CONTRÔLE CONTINU 1

Tous documents, tous appareils électroniques et toutes intelligences artificielles interdits. L'énoncé comporte cinq exercices et deux pages.

Exercice 1 On note $\mathbb{R}^{\mathbb{N}} = \{(u_n)_{n \in \mathbb{N}}, \forall n \in \mathbb{N}, u_n \in \mathbb{R}\}$ l'espace vectoriel des suites à valeurs réelles.

1. Parmi les sous-ensembles suivants de \mathbb{R}^3 , lesquels sont des \mathbb{R} -sous-espaces vectoriels de \mathbb{R}^3 ?

$$F_1 = \{(x, y, z) \in \mathbb{R}^3, \ xyz = 0\}, \ F_2 = \{(x, y, z) \in \mathbb{R}^3, \ x = y - z\}.$$

2. Le sous-ensemble F de $\mathbb{R}^{\mathbb{N}}$ est-il un \mathbb{R} -sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$?

$$F = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid \forall n \in \mathbb{N}, \ u_{2n+2} = u_{2n} \}.$$

Exercice 2 Dans l'espace vectoriel $E = \mathbb{R}^4$, on considère les cinq vecteurs suivants :

$$w_1 = (0, -2, 1, -1), \quad w_2 = (0, 3, 1, 1), \quad w_3 = (5, 2, -1, -1), \quad w_4 = (0, 1, 1, 0), \quad w_5 = (1, 0, 0, 1).$$

- 1. On pose $G = \text{Vect}(w_1, w_2)$.
 - (a) Donner une base de G. Quelle est sa dimension?
 - (b) Proposer un supplémentaire de G dans E.
 - (c) Trouver un système d'équations définissant G.
- 2. On pose $F = Vect(w_3, w_4, w_5)$.
 - (a) Donner une base de F. Quelle est sa dimension?
 - (b) Trouver une équation définissant F.
- 3. À l'aide des questions précédentes, trouver $F \cap G$.
- 4. Déterminer F + G et en donner une base.

Exercice 3 Soit a un réel. On pose

$$M_a = \begin{pmatrix} 1 & 0 & 1 \\ 0 & a & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

- 1. Trouver une matrice D_a diagonale et une matrice N dont les coefficients diagonaux sont nuls telles que $M_a = D_a + N$.
- 2. Sans justification, exprimer D_a^n pour tout $n \in \mathbb{N}$.
- 3. Exprimer N^n pour tout $n \in \mathbb{N}$, en justifiant soigneusement.
- 4. En déduire M_a^n pour tout $n \in \mathbb{N}$.

Exercice 4 Pour tout $n \in \mathbb{N}^*$, on note Δ_n le déterminant de la matrice

$$A_n = \begin{pmatrix} 3 & 1 & 0 & \cdots & \cdots & 0 \\ 2 & 3 & 1 & 0 & \vdots & \vdots \\ 0 & 2 & 3 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 & 0 \\ \vdots & \ddots & \ddots & 2 & 3 & 1 \\ 0 & \cdots & \cdots & 0 & 2 & 3 \end{pmatrix}$$

qui appartient à $\mathcal{M}_n(\mathbb{R})$. Par exemple, $A_1 = (3)$, $A_2 = \begin{pmatrix} 3 & 1 \\ 2 & 3 \end{pmatrix}$ et $A_3 = \begin{pmatrix} 3 & 1 & 0 \\ 2 & 3 & 1 \\ 0 & 2 & 3 \end{pmatrix}$.

- 1. Déterminer Δ_1 , Δ_2 et Δ_3 . On fera explicitement les calculs.
- 2. Soit $n \in \mathbb{N}^*$. Exprimer Δ_{n+2} en fonction de Δ_{n+1} et Δ_n à l'aide d'un développement par à une colonne suivi d'un développement par rapport à une ligne.
- 3. Démontrer **par récurrence** que pour tout $n \ge 1$, $\Delta_n = 2^{n+1} 1$. Indication : on pose comme hypothèse de récurrence pour $n \in \mathbb{N}^*$: $\ll P_n$: pour tout $k \in \{1, ..., n\}$, $\Delta_k = 2^{k+1} - 1$.

Exercice 5 Soientt $\mathbb{R}[X]$ l'espace vectoriel des polynômes à coefficients réels et $\mathbb{R}_2[X]$ l'espace vectoriel des polynômes à coefficients réels de degré au plus 2.

1. Les sous-ensembles suivants de $\mathbb{R}[X]$ sont-ils des sous-espaces vectoriels de $\mathbb{R}[X]$?

$$F = \{ P \in \mathbb{R}[X], \ P(1) = P(2) = P(3) = 0 \},$$

$$H = \left\{ P \in \mathbb{R}[X], \ \lim_{x \to +\infty} |P(x)| = +\infty \right\} \bigcup \left\{ 0_{\mathbb{R}[X]} \right\}.$$

- 2. On pose $u : \mathbb{R}[X] \to \mathbb{R}[X]$, $u(P) = P(1)X + P(2)X^2 + P(3)X^3$.
 - (a) Démontrer que u est linéaire.
 - (b) Trouver $\operatorname{Ker} D$ puis $\operatorname{Im} D$.
- 3. Soit $f: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$, $P \mapsto (2X 1)P(1)$ une application linéaire.
 - (a) Montrer que f est une projection.
 - (b) Déterminer les bases des sous-espaces vectoriels supplémentaires F et G tels que f soit une projection sur F parallèlement à G.
 - (c) On note q la projection sur G parallèlement à F et s la symétrie par rapport à F parallèlement à G. Déterminer l'expression de q(P) et s(P) en fonction de $P \in \mathbb{R}_2[X]$.
- 4. Soit $D: \mathbb{R}[X] \to \mathbb{R}[X]$, $P \mapsto P'$ la dérivation. Soit G un sous-espace vectoriel $\mathbb{R}[X]$. Démontrer que G est de dimension finie si et seulement s'il existe un entier $n \in \mathbb{N}^*$ tel que pour tout $P \in G$, $D^n(P) = 0$.
- 5. (a) Prouver que tous les idéaux de l'anneau ($\mathbb{R}[X], +, \times$) sont des \mathbb{R} -sous-espaces vectoriels. Rappel : soit $(A, +, \times)$ un anneau commutatif. L'ensemble I est un idéal de A si : i) (I, +) est un sous-groupe de A, ii) pour tout $(a, i) \in A \times I$, $ai \in I$.
 - (b) La réciproque est-elle vraie ?