0

Figure: The alcove t(1,2),0t(1,3),−1t(1,2),0t(2,3),0t(1,2),0A0
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An example

A0

Figure: The alcove t(1,3),−1t(1,2),0t(1,3),−1t(2,3),0t(1,2),0A0
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Ŝn is a Coxeter group

The group with the following presentation

⟨s0, s1, . . . , sn

∣∣∣∣∣∣∣∣
s2

i = 1 ∀0 ≤ i ≤ n

sisi+1si = si+1sisi+1 ∀0 ≤ i ≤ n (sn+1 = s0)
sisj = sjsi ∀0 ≤ i, j ≤ n, |i − j| mod n > 1

⟩

is isomorphic to Ŝn+1 via the isomorphism

s0 7→ t(1,n),−1

si 7→ t(i,i+1),0 ∀1 ≤ i ≤ n.

Ŝn is a Coxeter group of type Ãn−1.

s0 s1

s2

s3

s4
. . .

sn

Figure: Coxeter diagram of type Ãn
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Periodic permutations of Z

Combinatorial definition:

Ŝn =

σ ∈ S(Z)

∣∣∣∣∣∣ ∀x ∈ Z, σ(x + n) = σ(x) + n

σ(1) + · · · + σ(n) = 1 + · · · + n = n(n + 1)/2

 .

Example, n = 4 : . . . −5 −4 −3 −2 −1 0 1 2 3 4 5 . . .

. . . −2 −11 0 −1 2 −7 4 3 6 −3 8 . . .

 .

Window notation:
[4, 3, 6, −3] .
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Affine transpositions

If x ̸≡ y[n], we note (x, y) the affine permutation which exchanges x + pn and y + pn

for all p ∈ Z. For any k ∈ Z, the equality (x, y) = (x + kn, y + kn) holds.

If 1 ≤ i < j ≤ n and p ∈ Z, we also note (i, j)p = (i, j + pn).
The set of all affine transpositions is

T = {(x, y) | x, y ∈ Z, x ̸≡ y[n]} = {(i, j)p | 1 ≤ i < j ≤ n, p ∈ Z}.

Bijection between Ŝn and the geometric definition:

∀1 ≤ i < j < n, ∀p ∈ Z, t(i,j),p ↔ (i, j)p.
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Cycles

Example: [3, 1, 4, 2].
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This is a cycle: [3, 1, 4, 2] = (1, 3, 4, 2).

Definition (Cycle)
A cycle (i1, . . . , ir) where each ik is in a distinct class modulo n is the affine
permutation sending ik + an to ik+1 + an if i < r and ir + an to i1 + an for all a ∈ Z,
and fixing all the other points.

Note that an affine transposition is a cycle of length 2.
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Pseudo-cycles

Example: [4, 3, 6, −3].
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This is a product of pseudo-cycles: [4, 3, 6, −3] = (1, 4)[−1](2, 3)[1].

Definition (Pseudo-cycle)
A pseudo-cycle (i1, . . . , ir)[p] where each ik is in a distinct class modulo n and p ∈ Z
is the bijection of Z sending ik + an to ik+1 + an if i < r and ir + an to i1 + an + pn

for all a ∈ Z, and fixing all the other points.

Remarks:
1. If p = 0, we obtain a cycle.
2. If p ̸= 0, a pseudo cycle is not an affine permutation.
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Decomposition into disjoint pseudo-cycles

Theorem (Decomposition into disjoint pseudo-cycles)

Let σ ∈ Ŝn. There exists a unique r-tuple of pseudo-cycles up to ordering (c1, . . . , cr)
such that:

1. The sum of the indices of the ci vanishes,

2. The ci are pairwise disjoint,

3. σ = c1 . . . cr.

This is a decomposition of an element of Ŝn as a product of elements of S(Z) (in
fact, of Sn, the extended affine symmetric group of rank n).
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Braid groups

The symmetric group of order n is linked to
the braid group on n strands denoted Bn.

1
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Figure: A braid on 5 strands. It induces the
permutation 2 5 1 3 4.

Similarly, the affine symmetric group of
rank n appears in braids on n strands on a
cylindrical annulus.
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3
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4

Figure: An affine braid on 5 strands. It induces
the affine permutation [−1, 3, 2, 5, 6].
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Some other generalizations of the symmetric group

The affine symmetric group is not the only generalization of the symmetric group.
Here is a list of some other ones:

Extended affine symmetric group Sn. It has the same combinatorial description
as Ŝn but without the condition on the sum of the n-th first values. It is not a
reflection group. It is isomorphic to the semi-direct product Sn ⋉ Zn. It has
countably infinite many elements. It is finitely generated.
Infinite symmetric group S∞. It is the group consisting of all permutations of Z
that fixes all but finitely many elements. It is the direct limit lim−→Sn. It is not a
reflection group. It has countably infinite many elements. It is not finitely
generated.
Symmetric group over Z S(Z). It is the set of all permutations of the set Z. It is
not a reflection group. It has uncountably infinite many elements. It is not finitely
generated.
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