Université de TOURS - L2S3 - ALGÈBRE - 2025/2026

ÉVALUATION

Exercice 1

- 1. On pose $N = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$. Calculer N^n pour $n \ge 1$.
- 2. Soit $A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$. A l'aide du Binôme de Newton, calculer A^n . Indication : on remarquera que $A = I_2 + N$.

Exercice 2 Soit m un réel et soit D la matrice définie par

$$D = \begin{pmatrix} m+2 & -3 & 1 \\ -2 & m & 2 \\ 2m & -1 & 1-m \end{pmatrix}$$

- 1. Calculer sous forme factorisée le déterminant de D.
- 2. Pour quelles valeurs de m la matrice D est-elle inversible?

Exercice 3 Soit $E = \mathbb{R}_2[X]$ l'espace vectoriel réel des polynômes à coefficients réels de degré inférieur ou égal à 2. On pose

$$F = \{ P \in \mathbb{R}_2[X], \ P'(1) = P(0) \}.$$

- 1. Montrer que F est un sous-espace vectoriel de E.
- 2. Déterminer une base de F.

Exercice 4

- 1. Déterminer une équation décrivant $F = \text{Vect}(u_1, u_2)$ pour $u_1 = (0, 1, 2)$ et $u_2 = (2, 1, 0)$ dans \mathbb{R}^3 .
- 2. Déterminer une famille génératrice du sous-espace vectoriel $G=\{(x,y,z)\in\mathbb{R}^3,\,y=2z\}.$
- 3. Déterminer une famille génératrice de $F \cap G$.
- 4. F et G sont-ils supplémentaires dans \mathbb{R}^3 ?